• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python shape.PointUndirectedGraph类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.shape.PointUndirectedGraph的典型用法代码示例。如果您正苦于以下问题:Python PointUndirectedGraph类的具体用法?Python PointUndirectedGraph怎么用?Python PointUndirectedGraph使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了PointUndirectedGraph类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: eye_ibug_close_17_to_eye_ibug_close_17

def eye_ibug_close_17_to_eye_ibug_close_17(pcloud):
    r"""
    Apply the IBUG 17-point close eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 17
    validate_input(pcloud, n_expected_points)

    upper_indices, upper_connectivity = _build_upper_eyelid()

    middle_indices = np.arange(12, 17)
    bottom_indices = np.arange(6, 12)
    lower_indices = np.hstack((bottom_indices, 0, middle_indices))
    lower_connectivity = list(zip(bottom_indices, bottom_indices[1:]))
    lower_connectivity += [(0, 12)]
    lower_connectivity += list(zip(middle_indices, middle_indices[1:]))
    lower_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_connectivity + lower_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_indices
    mapping['lower_eyelid'] = lower_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:33,代码来源:face.py


示例2: car_streetscene_20_to_car_streetscene_view_5_10

def car_streetscene_20_to_car_streetscene_view_5_10(pcloud):
    r"""
    Apply the 10-point semantic labels of "view 5" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 9, 8])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)

    all_connectivity = right_side_connectivity

    ind = np.array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:33,代码来源:car.py


示例3: face_ibug_49_to_face_ibug_49

def face_ibug_49_to_face_ibug_49(pcloud):
    r"""
    Apply the IBUG 49-point semantic labels.
    The semantic labels applied are as follows:
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth
    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 49
    validate_input(pcloud, n_expected_points)

    lbrow_indices = np.arange(0, 5)
    rbrow_indices = np.arange(5, 10)
    upper_nose_indices = np.arange(10, 14)
    lower_nose_indices = np.arange(14, 19)
    leye_indices = np.arange(19, 25)
    reye_indices = np.arange(25, 31)
    outer_mouth_indices = np.arange(31, 43)
    inner_mouth_indices = np.hstack((31, np.arange(43, 46),
                                     37, np.arange(46, 49)))

    lbrow_connectivity = connectivity_from_array(lbrow_indices)
    rbrow_connectivity = connectivity_from_array(rbrow_indices)
    nose_connectivity = np.vstack([
        connectivity_from_array(upper_nose_indices),
        connectivity_from_array(lower_nose_indices)])
    leye_connectivity = connectivity_from_array(leye_indices, close_loop=True)
    reye_connectivity = connectivity_from_array(reye_indices, close_loop=True)
    mouth_connectivity = np.vstack([
        connectivity_from_array(outer_mouth_indices, close_loop=True),
        connectivity_from_array(inner_mouth_indices, close_loop=True)])

    all_connectivity = np.vstack([
        lbrow_connectivity, rbrow_connectivity, nose_connectivity,
        leye_connectivity, reye_connectivity, mouth_connectivity])

    # Ignore the two inner mouth points
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_eyebrow'] = lbrow_indices
    mapping['right_eyebrow'] = rbrow_indices
    mapping['nose'] = np.hstack([upper_nose_indices, lower_nose_indices])
    mapping['left_eye'] = leye_indices
    mapping['right_eye'] = reye_indices
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
开发者ID:kritsong,项目名称:menpo,代码行数:58,代码来源:face.py


示例4: eye_ibug_open_38_to_eye_ibug_open_38

def eye_ibug_open_38_to_eye_ibug_open_38(pcloud):
    r"""
    Apply the IBUG 38-point open eye semantic labels.

    The semantic labels applied are as follows:

      - upper_eyelid
      - lower_eyelid
      - iris
      - pupil
      - sclera
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 38
    validate_input(pcloud, n_expected_points)

    upper_el_indices, upper_el_connectivity = _build_upper_eyelid()

    iris_range = (22, 30)
    pupil_range = (30, 38)
    sclera_top = np.arange(12, 17)
    sclera_bottom = np.arange(17, 22)
    sclera_indices = np.hstack((0, sclera_top, 6, sclera_bottom))
    lower_el_top = np.arange(17, 22)
    lower_el_bottom = np.arange(7, 12)
    lower_el_indices = np.hstack((6, lower_el_top, 0, lower_el_bottom))

    iris_connectivity = connectivity_from_range(iris_range, close_loop=True)
    pupil_connectivity = connectivity_from_range(pupil_range, close_loop=True)

    sclera_connectivity = list(zip(sclera_top, sclera_top[1:]))
    sclera_connectivity += [(0, 21)]
    sclera_connectivity += list(zip(sclera_bottom, sclera_bottom[1:]))
    sclera_connectivity += [(6, 17)]

    lower_el_connectivity = list(zip(lower_el_top, lower_el_top[1:]))
    lower_el_connectivity += [(6, 7)]
    lower_el_connectivity += list(zip(lower_el_bottom, lower_el_bottom[1:]))
    lower_el_connectivity += [(11, 0)]

    all_connectivity = np.asarray(upper_el_connectivity +
                                  lower_el_connectivity +
                                  iris_connectivity.tolist() +
                                  pupil_connectivity.tolist() +
                                  sclera_connectivity)
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['upper_eyelid'] = upper_el_indices
    mapping['lower_eyelid'] = lower_el_indices
    mapping['pupil'] = np.arange(*pupil_range)
    mapping['iris'] = np.arange(*iris_range)
    mapping['sclera'] = sclera_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:57,代码来源:face.py


示例5: test_init_2d_grid

def test_init_2d_grid():
    g = PointTree.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 24
    assert g.n_points == 25
    g = PointUndirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid((5, 5))
    assert g.adjacency_matrix.nnz == 80
    assert g.n_points == 25
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:10,代码来源:test_graph.py


示例6: hand_ibug_39_to_hand_ibug_39

def hand_ibug_39_to_hand_ibug_39(pcloud):
    r"""
    Apply the IBUG 39-point semantic labels.

    The semantic labels applied are as follows:

      - thumb
      - index
      - middle
      - ring
      - pinky
      - palm
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 39
    validate_input(pcloud, n_expected_points)

    thumb_indices = np.arange(0, 5)
    index_indices = np.arange(5, 12)
    middle_indices = np.arange(12, 19)
    ring_indices = np.arange(19, 26)
    pinky_indices = np.arange(26, 33)
    palm_indices = np.hstack((np.array([32, 25, 18, 11, 33, 34, 4]),
                              np.arange(35, 39)))

    thumb_connectivity = connectivity_from_array(thumb_indices,
                                                 close_loop=False)
    index_connectivity = connectivity_from_array(index_indices,
                                                 close_loop=False)
    middle_connectivity = connectivity_from_array(middle_indices,
                                                  close_loop=False)
    ring_connectivity = connectivity_from_array(ring_indices,
                                                close_loop=False)
    pinky_connectivity = connectivity_from_array(pinky_indices,
                                                 close_loop=False)
    palm_connectivity = connectivity_from_array(palm_indices,
                                                close_loop=True)

    all_connectivity = np.vstack([thumb_connectivity, index_connectivity,
                                  middle_connectivity, ring_connectivity,
                                  pinky_connectivity, palm_connectivity])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['thumb'] = thumb_indices
    mapping['index'] = index_indices
    mapping['middle'] = middle_indices
    mapping['ring'] = ring_indices
    mapping['pinky'] = pinky_indices
    mapping['palm'] = palm_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:55,代码来源:hand.py


示例7: __init__

    def __init__(self, points, adjacency_matrix, labels_to_masks, copy=True,
                 skip_checks=False):
        PointUndirectedGraph.__init__(self, points, adjacency_matrix, copy=copy,
                                      skip_checks=skip_checks)

        if not labels_to_masks:
            raise ValueError('Labelled point graphs are designed to be '
                             'immutable. Empty label sets are not permitted.')
        if np.vstack(labels_to_masks.values()).shape[1] != points.shape[0]:
            raise ValueError('Each mask must have the same number of points '
                             'as the given points.')
        if not isinstance(labels_to_masks, OrderedDict):
            raise ValueError('Must provide an OrderedDict to maintain the '
                             'semantic meaning of the labels.')

        # Another sanity check
        self._labels_to_masks = labels_to_masks
        self._verify_all_labels_masked()

        if copy:
            self._labels_to_masks = OrderedDict([(l, m.copy()) for l, m in
                                                 labels_to_masks.items()])
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:22,代码来源:labelled.py


示例8: car_streetscene_20_to_car_streetscene_view_1_14

def car_streetscene_20_to_car_streetscene_view_1_14(pcloud):
    """
    Apply the 14-point semantic labels of "view 1" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - front
      - bonnet
      - windshield
      - left_side

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    front_indices = np.array([0, 1, 3, 2])
    bonnet_indices = np.array([2, 3, 5, 4])
    windshield_indices = np.array([4, 5, 7, 6])
    left_side_indices = np.array([0, 2, 4, 6, 8, 9, 10, 11, 13, 12])

    front_connectivity = connectivity_from_array(front_indices,
                                                 close_loop=True)
    bonnet_connectivity = connectivity_from_array(bonnet_indices,
                                                  close_loop=True)
    windshield_connectivity = connectivity_from_array(windshield_indices,
                                                      close_loop=True)
    left_side_connectivity = connectivity_from_array(left_side_indices,
                                                     close_loop=True)

    all_connectivity = np.vstack([
        front_connectivity, bonnet_connectivity, windshield_connectivity,
        left_side_connectivity
    ])

    ind = np.hstack((np.arange(9), np.array([10, 12, 14, 16, 18])))
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['front'] = front_indices
    mapping['bonnet'] = bonnet_indices
    mapping['windshield'] = windshield_indices
    mapping['left_side'] = left_side_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:51,代码来源:car.py


示例9: pose_lsp_14_to_pose_lsp_14

def pose_lsp_14_to_pose_lsp_14(pcloud):
    r"""
    Apply the lsp 14-point semantic labels.

    The semantic labels applied are as follows:

      - left_leg
      - right_leg
      - left_arm
      - right_arm
      - head

    References
    ----------
    .. [1] http://www.comp.leeds.ac.uk/mat4saj/lsp.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 14
    validate_input(pcloud, n_expected_points)

    left_leg_indices = np.arange(0, 3)
    right_leg_indices = np.arange(3, 6)
    left_arm_indices = np.arange(6, 9)
    right_arm_indices = np.arange(9, 12)
    head_indices = np.arange(12, 14)

    left_leg_connectivity = connectivity_from_array(left_leg_indices)
    right_leg_connectivity = connectivity_from_array(right_leg_indices)
    left_arm_connectivity = connectivity_from_array(left_arm_indices)
    right_arm_connectivity = connectivity_from_array(right_arm_indices)
    head_connectivity = connectivity_from_array(head_indices)

    all_connectivity = np.vstack([
        left_leg_connectivity, right_leg_connectivity,
        left_arm_connectivity, right_arm_connectivity,
        head_connectivity
    ])

    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points,
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['left_leg'] = left_leg_indices
    mapping['right_leg'] = right_leg_indices
    mapping['left_arm'] = left_arm_indices
    mapping['right_arm'] = right_arm_indices
    mapping['head'] = head_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:50,代码来源:pose.py


示例10: test_init_from_edges

def test_init_from_edges():
    g = PointDirectedGraph.init_from_edges(
        points, np.array([[1, 0], [2, 0], [1, 2], [2, 1], [1, 3], [2, 4],
                          [3, 4], [3, 5]]))
    assert (pg_directed.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [0, 2], [1, 2], [1, 3], [2, 4], [3, 4],
                          [3, 5]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 1], [1, 0], [0, 2], [2, 0], [1, 2], [2, 1],
                          [1, 3], [3, 1], [2, 4], [4, 2], [3, 4], [4, 3],
                          [3, 5], [5, 3]]))
    assert (pg_undirected.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointTree.init_from_edges(
        points2, np.array([[0, 1], [0, 2], [1, 3], [1, 4], [2, 5], [3, 6],
                           [4, 7], [5, 8]]), root_vertex=0)
    assert (pg_tree.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointUndirectedGraph.init_from_edges(
        points, np.array([[0, 2], [2, 4], [3, 4]]))
    assert (pg_isolated.adjacency_matrix - g.adjacency_matrix).nnz == 0
    g = PointDirectedGraph.init_from_edges(point, np.array([]))
    assert (pg_single.adjacency_matrix - g.adjacency_matrix).nnz == 0
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:23,代码来源:test_graph.py


示例11: car_streetscene_20_to_car_streetscene_view_6_14

def car_streetscene_20_to_car_streetscene_view_6_14(pcloud):
    r"""
    Apply the 14-point semantic labels of "view 6" from the MIT Street Scene
    Car dataset (originally a 20-point markup).

    The semantic labels applied are as follows:

      - right_side
      - rear_windshield
      - trunk
      - rear

    References
    ----------
    .. [1] http://www.cs.cmu.edu/~vboddeti/alignment.html
    """
    from menpo.shape import PointUndirectedGraph

    n_expected_points = 20
    validate_input(pcloud, n_expected_points)

    right_side_indices = np.array([0, 1, 2, 3, 5, 7, 9, 11, 13, 12])
    rear_windshield_indices = np.array([4, 5, 7, 6])
    trunk_indices = np.array([6, 7, 9, 8])
    rear_indices = np.array([8, 9, 11, 10])

    right_side_connectivity = connectivity_from_array(right_side_indices,
                                                      close_loop=True)
    rear_windshield_connectivity = connectivity_from_array(
        rear_windshield_indices, close_loop=True)
    trunk_connectivity = connectivity_from_array(trunk_indices, close_loop=True)
    rear_connectivity = connectivity_from_array(rear_indices, close_loop=True)

    all_connectivity = np.vstack([
        right_side_connectivity, rear_windshield_connectivity,
        trunk_connectivity, rear_connectivity
    ])

    ind = np.array([1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19])
    new_pcloud = PointUndirectedGraph.init_from_edges(pcloud.points[ind],
                                                      all_connectivity)

    mapping = OrderedDict()
    mapping['right_side'] = right_side_indices
    mapping['rear_windshield'] = rear_windshield_indices
    mapping['trunk'] = trunk_indices
    mapping['rear'] = rear_indices

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:49,代码来源:car.py


示例12: test_init_from_depth_image

def test_init_from_depth_image():
    fake_z = np.random.uniform(size=(10, 10))
    g = PointTree.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.root_vertex == 55
    assert g.adjacency_matrix.nnz == 99
    assert g.n_points == 100
    g = PointUndirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
    g = PointDirectedGraph.init_from_depth_image(Image(fake_z))
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 360
    assert g.n_points == 100
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:15,代码来源:test_graph.py


示例13: tojson

    def tojson(self):
        r"""
        Convert this `LabelledPointUndirectedGraph` to a dictionary JSON
        representation.

        Returns
        -------
        json : ``dict``
            Dictionary conforming to the LJSON v2 specification.
        """
        labels = [{'mask': mask.nonzero()[0].tolist(),
                   'label': label}
                  for label, mask in self._labels_to_masks.items()]
        lms_dict = PointUndirectedGraph.tojson(self)
        lms_dict['labels'] = labels
        return lms_dict
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:16,代码来源:labelled.py


示例14: pcloud_and_lgroup_from_ranges

def pcloud_and_lgroup_from_ranges(pointcloud, labels_to_ranges):
    """
    Label the given pointcloud according to the given ordered dictionary
    of labels to ranges. This assumes that you can semantically label the group
    by using ranges in to the existing points e.g ::

        labels_to_ranges = {'jaw': (0, 17, False)}

    The third element of the range tuple is whether the range is a closed loop
    or not. For example, for an eye landmark this would be ``True``, as you
    do want to create a closed loop for an eye.

    Parameters
    ----------
    pointcloud : :map:`PointCloud`
        The pointcloud to apply semantic labels to.
    labels_to_ranges : `ordereddict` {`str` -> (`int`, `int`, `bool`)}
        Ordered dictionary of string labels to range tuples.

    Returns
    -------
    new_pcloud : :map:`PointCloud`
        New pointcloud with specific connectivity information applied.
    mapping : `ordereddict` {`str` -> `int ndarray`}
        For each label, the indices in to the pointcloud that belong to the
        label.
    """
    from menpo.shape import PointUndirectedGraph

    mapping = OrderedDict()
    all_connectivity = []
    for label, tup in labels_to_ranges.items():
        range_tuple = tup[:-1]
        close_loop = tup[-1]

        connectivity = connectivity_from_range(range_tuple,
                                               close_loop=close_loop)
        all_connectivity.append(connectivity)
        mapping[label] = np.arange(*range_tuple)
    all_connectivity = np.vstack(all_connectivity)

    new_pcloud = PointUndirectedGraph.init_from_edges(pointcloud.points,
                                                      all_connectivity)

    return new_pcloud, mapping
开发者ID:kritsong,项目名称:menpo,代码行数:45,代码来源:base.py


示例15: test_init_from_depth_image_masked

def test_init_from_depth_image_masked():
    fake_z = np.random.uniform(size=(10, 10))
    mask = np.zeros(fake_z.shape, dtype=np.bool)
    mask[2:6, 2:6] = True
    im = MaskedImage(fake_z, mask=mask)
    g = PointTree.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.root_vertex == 0
    assert g.adjacency_matrix.nnz == 15
    assert g.n_points == 16
    g = PointUndirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
    g = PointDirectedGraph.init_from_depth_image(im)
    assert g.n_dims == 3
    assert g.adjacency_matrix.nnz == 48
    assert g.n_points == 16
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:18,代码来源:test_graph.py


示例16: _parse_ljson_v2

def _parse_ljson_v2(lms_dict):
    labels_to_mask = OrderedDict()  # masks into the full pointcloud per label

    points = _ljson_parse_null_values(lms_dict['landmarks']['points'])
    connectivity = lms_dict['landmarks'].get('connectivity')

    # Don't create a PointUndirectedGraph with no connectivity
    if connectivity is None or len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)

    for label in lms_dict['labels']:
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[label['mask']] = True
        labels_to_mask[label['label']] = mask

    return pcloud, labels_to_mask
开发者ID:JeanKossaifi,项目名称:menpo,代码行数:18,代码来源:landmark.py


示例17: get_label

    def get_label(self, label):
        """
        Returns a new :map:`PointUndirectedGraph` that contains the subset of
        points that this label represents.

        Parameters
        ----------
        label : `string`
            Label to filter on.

        Returns
        -------
        graph : :map:`PointUndirectedGraph`
            The PointUndirectedGraph containing the subset of points that this
            label masks. Will be a subset of the entire group's points.
        """
        mask = self._labels_to_masks[label]
        return PointUndirectedGraph.from_mask(self, mask)
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:18,代码来源:labelled.py


示例18: face_ibug_68_to_face_ibug_65

def face_ibug_68_to_face_ibug_65(pcloud):
    r"""
    Apply the IBUG 68 point semantic labels, but ignore the 3 points that are
    coincident for a closed mouth (bottom of the inner mouth).

    The semantic labels applied are as follows:

      - jaw
      - left_eyebrow
      - right_eyebrow
      - nose
      - left_eye
      - right_eye
      - mouth

    References
    ----------
    .. [1] http://www.multipie.org/
    .. [2] http://ibug.doc.ic.ac.uk/resources/300-W/
    """
    from menpo.shape import PointUndirectedGraph

    # Apply face_ibug_68_to_face_ibug_68
    new_pcloud, mapping = face_ibug_68_to_face_ibug_68(pcloud,
                                                       return_mapping=True)

    # The coincident points are considered the final 3 landmarks (bottom of
    # the inner mouth points). We remove all the edges for the inner mouth
    # which are the last 8.
    edges = new_pcloud.edges[:-8]
    # Re-add the inner mouth without the bottom 3 points
    edges = np.vstack([edges,
                       connectivity_from_range((60, 65), close_loop=True)])

    new_pcloud = PointUndirectedGraph.init_from_edges(
        new_pcloud.points[:-3], edges)

    # Luckily, OrderedDict maintains the original ordering despite updates
    outer_mouth_indices = np.arange(48, 60)
    inner_mouth_indices = np.arange(60, 65)
    mapping['mouth'] = np.hstack([outer_mouth_indices, inner_mouth_indices])

    return new_pcloud, mapping
开发者ID:HaoyangWang,项目名称:menpo,代码行数:43,代码来源:face.py


示例19: test_init_2d_grid_custom_adjacency

def test_init_2d_grid_custom_adjacency():
    tree_adj = np.array([[0, 1, 0, 0],
                         [0, 0, 0, 1],
                         [0, 0, 0, 0],
                         [0, 0, 1, 0]])
    g = PointTree.init_2d_grid((2, 2), root_vertex=0, adjacency_matrix=tree_adj)
    assert g.adjacency_matrix.nnz == 3
    assert g.n_points == 4
    single_edge = lil_matrix((25, 25))
    single_edge[[0, 1], [1, 0]] = 1
    single_edge = single_edge.tocsr()
    g = PointUndirectedGraph.init_2d_grid(
        (5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
    g = PointDirectedGraph.init_2d_grid(
        (5, 5), adjacency_matrix=single_edge)
    assert g.adjacency_matrix.nnz == 2
    assert g.n_points == 25
开发者ID:AshwinRajendraprasad,项目名称:menpo,代码行数:19,代码来源:test_graph.py


示例20: _parse_ljson_v1

def _parse_ljson_v1(lms_dict):
    from menpo.base import MenpoDeprecationWarning

    warnings.warn(
        "LJSON v1 is deprecated. export_landmark_file{s}() will "
        "only save out LJSON v2 files. Please convert all LJSON "
        "files to v2 by importing into Menpo and re-exporting to "
        "overwrite the files.",
        MenpoDeprecationWarning,
    )
    all_points = []
    labels = []  # label per group
    labels_slices = []  # slices into the full pointcloud per label
    offset = 0
    connectivity = []
    for group in lms_dict["groups"]:
        lms = group["landmarks"]
        labels.append(group["label"])
        labels_slices.append(slice(offset, len(lms) + offset))
        # Create the connectivity if it exists
        conn = group.get("connectivity", [])
        if conn:
            # Offset relative connectivity according to the current index
            conn = offset + np.asarray(conn)
            connectivity += conn.tolist()
        for p in lms:
            all_points.append(p["point"])
        offset += len(lms)

    # Don't create a PointUndirectedGraph with no connectivity
    points = _ljson_parse_null_values(all_points)
    if len(connectivity) == 0:
        pcloud = PointCloud(points)
    else:
        pcloud = PointUndirectedGraph.init_from_edges(points, connectivity)
    labels_to_masks = OrderedDict()
    # go through each label and build the appropriate boolean array
    for label, l_slice in zip(labels, labels_slices):
        mask = np.zeros(pcloud.n_points, dtype=np.bool)
        mask[l_slice] = True
        labels_to_masks[label] = mask
    return pcloud, labels_to_masks
开发者ID:luukhoavn,项目名称:menpo,代码行数:42,代码来源:landmark.py



注:本文中的menpo.shape.PointUndirectedGraph类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.is_same_array函数代码示例发布时间:2022-05-27
下一篇:
Python shape.PointCloud类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap