本文整理汇总了Golang中github.com/unixpickle/autofunc.Result类的典型用法代码示例。如果您正苦于以下问题:Golang Result类的具体用法?Golang Result怎么用?Golang Result使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Result类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Golang代码示例。
示例1: Apply
func (u *UnstackLayer) Apply(in autofunc.Result) autofunc.Result {
return &unstackLayerResult{
OutputVector: u.unstack(in.Output()),
Input: in,
Layer: u,
}
}
开发者ID:unixpickle,项目名称:weakai,代码行数:7,代码来源:unstack_layer.go
示例2: Apply
func (b *BorderLayer) Apply(in autofunc.Result) autofunc.Result {
return &borderResult{
OutputVec: b.addBorder(in.Output()),
Input: in,
Info: b,
}
}
开发者ID:unixpickle,项目名称:weakai,代码行数:7,代码来源:border_layer.go
示例3: Apply
func (d *DropoutLayer) Apply(in autofunc.Result) autofunc.Result {
if d.Training {
return autofunc.Mul(in, d.dropoutMask(len(in.Output())))
} else {
return autofunc.Scale(in, d.KeepProbability)
}
}
开发者ID:unixpickle,项目名称:weakai,代码行数:7,代码来源:dropout.go
示例4: Apply
func (g *GaussNoiseLayer) Apply(in autofunc.Result) autofunc.Result {
if g.Training {
return autofunc.Add(in, g.noise(len(in.Output())))
} else {
return in
}
}
开发者ID:unixpickle,项目名称:weakai,代码行数:7,代码来源:gauss_noise.go
示例5: networkOutput
func networkOutput(r autofunc.Result) int {
out := r.Output()
var maxIdx int
var max float64
for i, x := range out {
if i == 0 || x > max {
max = x
maxIdx = i
}
}
return maxIdx
}
开发者ID:unixpickle,项目名称:weakai,代码行数:12,代码来源:main.go
示例6: Apply
func (_ ReLU) Apply(r autofunc.Result) autofunc.Result {
inVec := r.Output()
vec := make(linalg.Vector, len(inVec))
for i, x := range inVec {
if x > 0 {
vec[i] = x
}
}
return &reLUResult{
OutputVec: vec,
Input: r,
}
}
开发者ID:unixpickle,项目名称:weakai,代码行数:13,代码来源:activation_func.go
示例7: Apply
func (s *LogSoftmaxLayer) Apply(in autofunc.Result) autofunc.Result {
return autofunc.Pool(in, func(in autofunc.Result) autofunc.Result {
// Compute the log of the sum of the exponents by
// factoring out the largest exponent so that all
// the exponentials fit nicely inside floats.
maxIdx := maxVecIdx(in.Output())
maxValue := autofunc.Slice(in, maxIdx, maxIdx+1)
exponents := autofunc.AddFirst(in, autofunc.Scale(maxValue, -1))
expSum := autofunc.SumAll(autofunc.Exp{}.Apply(exponents))
expLog := autofunc.Log{}.Apply(expSum)
denomLog := autofunc.Add(expLog, maxValue)
return autofunc.AddFirst(in, autofunc.Scale(denomLog, -1))
})
}
开发者ID:unixpickle,项目名称:weakai,代码行数:14,代码来源:softmax_layer.go
示例8: Batch
// Batch applies the layer to inputs in batch.
func (m *MaxPoolingLayer) Batch(in autofunc.Result, n int) autofunc.Result {
outSize := m.OutputWidth() * m.OutputHeight() * m.InputDepth
inSize := m.InputWidth * m.InputHeight * m.InputDepth
if len(in.Output()) != n*inSize {
panic("invalid input size")
}
res := &maxPoolingResult{
OutputVec: make(linalg.Vector, outSize*n),
Input: in,
Layer: m,
}
for i := 0; i < n; i++ {
outTensor := m.outputTensor(res.OutputVec[i*outSize : (i+1)*outSize])
inTensor := m.inputTensor(in.Output()[i*inSize : (i+1)*inSize])
choices := m.evaluate(inTensor, outTensor)
res.Choices = append(res.Choices, choices)
}
return res
}
开发者ID:unixpickle,项目名称:weakai,代码行数:20,代码来源:max_pooling_layer.go
示例9: Batch
func (l *lstmGate) Batch(in autofunc.Result, n int) autofunc.Result {
if l.Peephole == nil {
return l.Activation.Apply(l.Dense.Batch(in, n))
}
return autofunc.Pool(in, func(in autofunc.Result) autofunc.Result {
vecSize := len(in.Output()) / n
var weightedInputs []autofunc.Result
var peepholed []autofunc.Result
for i := 0; i < n; i++ {
start := vecSize * i
weightedEnd := start + vecSize - len(l.Peephole.Vector)
weightedInputs = append(weightedInputs, autofunc.Slice(in, start, weightedEnd))
peepholeMe := autofunc.Slice(in, weightedEnd, (i+1)*vecSize)
peepholed = append(peepholed, autofunc.Mul(l.Peephole, peepholeMe))
}
weighted := l.Dense.Batch(autofunc.Concat(weightedInputs...), n)
return l.Activation.Apply(autofunc.Add(autofunc.Concat(peepholed...), weighted))
})
}
开发者ID:unixpickle,项目名称:weakai,代码行数:19,代码来源:lstm.go
示例10: Batch
// Batch applies the layer to inputs in batch.
func (c *ConvLayer) Batch(in autofunc.Result, n int) autofunc.Result {
if c.Filters == nil || c.Biases == nil || c.FilterVar == nil {
panic(uninitPanicMessage)
}
outSize := c.OutputWidth() * c.OutputHeight() * c.OutputDepth()
inSize := c.InputWidth * c.InputHeight * c.InputDepth
if len(in.Output()) != n*inSize {
panic("invalid input size")
}
res := &convLayerResult{
OutputVec: make(linalg.Vector, outSize*n),
Input: in,
N: n,
Layer: c,
}
for i := 0; i < n; i++ {
subIn := in.Output()[i*inSize : (i+1)*inSize]
subOut := res.OutputVec[i*outSize : (i+1)*outSize]
c.convolve(subIn, c.outputToTensor(subOut))
}
return res
}
开发者ID:unixpickle,项目名称:weakai,代码行数:23,代码来源:conv_layer.go
注:本文中的github.com/unixpickle/autofunc.Result类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论