• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python regressor.StackingRegressor类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mlxtend.regressor.StackingRegressor的典型用法代码示例。如果您正苦于以下问题:Python StackingRegressor类的具体用法?Python StackingRegressor怎么用?Python StackingRegressor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了StackingRegressor类的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_get_coeff_fail

def test_get_coeff_fail():
    lr = LinearRegression()
    svr_rbf = SVR(kernel='rbf')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[ridge, lr],
                               meta_regressor=svr_rbf)
    stregr = stregr.fit(X1, y)
    got = stregr.coef_
开发者ID:datasci-co,项目名称:mlxtend,代码行数:8,代码来源:test_stacking_regression.py


示例2: test_get_coeff

def test_get_coeff():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr],
                               meta_regressor=ridge)
    stregr.fit(X1, y)
    got = stregr.coef_
    expect = np.array([0.4874216, 0.45518317])
    assert_almost_equal(got, expect)
开发者ID:chrinide,项目名称:mlxtend,代码行数:10,代码来源:test_stacking_regression.py


示例3: test_predict_meta_features

def test_predict_meta_features():
    lr = LinearRegression()
    svr_rbf = SVR(kernel='rbf')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[lr, ridge],
                               meta_regressor=svr_rbf)
    X_train, X_test, y_train, y_test = train_test_split(X2, y, test_size=0.3)
    stregr.fit(X_train, y_train)
    test_meta_features = stregr.predict(X_test)
    assert test_meta_features.shape[0] == X_test.shape[0]
开发者ID:NextNight,项目名称:mlxtend,代码行数:10,代码来源:test_stacking_regression.py


示例4: test_get_intercept

def test_get_intercept():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr],
                               meta_regressor=ridge)
    stregr.fit(X1, y)
    got = stregr.intercept_
    expect = 0.024
    assert round(got, 3) == expect
开发者ID:chrinide,项目名称:mlxtend,代码行数:10,代码来源:test_stacking_regression.py


示例5: test_multivariate_class

def test_multivariate_class():
    lr = LinearRegression()
    ridge = Ridge(random_state=1)
    meta = LinearRegression(normalize=True)
    stregr = StackingRegressor(regressors=[lr, ridge],
                               meta_regressor=meta)
    stregr.fit(X2, y2).predict(X2)
    mse = 0.122
    got = np.mean((stregr.predict(X2) - y2) ** 2)
    assert round(got, 3) == mse
开发者ID:chrinide,项目名称:mlxtend,代码行数:10,代码来源:test_stacking_regression.py


示例6: test_different_models

def test_different_models():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf')
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=svr_rbf)
    y_pred = stregr.fit(X1, y).predict(X1)
    mse = 0.214
    got = np.mean((stregr.predict(X1) - y) ** 2)
    assert round(got, 3) == mse
开发者ID:datasci-co,项目名称:mlxtend,代码行数:11,代码来源:test_stacking_regression.py


示例7: test_train_meta_features_

def test_train_meta_features_():
    lr = LinearRegression()
    svr_rbf = SVR(kernel='rbf')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[lr, ridge],
                               meta_regressor=svr_rbf,
                               store_train_meta_features=True)
    X_train, X_test, y_train, y_test = train_test_split(X2, y, test_size=0.3)
    stregr.fit(X_train, y_train)
    train_meta_features = stregr.train_meta_features_
    assert train_meta_features.shape[0] == X_train.shape[0]
开发者ID:NextNight,项目名称:mlxtend,代码行数:11,代码来源:test_stacking_regression.py


示例8: test_get_coeff_fail

def test_get_coeff_fail():
    lr = LinearRegression()
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[ridge, lr],
                               meta_regressor=svr_rbf)

    with pytest.raises(AttributeError):
        stregr = stregr.fit(X1, y)
        r = stregr.coef_
        assert r
开发者ID:rasbt,项目名称:mlxtend,代码行数:11,代码来源:test_stacking_regression.py


示例9: test_multivariate

def test_multivariate():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf')
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=svr_rbf)
    stregr.fit(X2, y).predict(X2)
    mse = 0.218
    got = np.mean((stregr.predict(X2) - y) ** 2)
    assert round(got, 3) == mse
开发者ID:chrinide,项目名称:mlxtend,代码行数:11,代码来源:test_stacking_regression.py


示例10: test_multivariate_class

def test_multivariate_class():
    lr = LinearRegression()
    ridge = Ridge(random_state=1)
    meta = LinearRegression(normalize=True)
    stregr = StackingRegressor(regressors=[lr, ridge],
                               meta_regressor=meta)
    stregr.fit(X2, y2).predict(X2)
    mse = 0.12
    got = np.mean((stregr.predict(X2) - y2) ** 2.)
    # there seems to be an issue with the following test on Windows
    # sometimes via Appveyor
    assert round(got, 2) == mse, got
开发者ID:NextNight,项目名称:mlxtend,代码行数:12,代码来源:test_stacking_regression.py


示例11: test_weight_ones

def test_weight_ones():
    # sample weight of ones should produce equivalent outcome as no weight
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=svr_rbf)
    pred1 = stregr.fit(X1, y).predict(X1)
    pred2 = stregr.fit(X1, y, sample_weight=np.ones(40)).predict(X1)
    maxdiff = np.max(np.abs(pred1 - pred2))
    assert maxdiff < 1e-3, "max diff is %.4f" % maxdiff
开发者ID:rasbt,项目名称:mlxtend,代码行数:12,代码来源:test_stacking_regression.py


示例12: test_weight_unsupported_meta

def test_weight_unsupported_meta():
    # meta regressor with no support for
    # sample_weight should raise error
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    lasso = Lasso(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=lasso)

    with pytest.raises(TypeError):
        stregr.fit(X1, y, sample_weight=w).predict(X1)
开发者ID:rasbt,项目名称:mlxtend,代码行数:12,代码来源:test_stacking_regression.py


示例13: test_weight_unsupported_regressor

def test_weight_unsupported_regressor():
    # including regressor that does not support
    # sample_weight should raise error
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    lasso = Lasso(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge, lasso],
                               meta_regressor=svr_rbf)

    with pytest.raises(TypeError):
        stregr.fit(X1, y, sample_weight=w).predict(X1)
开发者ID:rasbt,项目名称:mlxtend,代码行数:13,代码来源:test_stacking_regression.py


示例14: test_features_in_secondary

def test_features_in_secondary():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    rf = RandomForestRegressor(n_estimators=10, random_state=2)
    ridge = Ridge(random_state=0)
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    stack = StackingRegressor(regressors=[svr_lin, lr, ridge, rf],
                              meta_regressor=svr_rbf,
                              use_features_in_secondary=True)

    stack.fit(X1, y).predict(X1)
    mse = 0.14
    got = np.mean((stack.predict(X1) - y) ** 2)
    print(got)
    assert round(got, 2) == mse

    stack = StackingRegressor(regressors=[svr_lin, lr, ridge, rf],
                              meta_regressor=svr_rbf,
                              use_features_in_secondary=False)

    # dense
    stack.fit(X1, y).predict(X1)
    mse = 0.12
    got = np.mean((stack.predict(X1) - y) ** 2)
    print(got)
    assert round(got, 2) == mse
开发者ID:rasbt,项目名称:mlxtend,代码行数:26,代码来源:test_stacking_regression.py


示例15: test_sample_weight

def test_sample_weight():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=svr_rbf)
    pred1 = stregr.fit(X1, y, sample_weight=w).predict(X1)
    mse = 0.22
    got = np.mean((stregr.predict(X1) - y) ** 2)
    assert round(got, 2) == mse
    # make sure that this is not equivalent to the model with no weight
    pred2 = stregr.fit(X1, y).predict(X1)
    maxdiff = np.max(np.abs(pred1 - pred2))
    assert maxdiff > 1e-3, "max diff is %.4f" % maxdiff
开发者ID:rasbt,项目名称:mlxtend,代码行数:15,代码来源:test_stacking_regression.py


示例16: test_get_params

def test_get_params():
    lr = LinearRegression()
    svr_rbf = SVR(kernel='rbf')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[ridge, lr],
                               meta_regressor=svr_rbf)

    got = sorted(list({s.split('__')[0] for s in stregr.get_params().keys()}))
    expect = ['linearregression',
              'meta-svr',
              'meta_regressor',
              'regressors',
              'ridge',
              'store_train_meta_features',
              'verbose']
    assert got == expect, got
开发者ID:venkatesh-1729,项目名称:mlxtend,代码行数:16,代码来源:test_stacking_regression.py


示例17: test_predictions_from_sparse_matrix

def test_predictions_from_sparse_matrix():
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr],
                               meta_regressor=ridge)

    # dense
    stregr.fit(X1, y)
    print(stregr.score(X1, y))
    assert round(stregr.score(X1, y), 2) == 0.61

    # sparse
    stregr.fit(sparse.csr_matrix(X1), y)
    print(stregr.score(X1, y))
    assert round(stregr.score(X1, y), 2) == 0.61
开发者ID:rasbt,项目名称:mlxtend,代码行数:16,代码来源:test_stacking_regression.py


示例18: train

  def train(self, X,y):
    features = X
    labels = y

    #test train split
    X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.25, random_state=4)

    #Ridge
    regcv = linear_model.RidgeCV(alphas=[0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75])
    regcv.fit(features, labels)
    regcv.alpha_  
    reg = linear_model.Ridge(alpha=regcv.alpha_)
    reg.fit(features, labels)

    # GB
    params = {'n_estimators': 100, 'max_depth': 5, 'min_samples_split': 2,
              'learning_rate': 0.1, 'loss': 'ls'}
    gbr = ensemble.GradientBoostingRegressor(**params)
    gbr.fit(features, labels)


    #blended model
    meta = linear_model.LinearRegression()
    blender = StackingRegressor(regressors=[reg, gbr], meta_regressor=meta)
    _=blender.fit(features, labels)
    y_pred = blender.predict(X_test)

    print "***** TRAINING STATS ********"
    scores = cross_val_score(blender, features, labels, cv=10)
    print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

    mean_diff = np.mean(np.abs(np.exp(Y_test)-np.exp(y_pred)))
    p_mean_diff = np.mean(mean_diff/np.exp(Y_test))
    print "Mean Error:\t %.0f/%0.3f%%" % (mean_diff, p_mean_diff*100)
    print "***** TRAINING STATS ********"
    
    return blender
开发者ID:eggie5,项目名称:ipython-notebooks,代码行数:37,代码来源:model.py


示例19: test_weight_unsupported_with_no_weight

def test_weight_unsupported_with_no_weight():
    # pass no weight to regressors with no weight support
    # should not be a problem
    lr = LinearRegression()
    svr_lin = SVR(kernel='linear', gamma='auto')
    ridge = Ridge(random_state=1)
    svr_rbf = SVR(kernel='rbf', gamma='auto')
    lasso = Lasso(random_state=1)
    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge, lasso],
                               meta_regressor=svr_rbf)
    stregr.fit(X1, y).predict(X1)

    stregr = StackingRegressor(regressors=[svr_lin, lr, ridge],
                               meta_regressor=lasso)
    stregr.fit(X1, y).predict(X1)
开发者ID:rasbt,项目名称:mlxtend,代码行数:15,代码来源:test_stacking_regression.py



注:本文中的mlxtend.regressor.StackingRegressor类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tf_classifier.TfMultiLayerPerceptron类代码示例发布时间:2022-05-27
下一篇:
Python regressor.LinearRegression类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap