本文整理汇总了Golang中golang.org/x/image/math/fixed.Point26_6类的典型用法代码示例。如果您正苦于以下问题:Golang Point26_6类的具体用法?Golang Point26_6怎么用?Golang Point26_6使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Point26_6类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Golang代码示例。
示例1: squareCapper
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
e := pRot90CCW(n1)
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:7,代码来源:stroke.go
示例2: DrawString
// DrawString draws s at p and returns p advanced by the text extent. The text
// is placed so that the left edge of the em square of the first character of s
// and the baseline intersect at p. The majority of the affected pixels will be
// above and to the right of the point, but some may be below or to the left.
// For example, drawing a string that starts with a 'J' in an italic font may
// affect pixels below and left of the point.
//
// p is a fixed.Point26_6 and can therefore represent sub-pixel positions.
func (c *Context) DrawString(s string, p fixed.Point26_6) (fixed.Point26_6, error) {
if c.f == nil {
return fixed.Point26_6{}, errors.New("freetype: DrawText called with a nil font")
}
prev, hasPrev := truetype.Index(0), false
for _, rune := range s {
index := c.f.Index(rune)
if hasPrev {
kern := c.f.Kern(c.scale, prev, index)
if c.hinting != font.HintingNone {
kern = (kern + 32) &^ 63
}
p.X += kern
}
advanceWidth, mask, offset, err := c.glyph(index, p)
if err != nil {
return fixed.Point26_6{}, err
}
p.X += advanceWidth
glyphRect := mask.Bounds().Add(offset)
dr := c.clip.Intersect(glyphRect)
if !dr.Empty() {
mp := image.Point{0, dr.Min.Y - glyphRect.Min.Y}
draw.DrawMask(c.dst, dr, c.src, image.ZP, mask, mp, draw.Over)
}
prev, hasPrev = index, true
}
return p, nil
}
开发者ID:walesey,项目名称:go-engine,代码行数:37,代码来源:freetype.go
示例3: roundJoiner
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
dot := pDot(pRot90CW(n0), n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
}
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:10,代码来源:stroke.go
示例4: Advance
func (self rightToLeft) Advance(face font.Face, origin fixed.Point26_6, dot fixed.Point26_6, prev rune, char rune) (begin fixed.Point26_6, end fixed.Point26_6) {
if char == '\n' {
dot.X = origin.X
dot.Y += face.Metrics().Height
return dot, dot
}
if prev != 0 {
dot.X -= face.Kern(prev, char)
}
dot.X -= advance(face, char)
return dot, dot
}
开发者ID:achille-roussel,项目名称:go-vu,代码行数:14,代码来源:direction.go
示例5: roundCapper
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 141/256.
const k = 141
e := pRot90CCW(n1)
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:11,代码来源:stroke.go
示例6: Add1
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b fixed.Point26_6) {
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:13,代码来源:stroke.go
示例7: main
func main() {
const (
n = 17
r = 64 * 80
)
s := fixed.Int26_6(r * math.Sqrt(2) / 2)
t := fixed.Int26_6(r * math.Tan(math.Pi/8))
m := image.NewRGBA(image.Rect(0, 0, 800, 600))
draw.Draw(m, m.Bounds(), image.NewUniform(color.RGBA{63, 63, 63, 255}), image.ZP, draw.Src)
mp := raster.NewRGBAPainter(m)
mp.SetColor(image.Black)
z := raster.NewRasterizer(800, 600)
for i := 0; i < n; i++ {
cx := fixed.Int26_6(6400 + 12800*(i%4))
cy := fixed.Int26_6(640 + 8000*(i/4))
c := fixed.Point26_6{X: cx, Y: cy}
theta := math.Pi * (0.5 + 0.5*float64(i)/(n-1))
dx := fixed.Int26_6(r * math.Cos(theta))
dy := fixed.Int26_6(r * math.Sin(theta))
d := fixed.Point26_6{X: dx, Y: dy}
// Draw a quarter-circle approximated by two quadratic segments,
// with each segment spanning 45 degrees.
z.Start(c)
z.Add1(c.Add(fixed.Point26_6{X: r, Y: 0}))
z.Add2(c.Add(fixed.Point26_6{X: r, Y: t}), c.Add(fixed.Point26_6{X: s, Y: s}))
z.Add2(c.Add(fixed.Point26_6{X: t, Y: r}), c.Add(fixed.Point26_6{X: 0, Y: r}))
// Add another quadratic segment whose angle ranges between 0 and 90
// degrees. For an explanation of the magic constants 128, 150, 181 and
// 256, read the comments in the freetype/raster package.
dot := 256 * pDot(d, fixed.Point26_6{X: 0, Y: r}) / (r * r)
multiple := fixed.Int26_6(150-(150-128)*(dot-181)/(256-181)) >> 2
z.Add2(c.Add(fixed.Point26_6{X: dx, Y: r + dy}.Mul(multiple)), c.Add(d))
// Close the curve.
z.Add1(c)
}
z.Rasterize(mp)
for i := 0; i < n; i++ {
cx := fixed.Int26_6(6400 + 12800*(i%4))
cy := fixed.Int26_6(640 + 8000*(i/4))
for j := 0; j < n; j++ {
theta := math.Pi * float64(j) / (n - 1)
dx := fixed.Int26_6(r * math.Cos(theta))
dy := fixed.Int26_6(r * math.Sin(theta))
m.Set(int((cx+dx)/64), int((cy+dy)/64), color.RGBA{255, 255, 0, 255})
}
}
// Save that RGBA image to disk.
outFile, err := os.Create("out.png")
if err != nil {
log.Println(err)
os.Exit(1)
}
defer outFile.Close()
b := bufio.NewWriter(outFile)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
fmt.Println("Wrote out.png OK.")
}
开发者ID:walesey,项目名称:go-engine,代码行数:70,代码来源:main.go
示例8: bevelJoiner
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:4,代码来源:stroke.go
示例9: buttCapper
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
p.Add1(pivot.Add(n1))
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:3,代码来源:stroke.go
示例10: Add2
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c fixed.Point26_6) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := pRot90CCW(pNorm(ab, k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := pDot(ab, ab) < epsilon
bcIsSmall := pDot(bc, bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || 4096 <= t {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := pRot90CCW(pNorm(bc, k.u))
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
pArc := pDot(abnorm, bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := pRot90CW(abnorm)
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := pRot90CW(abnorm)
addArc(&k.r, mabc, pNeg(abnorm), z)
addArc(&k.r, mabc, z, pNeg(bcnorm))
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:70,代码来源:stroke.go
示例11: addNonCurvy2
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]fixed.Point26_6
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm fixed.Point26_6
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = pRot90CCW(pNorm(bc, k.u))
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
cnorm = pRot90CCW(pNorm(bc, k.u))
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:63,代码来源:stroke.go
示例12: addArc
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
// r2 is the square of the length of n0.
r2 := pDot(n0, n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
// rotated and translated. tan(π/8) is approximately 106/256.
const tpo8 = 106
var s fixed.Point26_6
// We determine which octant the angle between n0 and n1 is in via three
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
// degrees.
m0 := pRot45CW(n0)
m1 := pRot90CW(n0)
m2 := pRot90CW(m0)
if pDot(m1, n1) >= 0 {
if pDot(n0, n1) >= 0 {
if pDot(m2, n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m0, n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if pDot(n0, n1) >= 0 {
if pDot(m0, n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = pNeg(m2)
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m2, n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = pNeg(m1)
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = pNeg(m0)
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle
// bisector of those two points. The multiple ranges between 128/256 and
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
//
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
// s.Add(n1) is twice s and so the middle control point of the degenerate
// quadratic segment should be half s.Add(n1), and half = 128/256.
//
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
//
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * pDot(s, n1) / r2
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
开发者ID:ChrisOHu,项目名称:platform,代码行数:88,代码来源:stroke.go
注:本文中的golang.org/x/image/math/fixed.Point26_6类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论