• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python io.export_landmark_file函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.io.export_landmark_file函数的典型用法代码示例。如果您正苦于以下问题:Python export_landmark_file函数的具体用法?Python export_landmark_file怎么用?Python export_landmark_file使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了export_landmark_file函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_export_landmark_ljson

def test_export_landmark_ljson(mock_open, exists, json_dump):
    exists.return_value = False
    fake_path = '/fake/fake.ljson'
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test_lg, f, extension='ljson')
    json_dump.assert_called_once()
开发者ID:ersisimou,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例2: test_export_landmark_pts

def test_export_landmark_pts(mock_open, exists, save_txt):
    exists.return_value = False
    fake_path = '/fake/fake.pts'
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test_lg, f, extension='pts')
    save_txt.assert_called_once()
开发者ID:ersisimou,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例3: test_export_filepath_no_overwrite

def test_export_filepath_no_overwrite(mock_open, exists, landmark_types):
    exists.return_value = False
    mio.export_landmark_file(test_lg, fake_path)
    mock_open.assert_called_once_with("wb")
    landmark_types.__getitem__.assert_called_once_with(".fake")
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()
开发者ID:luukhoavn,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例4: test_export_filepath_no_overwrite

def test_export_filepath_no_overwrite(mock_open, exists, landmark_types):
    exists.return_value = False
    mio.export_landmark_file(test_lg, fake_path)
    mock_open.assert_called_with('wb')
    landmark_types.__getitem__.assert_called_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    assert export_function.call_count == 1
开发者ID:HaoyangWang,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例5: test_export_filepath_overwrite_exists

def test_export_filepath_overwrite_exists(mock_open, exists, landmark_types):
    exists.return_value = True
    mio.export_landmark_file(test_lg, fake_path, overwrite=True)
    mock_open.assert_called_once_with('wb')
    landmark_types.__getitem__.assert_called_once_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()
开发者ID:ersisimou,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例6: test_export_filepath_explicit_ext_dot

def test_export_filepath_explicit_ext_dot(mock_open, exists, landmark_types):
    exists.return_value = False
    mio.export_landmark_file(test_lg, fake_path, extension='.fake')
    mock_open.assert_called_once_with('wb')
    landmark_types.__getitem__.assert_called_once_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()
开发者ID:ersisimou,项目名称:menpo,代码行数:7,代码来源:io_export_test.py


示例7: test_export_file_handle_file_non_file_buffer

def test_export_file_handle_file_non_file_buffer(mock_open, exists, landmark_types):
    exists.return_value = False
    with open(fake_path) as f:
        del f.name  # Equivalent to raising an AttributeError side effect
        mio.export_landmark_file(test_lg, f, extension="fake")
    landmark_types.__getitem__.assert_called_once_with(".fake")
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()
开发者ID:luukhoavn,项目名称:menpo,代码行数:8,代码来源:io_export_test.py


示例8: test_export_file_handle_file_exists_overwrite

def test_export_file_handle_file_exists_overwrite(mock_open, exists, landmark_types):
    exists.return_value = True
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test_lg, f, overwrite=True, extension="fake")
    landmark_types.__getitem__.assert_called_once_with(".fake")
    export_function = landmark_types.__getitem__.return_value
    export_function.assert_called_once()
开发者ID:luukhoavn,项目名称:menpo,代码行数:8,代码来源:io_export_test.py


示例9: test_export_filepath_explicit_ext_no_dot

def test_export_filepath_explicit_ext_no_dot(mock_open, exists, landmark_types):
    exists.return_value = False
    landmark_types.__contains__.return_value = True
    mio.export_landmark_file(test_lg, fake_path, extension='fake')
    mock_open.assert_called_with('wb')
    landmark_types.__getitem__.assert_called_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    assert export_function.call_count == 1
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:8,代码来源:io_export_test.py


示例10: test_export_file_handle_file_non_file_buffer

def test_export_file_handle_file_non_file_buffer(mock_open, exists,
                                                 landmark_types):
    exists.return_value = False
    landmark_types.__contains__.return_value = True
    with open(fake_path) as f:
        del f.name  # Equivalent to raising an AttributeError side effect
        mio.export_landmark_file(test_lg, f, extension='fake')
    landmark_types.__getitem__.assert_called_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    assert export_function.call_count == 1
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:10,代码来源:io_export_test.py


示例11: test_export_file_handle_file_exists_overwrite

def test_export_file_handle_file_exists_overwrite(mock_open, exists,
                                                  landmark_types):
    exists.return_value = True
    landmark_types.__contains__.return_value = True
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test_lg, f, overwrite=True, extension='fake')
    landmark_types.__getitem__.assert_called_with('.fake')
    export_function = landmark_types.__getitem__.return_value
    assert export_function.call_count == 1
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:10,代码来源:io_export_test.py


示例12: test_export_landmark_ljson_nan_values

def test_export_landmark_ljson_nan_values(mock_open, exists):
    exists.return_value = False
    mock_writer = MagicMock()
    mock_open.return_value.__enter__.return_value = mock_writer
    fake_path = '/fake/fake.ljson'
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(nan_lg, f, extension='ljson')

    # yeah this is grim, but it should work.
    assert 'null' in '{}'.format(mock_open.mock_calls)
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:11,代码来源:io_export_test.py


示例13: test_export_landmark_ljson_nan_values

def test_export_landmark_ljson_nan_values(mock_open, exists):
    exists.return_value = False
    fake_path = '/fake/fake.ljson'
    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(nan_lg, f, extension='ljson')

    # This is a bit ugly, but we parse the write calls to check that json
    # wrote null values
    first_null = mock_open.mock_calls[97][1][0][1:].strip()
    second_null = mock_open.mock_calls[98][1][0][1:].strip()
    assert first_null == 'null'
    assert second_null == 'null'
开发者ID:ersisimou,项目名称:menpo,代码行数:13,代码来源:io_export_test.py


示例14: process_frame

def process_frame(frame_name, clip, img_type, svm_p, loop=False):
    """
    Applies the AAM fitter (global var) in a frame. Additionally, it might apply an
    SVM to verify it's a face if required.
    :param frame_name: str: Name of the frame along with extension, e.g. '000001.png'.
    :param clip:       str: Name of the clip.
    :param img_type:   str: Suffix (extension) of the frames, e.g. '.png'.
    :param svm_p:      dict: Required params for SVM classification.
    :param loop:       bool: (optional) Declares whether this is a 2nd fit for AAM (loop).
    :return:
    """
    global fitter
    name = frame_name[:frame_name.rfind('.')]
    p0 = clip.path_read_ln[0] + name + '_0.pts'
    # find if this is 2nd fit or 1st.
    if loop:  # if 2nd fit, then if landmark is 'approved', return. Otherwise proceed.
        try:
            ln = import_landmark_file(p0)
            copy2(p0, clip.path_write_ln[0] + name + '_0.pts')
            return      # if the landmark already exists, return (for performance improvement)
        except ValueError:
            pass
        try:
            ln = import_landmark_file(clip.path_read_ln[1] + name + '_0.pts')
        except ValueError:  # either not found or no suitable importer
            return
    else:
        try:
            ln = import_landmark_file(p0)
        except ValueError:  # either not found or no suitable importer
            return
    im = im_read_greyscale(frame_name, clip.path_frames, img_type)
    if not im:
        return
    im.landmarks['PTS2'] = ln
    fr = fitter.fit_from_shape(im, im.landmarks['PTS2'].lms, crop_image=0.3)
    p_wr = clip.path_write_ln[0] + im.path.stem + '_0.pts'
    export_landmark_file(fr.fitted_image.landmarks['final'], p_wr, overwrite=True)

    # apply SVM classifier by extracting patches (is face or not).
    if not svm_p['apply']:
        return
    im.landmarks.clear()  # temp solution
    im.landmarks['ps_pbaam'] = fr.fitted_image.landmarks['final']
    im_cp = im.crop_to_landmarks_proportion(0.2, group='ps_pbaam')
    im_cp = svm_p['feat'](im_cp)
    im2 = warp_image_to_reference_shape(im_cp, svm_p['refFrame'], 'ps_pbaam')
    _p_nd = im2.extract_patches_around_landmarks(group='source', as_single_array=True,
                                                 patch_shape=svm_p['patch_s']).flatten()
    if svm_p['clf'].decision_function(_p_nd) > 0:
        copy2(p_wr, clip.path_write_ln[1] + im.path.stem + '_0.pts')
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:51,代码来源:ps_pbaam.py


示例15: detect_in_frame

def detect_in_frame(frame_name, clip, img_type):
    # if normalise=True in im_read_greyscale: before calling dlib detector, image should be converted to uint8
    im = im_read_greyscale(frame_name, clip.path_frames, img_type, normalise=False)
    if not im:
        print(frame_name, clip.path_frames)
        return
    res_dlib = dlib_init_detector(im, group_prefix='dlib')  # call dlib detector
    im_pili = np.array(im.as_PILImage())
    for kk, g in enumerate(im.landmarks.group_labels):
        pts_end = im.path.stem + '_' + str(kk) + pts_type_out  # define the ending of each pts that will be exported
        export_landmark_file(im.landmarks[g], clip.path_write_ln[0] + pts_end, overwrite=True)
        # from bounding box to points (dlib predictor)
        init_pc = detection_to_pointgraph(predictor_dlib(im_pili, pointgraph_to_rect(im.landmarks[g].lms)))
        export_landmark_file(LandmarkGroup.init_with_all_label(init_pc), clip.path_write_ln[1] + pts_end, overwrite=True)
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:14,代码来源:dlib_predictor.py


示例16: test_export_landmark_ljson_3d

def test_export_landmark_ljson_3d(mock_open, exists, json_dump):
    exists.return_value = False
    fake_path = "/fake/fake3d.ljson"
    test3d_lg = test_lg.copy()
    fake_z_points = np.random.random(test3d_lg.lms.points.shape[0])
    test3d_lg.lms.points = np.concatenate([test3d_lg.lms.points, fake_z_points[..., None]], axis=-1)

    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test3d_lg, f, extension="ljson")

    json_dump.assert_called_once()
    json_points = np.array(json_dump.call_args[0][0]["landmarks"]["points"])
    assert_allclose(json_points[:, -1], fake_z_points)
开发者ID:luukhoavn,项目名称:menpo,代码行数:14,代码来源:io_export_test.py


示例17: test_export_landmark_ljson_3d

def test_export_landmark_ljson_3d(mock_open, exists, json_dump):
    exists.return_value = False
    fake_path = '/fake/fake3d.ljson'
    test3d_lg = test_lg.copy()
    fake_z_points = np.random.random(test3d_lg.points.shape[0])
    test3d_lg.points = np.concatenate([
        test3d_lg.points, fake_z_points[..., None]], axis=-1)

    with open(fake_path) as f:
        type(f).name = PropertyMock(return_value=fake_path)
        mio.export_landmark_file(test3d_lg, f, extension='ljson')

    assert json_dump.call_count == 1
    json_points = np.array(json_dump.call_args[0][0]['landmarks']['points'])
    assert_allclose(json_points[:, -1], fake_z_points)
开发者ID:grigorisg9gr,项目名称:menpo,代码行数:15,代码来源:io_export_test.py


示例18: save_bounding_boxes

def save_bounding_boxes(pattern, detector_type, group=None,
                        sythesize_problematic=False, overwrite=False):
    import menpo.io as mio
    from menpo.landmark import LandmarkGroup
    from menpo.model import PCAModel
    try:
        detector = _DETECTORS[detector_type]()
    except KeyError:
        detector_list = ', '.join(list(_DETECTORS.keys()))
        raise ValueError('Valid detector types are: {}'.format(detector_list))
    print('Running {} detector on {}'.format(detector_type, pattern))
    bboxes = {img.path: detect_and_check(img, detector, group=group)
              for img in mio.import_images(pattern, normalise=False,
                                           verbose=True)}

    # find all the detections that failed
    problematic = filter(lambda x: x[1]['d'] is None, bboxes.items())
    print('Failed to detect {} objects'.format(len(problematic)))
    if len(problematic) > 0 and sythesize_problematic:
        print('Learning detector traits and sythesizing fits for {} '
              'images'.format(len(problematic)))
        # get the good detections
        detections = filter(lambda x: x['d'] is not None, bboxes.values())
        # normalize these to size [1, 1], centred on origin
        normed_detections = [normalize(r['gt']).apply(r['d'])
                             for r in detections]
        # build a PCA model from good detections
        pca = PCAModel(normed_detections)

        for p, r in problematic:
            # generate a new bbox offset in the normalized space by using
            # our learnt PCA basis
            d = random_instance(pca)
            # apply an inverse transform to place it on the image
            bboxes[p]['d'] = normalize(r['gt']).pseudoinverse().apply(d)
    to_save = len(bboxes)
    if not sythesize_problematic:
        to_save = to_save - len(problematic)
    print('Saving out {} {} detections'.format(to_save, detector_type))
    # All done, save out results
    for p, r in bboxes.items():
        if r['d'] is not None:
            lg = LandmarkGroup.init_with_all_label(r['d'])
            mio.export_landmark_file(lg, p.parent /
                                     (p.stem + '_{}.ljson'.format(detector_type)),
                                     overwrite=overwrite)
开发者ID:nontas,项目名称:menpobench,代码行数:46,代码来源:bbox.py


示例19: process_lns_path

def process_lns_path(process, shapes=None, p_in=None, p_out=None, overwrite=None):
    """
    Processes a list of landmark files. The processing is performed per shape (file)
    and depends on the process function defined.
    Can be provided either the shapes directly or an import path.
    If an exporting path is provided, the bounding boxes will be
    exported there.

    :param process: (function) Process function that accepts a landmark (menpo.landmark)
                    and returns the same type processed.
    :param shapes:  (list, optional) List of shapes.
    :param p_in:    (string, optional) Input path for shapes if shapes is not provided.
    :param p_out:   (string, optional) Output path for the processed landmarks.
    :param overwrite: (bool, optional) Whether to overwrite existing files in p_out.
    :return:
    """
    if p_out is not None:
        assert(isdir(p_out))

    if shapes is None:
        # import the shapes from p_in.
        assert(isdir(p_in))
        shapes = list(mio.import_landmark_files(p_in))

    ln_out = []
    # dummy image
    im = mio.import_builtin_asset.lenna_png()
    # loop over the shapes to convert to bounding boxes.
    for ln in shapes:
        # process each shape by utilising the process function.
        im.landmarks['g'] = process(ln)

        if p_out is not None:
            # if path is provided, export it.
            mio.export_landmark_file(im.landmarks['g'], p_out + ln.path.name, 
                                     overwrite=overwrite)
        ln_out.append(im.landmarks['g'])
        
    return ln_out
开发者ID:grigorisg9gr,项目名称:pyutils,代码行数:39,代码来源:menpo_related.py


示例20: predict_in_frame

def predict_in_frame(frame_name, clip, img_type):
    global detector
    im = im_read_greyscale(frame_name, clip.path_frames, img_type, normalise=False)

    res_dlib = detector(im)
    num_res = len(res_dlib)
    if num_res == 0:
        return
    num1 = 1                # num1 and s1: Values if there are more than 10 detections in the image
    if num_res > 9:
        num1 = 2
    s1 = '%0' + str(num1)
    im_pili = np.array(im.as_PILImage())
    for kk in range(0, 1):   # num_res to keep all, here keeping ONLY the most confident one
        pts_end = im.path.stem + '_' + str(kk) + pts_type_out
        ln = im.landmarks['ffld2_' + (s1 + 'd') % kk]
        mio.export_landmark_file(ln, clip.path_write_ln[0] + pts_end, overwrite=True)
        # convert to landmarks
        det_frame = predictor_dlib(im_pili, pointgraph_to_rect(ln.lms))
        init_pc = detection_to_pointgraph(det_frame)
        mio.export_landmark_file(LandmarkGroup.init_with_all_label(init_pc),
                                 clip.path_write_ln[1] + pts_end, overwrite=True)
开发者ID:caomw,项目名称:robust_deformable_face_tracking,代码行数:22,代码来源:ffld2.py



注:本文中的menpo.io.export_landmark_file函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python io.import_builtin_asset函数代码示例发布时间:2022-05-27
下一篇:
Python io.data_dir_path函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap