• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python ml_metrics.quadratic_weighted_kappa函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中ml_metrics.quadratic_weighted_kappa函数的典型用法代码示例。如果您正苦于以下问题:Python quadratic_weighted_kappa函数的具体用法?Python quadratic_weighted_kappa怎么用?Python quadratic_weighted_kappa使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了quadratic_weighted_kappa函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_quadratic_weighted_kappa

    def test_quadratic_weighted_kappa(self):
        kappa = metrics.quadratic_weighted_kappa([1,2,3],[1,2,3])
        self.assertAlmostEqual(kappa, 1.0)

        kappa = metrics.quadratic_weighted_kappa([1,2,1],[1,2,2],1,2)
        self.assertAlmostEqual(kappa, 0.4)

        kappa = metrics.quadratic_weighted_kappa([1,2,3,1,2,2,3],[1,2,3,1,2,3,2])
        self.assertAlmostEqual(kappa, 0.75)
开发者ID:9G1IC,项目名称:Metrics,代码行数:9,代码来源:test_kappa.py


示例2: predict

    def predict(self, model, xg_train, xg_test, objective='reg:linear'):
        """
        Parameters
        ----------

        model : xgboost.Booster
            xgboost model ready for making predictions

        xg_train : xgboost.DMatrix
            training data

        xg_test : xgboost.DMatrix
            testing data


        Returns
        -------

        model_prediction : ModelPrediction (named tuple)

        """

        train_score = model.predict(
            xg_train, ntree_limit=model.best_iteration)
        test_score = model.predict(
            xg_test,  ntree_limit=model.best_iteration)

        train_label = np.asarray(xg_train.get_label())
        test_label = np.asarray(xg_test.get_label())

        if objective == 'reg:linear':
            # Cuttofs are optimized here
            best_cuts = optimize_cutoffs(train_score, train_label,
                                         verbose=False)
            train_prediction = classify_with_cutoffs(train_score, best_cuts)
            test_prediction = classify_with_cutoffs(test_score, best_cuts)
        else:
            train_prediction = train_score
            test_prediction = test_score

        train_qwk = quadratic_weighted_kappa(train_label, train_prediction)
        test_qwk = quadratic_weighted_kappa(test_label, test_prediction)

        return ModelPrediction(train_label, test_label,
                               train_score, test_score,
                               train_prediction, test_prediction,
                               train_qwk, test_qwk,
                               precision_score(train_label, train_prediction,
                                               average=None),
                               precision_score(test_label, test_prediction,
                                               average=None)
                               )
开发者ID:PedroMDuarte,项目名称:kaggle-prudential-201512,代码行数:52,代码来源:xgboostmodel.py


示例3: minimize_quadratic_weighted_kappa

def minimize_quadratic_weighted_kappa(cutpoints,y_pred=None,y=None):
    cutpoints = np.sort(cutpoints)
    cutpoints = np.concatenate([[-99999999999999999],cutpoints,[999999999999999]])
    y_pred = pd.cut(y_pred,bins=cutpoints,labels=[1,2,3,4,5,6,7,8])
    score = quadratic_weighted_kappa(y,y_pred)
    print score
    return -score
开发者ID:wawltor,项目名称:Preudential,代码行数:7,代码来源:utils.py


示例4: predict_score

def predict_score():
	file = open("model/predictions.txt")
	numarray = []
	while 1:
		line = file.readline()
		if not line:
			break
		numarray.append(int(float(line)))
	file = open("model/answers.txt")
	answerarray = []
	while 1:
		line = file.readline()
		if not line:
			break
		answerarray.append(int(float(line)))
	##print len(numarray)
	##print len(answerarray)
	solutionarray = []
	for x in range(0, len(numarray)):
		if numarray[x] == answerarray[x]:
			solutionarray.append(1)
		else:
			solutionarray.append(0)
	onecounter = solutionarray.count(1)
	print "QWK_Score: " + str(metrics.quadratic_weighted_kappa(answerarray,numarray))
开发者ID:smartinsightsfromdata,项目名称:Autograder,代码行数:25,代码来源:estimateaccuracy.py


示例5: eval_dag

def eval_dag(dag, filename, dag_id=None):

    dag = normalize_dag(dag)

    if filename not in input_cache:
        input_cache[filename] = pd.read_csv('data/'+filename, sep=';')

    data = input_cache[filename]

    feats = data[data.columns[:-1]]
    targets = data[data.columns[-1]]

    le = preprocessing.LabelEncoder()

    ix = targets.index
    targets = pd.Series(le.fit_transform(targets), index=ix)

    errors = []

    start_time = time.time()

    for train_idx, test_idx in cross_validation.StratifiedKFold(targets, n_folds=5):
        train_data = (feats.iloc[train_idx], targets.iloc[train_idx])
        test_data = (feats.iloc[test_idx], targets.iloc[test_idx])

        ms = train_dag(dag, train_data)
        preds = test_dag(dag, ms, test_data)

        acc = mm.quadratic_weighted_kappa(test_data[1], preds)
        errors.append(acc)

    m_errors = float(np.mean(errors))
    s_errors = float(np.std(errors))

    return m_errors, s_errors, time.time() - start_time
开发者ID:Undin,项目名称:dag-evaluate,代码行数:35,代码来源:eval.py


示例6: _score_offset

    def _score_offset(self, bin_offset, sv):
        flg = self._data[:, 0].astype(int) == sv
        self._data[flg, 1] = self._data[flg, 0] + bin_offset
        offset_pred = np.clip(np.round(self._data[:, 1]), 1, 8)\
            .astype(int)
        kappa = quadratic_weighted_kappa(self._data[:, 2], offset_pred)

        return -kappa
开发者ID:haisland0909,项目名称:PrudentialLifeInsuranceAssessment,代码行数:8,代码来源:optoffset.py


示例7: evalerror_softmax_cdf

def evalerror_softmax_cdf(preds, dtrain, cdf):
    ## label are in [0,1,2,3]
    labels = dtrain.get_label() + 1
    preds = getClfScore(preds, cdf)
    kappa = quadratic_weighted_kappa(labels, preds)
    ## we return -kappa for using early stopping
    kappa *= -1.
    return 'kappa', float(kappa)
开发者ID:wawltor,项目名称:Preudential,代码行数:8,代码来源:utils.py


示例8: keras_model

def keras_model():

    import pandas as pd
    import numpy as np

    from keras.preprocessing import sequence
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation, Flatten
    from keras.layers.convolutional import Convolution1D, MaxPooling1D
    from keras.callbacks import EarlyStopping
    from keras.utils import np_utils

    from data_util import load_csvs, load_other
    import ml_metrics as metrics

    nb_words = 6500
    maxlen = 175
    filter_length = 10
    other_col_dim = 4

    X_train, Y_train, X_test, Y_test, nb_classes = load_csvs('data/tpov4/train_1.csv',
                                                             'data/tpov4/test_1.csv',
                                                              nb_words, maxlen, 'self', w2v=None)

    # read _other.csv
    other_train = load_other('data/tpov4/train_1_other.csv', maxlen, other_col_dim)
    other_test = load_other('data/tpov4/test_1_other.csv', maxlen, other_col_dim)

    print('other tensor:', other_train.shape)

    pool_length = maxlen - filter_length + 1

    model = Sequential()
    model.add(Convolution1D(nb_filter=50,
                            filter_length=filter_length,
                            border_mode="valid", activation="relu",
                            input_shape=(maxlen, other_col_dim)))
    model.add(MaxPooling1D(pool_length=pool_length))
    model.add(Flatten())
    model.add(Dropout(0.05))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer={{choice(['rmsprop', 'adam', 'adadelta', 'adagrad'])}})

    earlystop = EarlyStopping(monitor='val_loss', patience=1, verbose=1)

    model.fit(other_train, Y_train, batch_size=32, nb_epoch=25,
              validation_split=0.1, show_accuracy=True, callbacks=[earlystop])

    classes = earlystop.model.predict_classes(other_test, batch_size=32)
    org_classes = np_utils.categorical_probas_to_classes(Y_test)

    acc = np_utils.accuracy(classes, org_classes)  # accuracy only supports classes
    print('Test accuracy:', acc)
    kappa = metrics.quadratic_weighted_kappa(classes, org_classes)
    print('Test Kappa:', kappa)
    return {'loss': -acc, 'status': STATUS_OK}
开发者ID:leocnj,项目名称:dl_response_rater,代码行数:58,代码来源:try_hyperas.py


示例9: eval_wrapper

def eval_wrapper(yhat, y):
    """
    Evaluation metric for the competition : quad weighted kappa
    """  
    y = np.array(y)
    y = y.astype(int)
    yhat = np.array(yhat)
    yhat = np.clip(np.round(yhat), np.min(y), np.max(y)).astype(int)   
    return quadratic_weighted_kappa(yhat, y)
开发者ID:VinACE,项目名称:Kaggle,代码行数:9,代码来源:class_utilities_lv2.py


示例10: xgb_regression_quadratic_weighted_kappa

def xgb_regression_quadratic_weighted_kappa(preds,dtrain):
    labels = dtrain.get_label()
    cutpoints = [1.886638,3.303624,4.152756,4.825063,5.653934,6.236325,6.765184]  
    res = minimize(minimize_quadratic_weighted_kappa,cutpoints,(preds,labels),method='BFGS')
    cutpoints = np.sort(res.x)
    cutpoints = np.concatenate([[-99999999999999999],cutpoints,[999999999999999]])
    y_pred = pd.cut(preds,bins=cutpoints,labels=[1,2,3,4,5,6,7,8])
    kappa = quadratic_weighted_kappa(labels,y_pred)
    ## we return -kappa for using early stopping
    kappa *= -1.
    return 'kappa', float(kappa)
开发者ID:wawltor,项目名称:Preudential,代码行数:11,代码来源:utils.py


示例11: evalerror_cocr_cdf

def evalerror_cocr_cdf(preds, dtrain, cdf):
    labels = dtrain.get_label() + 1
    #print preds.shape
    ## get prediction
    #preds = sigmoid(preds)
    preds = applyCOCRRule(preds)
    preds = getScore(preds, cdf)
    kappa = quadratic_weighted_kappa(labels, preds)
    ## we return -kappa for using early stopping
    kappa *= -1.
    return 'kappa', float(kappa)
开发者ID:wawltor,项目名称:Preudential,代码行数:11,代码来源:utils.py


示例12: evalerror

def evalerror(preds, dtrain):
    ## label are in [0,1,2,3] as required by XGBoost for multi-classification
    labels = dtrain.get_label() + 1
    ## class probability
    preds = softmax(preds)
    ## decoding (naive argmax decoding)
    pred_labels = np.argmax(preds, axis=1) + 1
    ## compute quadratic weighted kappa (using implementation from @Ben Hamner
    ## https://github.com/benhamner/Metrics/blob/master/Python/ml_metrics/quadratic_weighted_kappa.py
    kappa = quadratic_weighted_kappa(labels, pred_labels)
    return 'kappa', kappa
开发者ID:ldamewood,项目名称:crowdflower,代码行数:11,代码来源:softkappa.py


示例13: _offset_qwk_score

    def _offset_qwk_score(self, offset):
        """

        :param numpy.array offset:
        :param numpy.array y_true:
        :param numpy.array y_pred:
        :rtype: float
        """
        offset_pred = self._apply_offset(self._data, offset)
        kappa = quadratic_weighted_kappa(self._data[:, 2], offset_pred)

        return -kappa
开发者ID:haisland0909,项目名称:PrudentialLifeInsuranceAssessment,代码行数:12,代码来源:optoffset.py


示例14: cnn1d_selfembd

def cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                   maxlen, vocab_size, embd_dim,
                   nb_filter, filter_length, batch_size, nb_epoch, optm):
    """
    - CNN-1d on text input (represented in int)
    - MOT
    - dropout + L2 softmax

    :param <X, Y> train and test sets
    :param nb_classes # of classes
    :param maxlen max of n char in a sentence
    :param vocab_size
    :param embd_dim
    :param nb_filter
    :param filter_length
    :param batch_size
    :param nb_epoch
    :param optm optimizer options, e.g., adam, rmsprop, etc.
    :return:
    """
    pool_length = maxlen - filter_length + 1

    model = Sequential()
    model.add(Embedding(vocab_size, embd_dim, input_length=maxlen))
    model.add(Dropout(0.25))

    model.add(Convolution1D(nb_filter=nb_filter,
                            filter_length=filter_length,
                            border_mode="valid",
                            activation="relu"))
    model.add(MaxPooling1D(pool_length=pool_length))

    model.add(Flatten())
    model.add(Dropout(0.5))

    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=optm)

    earlystop = EarlyStopping(monitor='val_loss', patience=1, verbose=1)

    model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              validation_split=0.1, show_accuracy=True, callbacks=[earlystop])

    classes = earlystop.model.predict_classes(X_test, batch_size=batch_size)
    acc = np_utils.accuracy(classes, np_utils.categorical_probas_to_classes(Y_test))
    print('Test accuracy:', acc)
    # return(acc)
    kappa = metrics.quadratic_weighted_kappa(classes, np_utils.categorical_probas_to_classes(Y_test))
    print('Test Kappa:', kappa)
    return (kappa)
开发者ID:leocnj,项目名称:dl_response_rater,代码行数:51,代码来源:cnn1d.py


示例15: on_epoch_end

    def on_epoch_end(self, epoch, logs={}):
        p = self.model.predict(self.X_val.values, verbose=0)
        current = ml_metrics.quadratic_weighted_kappa(self.y_val.values.ravel(),np.clip(np.round(p.astype(int).ravel()), 1, 8))

        if current > self.best:
            self.best = current
            self.wait = 0
        else:
            if self.wait >= self.patience:
                self.model.stop_training = True
                print('Epoch %05d: early stopping' % (epoch))

            self.wait += 1 #incremental the number of times without improvement
        print('Epoch %d Kappa: %f | Best Kappa: %f \n' % (epoch,current,self.best))
开发者ID:computational-class,项目名称:DM-Competition-Getting-Started,代码行数:14,代码来源:Neural+Network.py


示例16: default_errorfun

    def default_errorfun(p, ysc, ytr):
        """
        Parameters
        ----------

        p : array of 8 cutoff values

        ysc : array of scores [array(double)]

        ytr : array of true labels [array(int)]
        """
        errors = quadratic_weighted_kappa(
            classify_with_cutoffs(ysc, p).astype(np.int64), ytr)
        return 1 - errors
开发者ID:PedroMDuarte,项目名称:kaggle-prudential-201512,代码行数:14,代码来源:xgboostmodel.py


示例17: ensembleSelectionObj

def ensembleSelectionObj(param, p1_list, weight1, p2_list, true_label_list, cdf_list, numValidMatrix):

    weight2 = param['weight2']
    kappa_cv = np.zeros((config.n_runs, config.n_folds), dtype=float)
    for run in range(config.n_runs):
        for fold in range(config.n_folds):
            numValid = numValidMatrix[run][fold]
            p1 = p1_list[run,fold,:numValid]
            p2 = p2_list[run,fold,:numValid]
            true_label = true_label_list[run,fold,:numValid]
            cdf = cdf_list[run,fold,:]
            p_ens = (weight1 * p1 + weight2 * p2) / (weight1 + weight2)
            p_ens_score = getScore(p_ens, cdf)
            kappa_cv[run][fold] = quadratic_weighted_kappa(p_ens_score, true_label)
    kappa_cv_mean = np.mean(kappa_cv)
    return {'loss': -kappa_cv_mean, 'status': STATUS_OK}
开发者ID:0x0all,项目名称:Kaggle_CrowdFlower,代码行数:16,代码来源:ensemble_selection.py


示例18: cnn1d_w2vembd

def cnn1d_w2vembd(X_train, Y_train, X_test, Y_test, nb_classes,
                  maxlen,
                  nb_filter, filter_length, batch_size, nb_epoch, optm):
    """
    - CNN-1d on 3d sensor which uses word2vec embedding
    - MOT

    :param <X, Y> train and test sets
    :param nb_classes # of classes
    :param maxlen max of n char in a sentence
    :param nb_filter
    :param filter_length
    :param batch_size
    :param nb_epoch
    :param optm
    :return:
    """
    pool_length = maxlen - filter_length + 1

    model = Sequential()

    model.add(Convolution1D(nb_filter=nb_filter,
                            filter_length=filter_length,
                            border_mode="valid",
                            activation="relu", input_shape=(maxlen, 300)))
    model.add(MaxPooling1D(pool_length=pool_length))
    model.add(Flatten())
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=optm)

    earlystop = EarlyStopping(monitor='val_loss', patience=1, verbose=1)

    model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              validation_split=0.1, show_accuracy=True, callbacks=[earlystop])

    classes = earlystop.model.predict_classes(X_test, batch_size=batch_size)
    acc = np_utils.accuracy(classes, np_utils.categorical_probas_to_classes(Y_test))  # accuracy only supports classes
    print('Test accuracy:', acc)
    # return(acc)
    kappa = metrics.quadratic_weighted_kappa(classes, np_utils.categorical_probas_to_classes(Y_test))
    print('Test Kappa:', kappa)
    return (kappa)
开发者ID:leocnj,项目名称:dl_response_rater,代码行数:44,代码来源:cnn1d.py


示例19: lstm_selfembd

def lstm_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                  maxlen, vocab_size, embd_dim,
                  batch_size, nb_epoch, optm):
    """
    - LSTM  on text input (represented in int)
    - fully-connected model

    :param <X, Y> train and test sets
    :param nb_classes # of classes
    :param maxlen max of n char in a sentence
    :param vocab_size
    :param embd_dim
    :param batch_size
    :param nb_epoch
    :param optm optimizer options, e.g., adam, rmsprop, etc.
    :return:
    """

    model = Sequential()
    model.add(Embedding(vocab_size, embd_dim, input_length=maxlen))
    model.add(Dropout(0.25))

    # model.add(LSTM(100, return_sequences=True))
    model.add(LSTM(50))

    model.add(Flatten())
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=optm)

    earlystop = EarlyStopping(monitor='val_loss', patience=2, verbose=1)

    model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              validation_split=0.1, show_accuracy=True, callbacks=[earlystop])

    classes = earlystop.model.predict_classes(X_test, batch_size=batch_size)
    acc = np_utils.accuracy(classes, np_utils.categorical_probas_to_classes(Y_test))  # accuracy only supports classes
    print('Test accuracy:', acc)
    kappa = metrics.quadratic_weighted_kappa(classes, np_utils.categorical_probas_to_classes(Y_test))
    print('Test Kappa:', kappa)
    return (kappa)
开发者ID:leocnj,项目名称:dl_response_rater,代码行数:42,代码来源:cnn1d.py


示例20: cnn_var_selfembd

def cnn_var_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                     maxlen, vocab_size, embd_size,
                     nb_filter, batch_size, nb_epoches, optm):
    ngram_filters = [2, 5, 8]

    input = Input(shape=(maxlen,), name='input', dtype='int32')
    embedded = Embedding(input_dim=vocab_size, output_dim=embd_size, input_length=maxlen)(input)

    convs = [None, None, None]
    # three CNNs
    for i, n_gram in enumerate(ngram_filters):
        pool_length = maxlen - n_gram + 1
        convs[i] = Convolution1D(nb_filter=nb_filter,
                                 filter_length=n_gram,
                                 border_mode="valid",
                                 activation="relu")(embedded)
        convs[i] = MaxPooling1D(pool_length=pool_length)(convs[i])
        convs[i] = Flatten()(convs[i])

    merged = merge([convs[0], convs[1], convs[2]], mode='concat', concat_axis=1)
    merged = Dropout(0.5)(merged)
    output = Dense(nb_classes, activation='softmax', name='output')(merged)

    model = Model(input, output)
    model.compile(optm, loss={'output': 'categorical_crossentropy'})
    earlystop = EarlyStopping(monitor='val_loss', patience=1, verbose=1)
    model.fit(X_train, Y_train,
              nb_epoch=nb_epoches, batch_size=batch_size,
              validation_split=0.1, callbacks=[earlystop])

    probs = earlystop.model.predict(X_test, batch_size=batch_size)
    classes = np_utils.categorical_probas_to_classes(probs)

    acc = np_utils.accuracy(classes,
                            np_utils.categorical_probas_to_classes(Y_test))
    print('Test accuracy:', acc)
    kappa = metrics.quadratic_weighted_kappa(classes,
                                             np_utils.categorical_probas_to_classes(Y_test))
    print('Test Kappa:', kappa)
    return acc
开发者ID:leocnj,项目名称:dl_response_rater,代码行数:40,代码来源:cnn1d.py



注:本文中的ml_metrics.quadratic_weighted_kappa函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mlabraw.eval函数代码示例发布时间:2022-05-27
下一篇:
Python models.unmemoized_get_config函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap