• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python visualize.progress_bar_str函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中menpo.visualize.progress_bar_str函数的典型用法代码示例。如果您正苦于以下问题:Python progress_bar_str函数的具体用法?Python progress_bar_str怎么用?Python progress_bar_str使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了progress_bar_str函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _import_glob_generator

def _import_glob_generator(
    pattern,
    extension_map,
    max_assets=None,
    has_landmarks=False,
    landmark_resolver=None,
    importer_kwargs=None,
    verbose=False,
):
    filepaths = list(glob_with_suffix(pattern, extension_map))
    if max_assets:
        filepaths = filepaths[:max_assets]
    n_files = len(filepaths)
    if n_files == 0:
        raise ValueError("The glob {} yields no assets".format(pattern))
    for i, asset in enumerate(
        _multi_import_generator(
            filepaths,
            extension_map,
            has_landmarks=has_landmarks,
            landmark_resolver=landmark_resolver,
            importer_kwargs=importer_kwargs,
        )
    ):
        if verbose:
            print_dynamic(
                "- Loading {} assets: {}".format(n_files, progress_bar_str(float(i + 1) / n_files, show_bar=True))
            )
        yield asset
开发者ID:kod3r,项目名称:menpo,代码行数:29,代码来源:base.py


示例2: _get_relative_locations

def _get_relative_locations(shapes, graph, level_str, verbose):
    r"""
    returns numpy.array of size 2 x n_images x n_edges
    """
    # convert given shapes to point graphs
    if isinstance(graph, Tree):
        point_graphs = [PointTree(shape.points, graph.adjacency_array,
                                  graph.root_vertex) for shape in shapes]
    else:
        point_graphs = [PointDirectedGraph(shape.points, graph.adjacency_array)
                        for shape in shapes]

    # initialize an output numpy array
    rel_loc_array = np.empty((2, graph.n_edges, len(point_graphs)))

    # get relative locations
    for c, pt in enumerate(point_graphs):
        # print progress
        if verbose:
            print_dynamic('{}Computing relative locations from '
                          'shapes - {}'.format(
                          level_str,
                          progress_bar_str(float(c + 1) / len(point_graphs),
                                           show_bar=False)))

        # get relative locations from this shape
        rl = pt.relative_locations()

        # store
        rel_loc_array[..., c] = rl.T

    # rollaxis and return
    return np.rollaxis(rel_loc_array, 2, 1)
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:33,代码来源:builder.py


示例3: _regression_data

    def _regression_data(self, images, gt_shapes, perturbed_shapes,
                         verbose=False):
        r"""
        Method that generates the regression data : features and delta_ps.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images.

        gt_shapes : :map:`PointCloud` list
            List of the ground truth shapes that correspond to the images.

        perturbed_shapes : :map:`PointCloud` list
            List of the perturbed shapes in order to regress.

        verbose : `boolean`, optional
            If ``True``, the progress is printed.
        """
        if verbose:
            print_dynamic('- Generating regression data')

        n_images = len(images)
        features = []
        delta_ps = []
        for j, (i, s, p_shape) in enumerate(zip(images, gt_shapes,
                                                perturbed_shapes)):
            if verbose:
                print_dynamic('- Generating regression data - {}'.format(
                    progress_bar_str((j + 1.) / n_images, show_bar=False)))
            for ps in p_shape:
                features.append(self.features(i, ps))
                delta_ps.append(self.delta_ps(s, ps))
        return np.asarray(features), np.asarray(delta_ps)
开发者ID:OlivierML,项目名称:menpofit,代码行数:34,代码来源:trainer.py


示例4: apply_pyramid_on_images

def apply_pyramid_on_images(generators, n_levels, verbose=False):
    r"""
    Exhausts the pyramid generators verbosely
    """
    all_images = []
    for j in range(n_levels):

        if verbose:
            level_str = '- Apply pyramid: '
            if n_levels > 1:
                level_str = '- Apply pyramid: [Level {} - '.format(j + 1)

        level_images = []
        for c, g in enumerate(generators):
            if verbose:
                print_dynamic(
                    '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
            level_images.append(next(g))
        all_images.append(level_images)
    if verbose:
        print_dynamic('- Apply pyramid: Done\n')
    return all_images
开发者ID:OlivierML,项目名称:menpofit,代码行数:25,代码来源:trainer.py


示例5: _build_appearance_model_sparse

def _build_appearance_model_sparse(all_patches_array, graph, patch_shape,
                                   n_channels, n_appearance_parameters,
                                   level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'edge'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=1)

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # initialize block sparse covariance matrix
    all_cov = lil_matrix((graph.n_vertices * patch_len,
                          graph.n_vertices * patch_len))

    # compute covariance matrix for each edge
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / graph.n_edges,
                                           show_bar=False)))

        # edge vertices
        v1 = np.min(graph.adjacency_array[e, :])
        v2 = np.max(graph.adjacency_array[e, :])

        # find indices in target covariance matrix
        v1_from = v1 * patch_len
        v1_to = (v1 + 1) * patch_len
        v2_from = v2 * patch_len
        v2_to = (v2 + 1) * patch_len

        # extract data
        edge_data = np.concatenate((all_patches_array[v1_from:v1_to, :],
                                    all_patches_array[v2_from:v2_to, :]))

        # compute covariance inverse
        icov = _covariance_matrix_inverse(np.cov(edge_data),
                                          n_appearance_parameters)

        # v1, v2
        all_cov[v1_from:v1_to, v2_from:v2_to] += icov[:patch_len, patch_len::]

        # v2, v1
        all_cov[v2_from:v2_to, v1_from:v1_to] += icov[patch_len::, :patch_len]

        # v1, v1
        all_cov[v1_from:v1_to, v1_from:v1_to] += icov[:patch_len, :patch_len]

        # v2, v2
        all_cov[v2_from:v2_to, v2_from:v2_to] += icov[patch_len::, patch_len::]

    return app_mean, all_cov.tocsr()
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:59,代码来源:builder.py


示例6: _build_deformation_model

def _build_deformation_model(graph, relative_locations, level_str, verbose):
    # build deformation model
    if verbose:
        print_dynamic('{}Training deformation distribution per '
                      'graph edge'.format(level_str))
    def_len = 2 * graph.n_vertices
    def_cov = np.zeros((def_len, def_len))
    for e in range(graph.n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Training deformation distribution '
                          'per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / graph.n_edges,
                                           show_bar=False)))

        # get vertices adjacent to edge
        parent = graph.adjacency_array[e, 0]
        child = graph.adjacency_array[e, 1]

        # compute covariance matrix
        edge_cov = np.linalg.inv(np.cov(relative_locations[..., e]))

        # store its values
        s1 = edge_cov[0, 0]
        s2 = edge_cov[1, 1]
        s3 = 2 * edge_cov[0, 1]

        # Fill the covariance matrix matrix
        # get indices
        p1 = 2 * parent
        p2 = 2 * parent + 1
        c1 = 2 * child
        c2 = 2 * child + 1

        # up-left block
        def_cov[p1, p1] += s1
        def_cov[p2, p2] += s2
        def_cov[p2, p1] += s3

        # up-right block
        def_cov[p1, c1] = - s1
        def_cov[p2, c2] = - s2
        def_cov[p1, c2] = - s3 / 2
        def_cov[p2, c1] = - s3 / 2

        # down-left block
        def_cov[c1, p1] = - s1
        def_cov[c2, p2] = - s2
        def_cov[c1, p2] = - s3 / 2
        def_cov[c2, p1] = - s3 / 2

        # down-right block
        def_cov[c1, c1] += s1
        def_cov[c2, c2] += s2
        def_cov[c1, c2] += s3

    return def_cov
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:58,代码来源:builder.py


示例7: _create_pyramid

    def _create_pyramid(cls, images, n_levels, downscale, pyramid_on_features,
                        feature_type, verbose=False):
        r"""
        Function that creates a generator function for Gaussian pyramid. The
        pyramid can be created either on the feature space or the original
        (intensities) space.

        Parameters
        ----------
        images: list of :class:`menpo.image.Image`
            The set of landmarked images from which to build the AAM.
        n_levels: int
            The number of multi-resolution pyramidal levels to be used.
        downscale: float
            The downscale factor that will be used to create the different
            pyramidal levels.
        pyramid_on_features: boolean
            If True, the features are extracted at the highest level and the
            pyramid is created on the feature images.
            If False, the pyramid is created on the original (intensities)
            space.
        feature_type: list of size 1 with str or function/closure or None
            The feature type to be used in case pyramid_on_features is enabled.
        verbose: bool, Optional
            Flag that controls information and progress printing.

            Default: False

        Returns
        -------
        generator: function
            The generator function of the Gaussian pyramid.
        """
        if pyramid_on_features:
            # compute features at highest level
            feature_images = []
            for c, i in enumerate(images):
                if verbose:
                    print_dynamic('- Computing feature space: {}'.format(
                        progress_bar_str((c + 1.) / len(images),
                                         show_bar=False)))
                feature_images.append(compute_features(i, feature_type[0]))
            if verbose:
                print_dynamic('- Computing feature space: Done\n')

            # create pyramid on feature_images
            generator = [i.gaussian_pyramid(n_levels=n_levels,
                                            downscale=downscale)
                         for i in feature_images]
        else:
            # create pyramid on intensities images
            # features will be computed per level
            generator = [i.gaussian_pyramid(n_levels=n_levels,
                                            downscale=downscale)
                         for i in images]
        return generator
开发者ID:yymath,项目名称:menpo,代码行数:56,代码来源:builder.py


示例8: _scale_images

 def _scale_images(cls, images, s, level_str, verbose):
     scaled_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic(
                 '{}Scaling features: {}'.format(
                     level_str, progress_bar_str((c + 1.) / len(images),
                                                 show_bar=False)))
         scaled_images.append(i.rescale(s))
     return scaled_images
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:10,代码来源:builder.py


示例9: _normalize_images

 def _normalize_images(self, images, group, label, ref_shape, verbose):
     # normalize the scaling of all images wrt the reference_shape size
     norm_images = []
     for c, i in enumerate(images):
         if verbose:
             print_dynamic('- Normalizing images size: {}'.format(
                 progress_bar_str((c + 1.) / len(images), show_bar=False)))
         i = rescale_to_reference_shape(i, ref_shape, group=group,
                                          label=label)
         if self.sigma:
             i.pixels = fsmooth(i.pixels, self.sigma)
         norm_images.append(i)
     return norm_images
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:13,代码来源:builder.py


示例10: _compute_features

    def _compute_features(self, images, level_str, verbose):
        feature_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic(
                    '{}Computing feature space: {}'.format(
                        level_str, progress_bar_str((c + 1.) / len(images),
                                                    show_bar=False)))
            if self.features:
                i = self.features(i)
            feature_images.append(i)

        return feature_images
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:13,代码来源:builder.py


示例11: _compute_minimum_spanning_tree

def _compute_minimum_spanning_tree(shapes, root_vertex, level_str, verbose):
    # initialize edges and weights matrix
    n_vertices = shapes[0].n_points
    n_edges = nchoosek(n_vertices, 2)
    weights = np.zeros((n_vertices, n_vertices))
    edges = np.empty((n_edges, 2), dtype=np.int32)

    # fill edges and weights
    e = -1
    for i in range(n_vertices-1):
        for j in range(i+1, n_vertices, 1):
            # edge counter
            e += 1

            # print progress
            if verbose:
                print_dynamic('{}Computing complete graph`s weights - {}'.format(
                    level_str,
                    progress_bar_str(float(e + 1) / n_edges,
                                     show_bar=False)))

            # fill in edges
            edges[e, 0] = i
            edges[e, 1] = j

            # create data matrix of edge
            diffs_x = [s.points[i, 0] - s.points[j, 0] for s in shapes]
            diffs_y = [s.points[i, 1] - s.points[j, 1] for s in shapes]
            coords = np.array([diffs_x, diffs_y])

            # compute mean
            m = np.mean(coords, axis=1)

            # compute covariance
            c = np.cov(coords)

            # get weight
            for im in range(len(shapes)):
                weights[i, j] += -np.log(multivariate_normal.pdf(coords[:, im],
                                                                 mean=m, cov=c))
            weights[j, i] = weights[i, j]

    # create undirected graph
    complete_graph = UndirectedGraph(edges)

    if verbose:
        print_dynamic('{}Minimum spanning graph computed.\n'.format(level_str))

    # compute minimum spanning graph
    return complete_graph.minimum_spanning_tree(weights, root_vertex)
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:50,代码来源:builder.py


示例12: _warp_images

    def _warp_images(self, images, shapes, _, level_str, verbose):

        # extract parts
        parts_images = []
        for c, (i, s) in enumerate(zip(images, shapes)):
            if verbose:
                print_dynamic('{}Warping images - {}'.format(
                    level_str,
                    progress_bar_str(float(c + 1) / len(images),
                                     show_bar=False)))
            parts_image = build_parts_image(
                i, s, self.parts_shape, normalize_parts=self.normalize_parts)
            parts_images.append(parts_image)

        return parts_images
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:15,代码来源:builder.py


示例13: compute_sparse_covariance

def compute_sparse_covariance(X, adjacency_array, patch_len, level_str,
                              verbose):
    n_features, n_samples = X.shape
    n_edges = adjacency_array.shape[0]

    # initialize block sparse covariance matrix
    all_cov = np.zeros((n_features, n_features))

    # compute covariance matrix for each edge
    for e in range(n_edges):
        # print progress
        if verbose:
            print_dynamic('{}Distribution per edge - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / n_edges,
                                           show_bar=False)))

        # edge vertices
        v1 = np.min(adjacency_array[e, :])
        v2 = np.max(adjacency_array[e, :])

        # find indices in target covariance matrix
        v1_from = v1 * patch_len
        v1_to = (v1 + 1) * patch_len
        v2_from = v2 * patch_len
        v2_to = (v2 + 1) * patch_len

        # extract data
        edge_data = np.concatenate((X[v1_from:v1_to, :], X[v2_from:v2_to, :]))

        # compute covariance inverse
        icov = np.linalg.inv(np.cov(edge_data))

        # v1, v2
        all_cov[v1_from:v1_to, v2_from:v2_to] += icov[:patch_len, patch_len::]

        # v2, v1
        all_cov[v2_from:v2_to, v1_from:v1_to] += icov[patch_len::, :patch_len]

        # v1, v1
        all_cov[v1_from:v1_to, v1_from:v1_to] += icov[:patch_len, :patch_len]

        # v2, v2
        all_cov[v2_from:v2_to, v2_from:v2_to] += icov[patch_len::, patch_len::]

    return np.linalg.inv(all_cov)
开发者ID:hporange,项目名称:antonakoscvpr2015,代码行数:46,代码来源:sparsepca.py


示例14: _normalization_wrt_reference_shape

    def _normalization_wrt_reference_shape(cls, images, group, label,
                                           reference_shape, verbose=False):
        r"""
        Normalizes the images sizes with respect to the reference
        shape (mean shape) scaling. This step is essential before building a
        deformable model.

        Parameters
        ----------
        images : list of :map:`MaskedImage`
            The set of landmarked images from which to build the model.

        group : `string`
            The key of the landmark set that should be used. If ``None``,
            and if there is only one set of landmarks, this set will be used.

        label : `string`
            The label of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.

        reference_shape : :map:`PointCloud`
            The reference shape that is used to resize all training images to
            a consistent object size.

        verbose: bool, optional
            Flag that controls information and progress printing.

        Returns
        -------
        normalized_images : :map:`MaskedImage` list
            A list with the normalized images.
        """
        normalized_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic('- Normalizing images size: {}'.format(
                    progress_bar_str((c + 1.) / len(images),
                                     show_bar=False)))
            normalized_images.append(i.rescale_to_reference_shape(
                reference_shape, group=group, label=label))

        if verbose:
            print_dynamic('- Normalizing images size: Done\n')
        return normalized_images
开发者ID:OlivierML,项目名称:menpofit,代码行数:44,代码来源:trainer.py


示例15: __init__

    def __init__(self, samples, centre=True, bias=False, verbose=False,
                 n_samples=None):
        # get the first element as the template and use it to configure the
        # data matrix
        if n_samples is None:
            # samples is a list
            n_samples = len(samples)
            template = samples[0]
            samples = samples[1:]
        else:
            # samples is an iterator
            template = next(samples)
        n_features = template.n_parameters
        template_vector = template.as_vector()
        data = np.zeros((n_samples, n_features), dtype=template_vector.dtype)
        # now we can fill in the first element from the template
        data[0] = template_vector
        del template_vector
        if verbose:
            print('Allocated data matrix {:.2f}'
                  'GB'.format(data.nbytes / 2 ** 30))
        # 1-based as we have the template vector set already
        for i, sample in enumerate(samples, 1):
            if i >= n_samples:
                break
            if verbose:
                print_dynamic(
                    'Building data matrix from {} samples - {}'.format(
                        n_samples,
                    progress_bar_str(float(i + 1) / n_samples, show_bar=True)))
            data[i] = sample.as_vector()

        # compute pca
        e_vectors, e_values, mean = principal_component_decomposition(
            data, whiten=False,  centre=centre, bias=bias, inplace=True)

        super(PCAModel, self).__init__(e_vectors, mean, template)
        self.centred = centre
        self.biased = bias
        self._eigenvalues = e_values
        # start the active components as all the components
        self._n_active_components = int(self.n_components)
        self._trimmed_eigenvalues = None
开发者ID:jacksoncsy,项目名称:menpo,代码行数:43,代码来源:pca.py


示例16: _build_appearance_model_block_diagonal

def _build_appearance_model_block_diagonal(all_patches_array, n_points,
                                           patch_shape, n_channels,
                                           n_appearance_parameters, level_str,
                                           verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution per '
                      'patch'.format(level_str))

    # compute mean appearance vector
    app_mean = np.mean(all_patches_array, axis=-1)

    # number of images
    n_images = all_patches_array.shape[-1]

    # appearance vector and patch vector lengths
    patch_len = np.prod(patch_shape) * n_channels

    # compute covariance matrix for each patch
    all_cov = []
    for e in range(n_points):
        # print progress
        if verbose:
            print_dynamic('{}Training appearance distribution '
                          'per patch - {}'.format(
                          level_str,
                          progress_bar_str(float(e + 1) / n_points,
                                           show_bar=False)))
        # select patches and vectorize
        patches_vector = all_patches_array[e, ...].reshape(-1, n_images)

        # compute covariance
        cov_mat = np.cov(patches_vector)

        # compute covariance inverse
        inv_cov_mat = _covariance_matrix_inverse(cov_mat,
                                                 n_appearance_parameters)

        # store covariance
        all_cov.append(inv_cov_mat)

    # create final sparse covariance matrix
    return app_mean, block_diag(all_cov).tocsr()
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:43,代码来源:builder.py


示例17: create_pyramid

def create_pyramid(images, n_levels, downscale, features, verbose=False):
    r"""
    Function that creates a generator function for Gaussian pyramid. The
    pyramid can be created either on the feature space or the original
    (intensities) space.

    Parameters
    ----------
    images: list of :map:`Image`
        The set of landmarked images from which to build the AAM.

    n_levels: int
        The number of multi-resolution pyramidal levels to be used.

    downscale: float
        The downscale factor that will be used to create the different
        pyramidal levels.

    features: ``callable`` ``[callable]``
        If a single callable, then the feature calculation will happen once
        followed by a gaussian pyramid. If a list of callables then a
        gaussian pyramid is generated with features extracted at each level
        (after downsizing and blurring).

    Returns
    -------
    list of generators :
        The generator function of the Gaussian pyramid.

    """
    will_take_a_while = is_pyramid_on_features(features)
    pyramids = []
    for i, img in enumerate(images):
        if will_take_a_while and verbose:
            print_dynamic(
                'Computing top level feature space - {}'.format(
                    progress_bar_str((i + 1.) / len(images),
                                     show_bar=False)))
        pyramids.append(pyramid_of_feature_images(n_levels, downscale,
                                                  features, img))
    return pyramids
开发者ID:csagonas,项目名称:menpofit,代码行数:41,代码来源:base.py


示例18: _warp_images

def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    # TODO: introduce support for offsets
    patches_image_shape = (n_points, 1, images[0].n_channels) + patch_shape
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty(patches_image_shape + (n_images,))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images),
                                 show_bar=False)))

        # extract patches from this image
        patches_image = build_parts_image(
            i, i.landmarks[group][label], patch_shape)

        # store
        if as_vectors:
            all_patches[..., c] = patches_image.pixels
        else:
            all_patches.append(patches_image)

    return all_patches
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:37,代码来源:builder.py


示例19: _warp_images

def _warp_images(images, group, label, patch_shape, as_vectors, level_str,
                 verbose):
    r"""
    returns numpy.array of size (68*16*16*36) x n_images
    """
    # find length of each patch and number of points
    n_points = images[0].landmarks[group][label].n_points
    patches_len = np.prod(patch_shape) * images[0].n_channels * n_points
    n_images = len(images)

    # initialize the output
    if as_vectors:
        all_patches = np.empty((patches_len, n_images))
    else:
        all_patches = []

    # extract parts
    for c, i in enumerate(images):
        # print progress
        if verbose:
            print_dynamic('{}Extracting patches from images - {}'.format(
                level_str,
                progress_bar_str(float(c + 1) / len(images),
                                 show_bar=False)))

        # extract patches from this image
        patches_image = build_patches_image(i, None, patch_shape, group=group,
                                            label=label)

        # store
        if as_vectors:
            all_patches[..., c] = vectorize_patches_image(patches_image)
        else:
            all_patches.append(patches_image)

    return all_patches
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:36,代码来源:builder.py


示例20: _normalization_wrt_reference_shape

    def _normalization_wrt_reference_shape(cls, images, group, label,
                                           normalization_diagonal,
                                           interpolator, verbose=False):
        r"""
        Function that normalizes the images sizes with respect to the reference
        shape (mean shape) scaling. This step is essential before building a
        deformable model.

        The normalization includes:
        1) Computation of the reference shape as the mean shape of the images'
           landmarks.
        2) Scaling of the reference shape using the normalization_diagonal.
        3) Rescaling of all the images so that their shape's scale is in
           correspondence with the reference shape's scale.

        Parameters
        ----------
        images: list of :class:`menpo.image.MaskedImage`
            The set of landmarked images from which to build the model.
        group : string
            The key of the landmark set that should be used. If None,
            and if there is only one set of landmarks, this set will be used.
        label: string
            The label of of the landmark manager that you wish to use. If no
            label is passed, the convex hull of all landmarks is used.
        normalization_diagonal: int
            During building an AAM, all images are rescaled to ensure that the
            scale of their landmarks matches the scale of the mean shape.

            If int, it ensures that the mean shape is scaled so that the
            diagonal of the bounding box containing it matches the
            normalization_diagonal value.
            If None, the mean shape is not rescaled.

            Note that, because the reference frame is computed from the mean
            landmarks, this kwarg also specifies the diagonal length of the
            reference frame (provided that features computation does not change
            the image size).
        interpolator: string
            The interpolator that should be used to perform the warps.
        verbose: bool, Optional
            Flag that controls information and progress printing.

            Default: False

        Returns
        -------
        reference_shape : :map:`PointCloud`
            The reference shape that was used to resize all training images to
            a consistent object size.
        normalized_images : :map:`MaskedImage` list
            A list with the normalized images.
        """
        # the reference_shape is the mean shape of the images' landmarks
        if verbose:
            print_dynamic('- Computing reference shape')
        shapes = [i.landmarks[group][label] for i in images]
        reference_shape = mean_pointcloud(shapes)

        # fix the reference_shape's diagonal length if asked
        if normalization_diagonal:
            x, y = reference_shape.range()
            scale = normalization_diagonal / np.sqrt(x**2 + y**2)
            Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)

        # normalize the scaling of all images wrt the reference_shape size
        normalized_images = []
        for c, i in enumerate(images):
            if verbose:
                print_dynamic('- Normalizing images size: {}'.format(
                    progress_bar_str((c + 1.) / len(images),
                                     show_bar=False)))
            normalized_images.append(i.rescale_to_reference_shape(
                reference_shape, group=group, label=label,
                interpolator=interpolator))

        if verbose:
            print_dynamic('- Normalizing images size: Done\n')
        return reference_shape, normalized_images
开发者ID:yymath,项目名称:menpo,代码行数:79,代码来源:builder.py



注:本文中的menpo.visualize.progress_bar_str函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python menu.menu函数代码示例发布时间:2022-05-27
下一篇:
Python visualize.print_dynamic函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap