• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python classifier.Adaline类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mlxtend.classifier.Adaline的典型用法代码示例。如果您正苦于以下问题:Python Adaline类的具体用法?Python Adaline怎么用?Python Adaline使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Adaline类的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_print_progress_2

def test_print_progress_2():
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  print_progress=2,
                  random_seed=1)
    ada.fit(X_std, y1)
开发者ID:rasbt,项目名称:mlxtend,代码行数:7,代码来源:test_adaline.py


示例2: test_gradient_descent

def test_gradient_descent():

    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30, eta=0.01, learning='gd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:7,代码来源:test_adaline.py


示例3: test_0_1_class

def test_0_1_class():

    t1 = np.array([0.51, -0.04,  0.51])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y0)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y0 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:7,代码来源:test_adaline.py


示例4: test_stochastic_gradient_descent

def test_stochastic_gradient_descent():

    t1 = np.array([0.03, -0.09, 1.02])
    ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:Afey,项目名称:mlxtend,代码行数:7,代码来源:test_adaline.py


示例5: test_ary_persistency_in_shuffling

def test_ary_persistency_in_shuffling():
    orig = X_std.copy()
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=len(y),
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(orig, X_std, 6)
开发者ID:blahblueray,项目名称:mlxtend,代码行数:8,代码来源:test_adaline.py


示例6: test_score_function

def test_score_function():
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1)
    acc = ada.score(X_std, y1)
    assert acc == 1.0, acc
开发者ID:rasbt,项目名称:mlxtend,代码行数:8,代码来源:test_adaline.py


示例7: test_invalid_class

def test_invalid_class():

    ada = Adaline(epochs=40, eta=0.01, random_seed=1)
    try:
        ada.fit(X, y2)  # 0, 1 class
        assert(1==2)
    except ValueError:
        pass
开发者ID:Afey,项目名称:mlxtend,代码行数:8,代码来源:test_adaline.py


示例8: test_stochastic_gradient_descent

def test_stochastic_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=len(y),
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py


示例9: test_normal_equation

def test_normal_equation():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:datasci-co,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py


示例10: test_score_function

def test_score_function():
    t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1)
    acc = ada.score(X_std, y1)
    assert acc == 1.0, acc
开发者ID:GQiuQi,项目名称:mlxtend,代码行数:9,代码来源:test_adaline.py


示例11: test_standardized_iris_data_with_shuffle

def test_standardized_iris_data_with_shuffle():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  solver='gd',
                  random_seed=1,
                  shuffle=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:beingzy,项目名称:mlxtend,代码行数:10,代码来源:test_adaline.py


示例12: test_standardized_iris_data_with_zero_weights

def test_standardized_iris_data_with_zero_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1,
                  zero_init_weight=True)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:datasci-co,项目名称:mlxtend,代码行数:10,代码来源:test_adaline.py


示例13: test_gradient_descent

def test_gradient_descent():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:11,代码来源:test_adaline.py


示例14: test_normal_equation

def test_normal_equation():
    t1 = np.array([[-0.08], [1.02]])
    b1 = np.array([0.00])
    ada = Adaline(epochs=30,
                  eta=0.01,
                  minibatches=None,
                  random_seed=None)
    ada.fit(X_std, y1)
    np.testing.assert_almost_equal(ada.w_, t1, decimal=2)
    np.testing.assert_almost_equal(ada.b_, b1, decimal=2)
    assert (y1 == ada.predict(X_std)).all(), ada.predict(X_std)
开发者ID:rasbt,项目名称:mlxtend,代码行数:11,代码来源:test_adaline.py


示例15: test_refit_weights

def test_refit_weights():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=15, eta=0.01, solver='gd', random_seed=1)
    ada.fit(X_std, y1, init_weights=True)
    ada.fit(X_std, y1, init_weights=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:beingzy,项目名称:mlxtend,代码行数:7,代码来源:test_adaline.py


示例16: test_refit_weights

def test_refit_weights():
    t1 = np.array([[-0.08], [1.02]])
    ada = Adaline(epochs=15,
                  eta=0.01,
                  minibatches=1,
                  random_seed=1)
    ada.fit(X_std, y1, init_params=True)
    ada.fit(X_std, y1, init_params=False)
    np.testing.assert_almost_equal(ada.w_, t1, 2)
    assert((y1 == ada.predict(X_std)).all())
开发者ID:rasbt,项目名称:mlxtend,代码行数:10,代码来源:test_adaline.py


示例17: test_invalid_solver

def test_invalid_solver():
    t1 = np.array([-5.21e-16,  -7.86e-02,   1.02e+00])
    ada = Adaline(epochs=30, eta=0.01, solver='bla', random_seed=1)
    ada.fit(X_std, y1)
开发者ID:beingzy,项目名称:mlxtend,代码行数:4,代码来源:test_adaline.py


示例18: iris_data

from mlxtend.evaluate import plot_decision_regions
from mlxtend.classifier import Adaline
import matplotlib.pyplot as plt

X, y = iris_data()
X = X[:, [0, 3]]
X = X[0:100]
y = y[0:100]

X[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
X[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()


# Closed Form Solution
ada = Adaline(epochs=30,
              eta=0.01,
              minibatches=None,
              random_seed=1)

ada.fit(X, y)
plot_decision_regions(X, y, clf=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.show()



# (Stochastic) Gradient Descent
ada2 = Adaline(epochs=30,
               eta=0.01,
               minibatches=1, # 1 for GD learning
               #minibatches=len(y), # len(y) for SGD learning
               #minibatches=5, # for SGD learning w. minibatch size 20
开发者ID:clover9gu,项目名称:simplemining,代码行数:32,代码来源:line.py


示例19: test_array_dimensions

def test_array_dimensions():
    ada = Adaline(epochs=15, eta=0.01, random_seed=1)
    ada = ada.fit(np.array([1, 2, 3]), [-1])
开发者ID:datasci-co,项目名称:mlxtend,代码行数:3,代码来源:test_adaline.py



注:本文中的mlxtend.classifier.Adaline类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python classifier.LogisticRegression类代码示例发布时间:2022-05-27
下一篇:
Python mltrefhold.hold_ref函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap