• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python mne.pick_channels函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.pick_channels函数的典型用法代码示例。如果您正苦于以下问题:Python pick_channels函数的具体用法?Python pick_channels怎么用?Python pick_channels使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了pick_channels函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_utils

def test_utils():
    """Test utils."""

    event_id = {'Visual/Left': 3}
    tmin, tmax = -0.2, 0.5
    events = mne.find_events(raw)
    picks = mne.pick_channels(raw.info['ch_names'],
                              ['MEG 2443', 'MEG 2442', 'MEG 2441'])
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
                        picks=picks, baseline=(None, 0),
                        reject=None, preload=True)

    this_epoch = epochs.copy()
    epochs_clean = clean_by_interp(this_epoch)
    assert_array_equal(this_epoch.get_data(), epochs.get_data())
    assert_raises(AssertionError, assert_array_equal, epochs_clean.get_data(),
                  this_epoch.get_data())

    picks_meg = mne.pick_types(evoked.info, meg='grad', eeg=False, exclude=[])
    picks_eeg = mne.pick_types(evoked.info, meg=False, eeg=True, exclude=[])
    picks_bad_meg = mne.pick_channels(evoked.ch_names, include=['MEG 2443'])
    picks_bad_eeg = mne.pick_channels(evoked.ch_names, include=['EEG 053'])
    evoked_orig = evoked.copy()
    for picks, picks_bad in zip([picks_meg, picks_eeg],
                                [picks_bad_meg, picks_bad_eeg]):
        evoked_autoreject = interpolate_bads(evoked, picks=picks,
                                             reset_bads=False)
        evoked.interpolate_bads(reset_bads=False)
        assert_array_equal(evoked.data[picks_bad],
                           evoked_autoreject.data[picks_bad])
        assert_raises(AssertionError, assert_array_equal,
                      evoked_orig.data[picks_bad], evoked.data[picks_bad])
开发者ID:jasmainak,项目名称:autoreject,代码行数:32,代码来源:test_utils.py


示例2: test_set_channel_types

def test_set_channel_types():
    """Test set_channel_types"""
    raw = read_raw_fif(raw_fname)
    # Error Tests
    # Test channel name exists in ch_names
    mapping = {'EEG 160': 'EEG060'}
    assert_raises(ValueError, raw.set_channel_types, mapping)
    # Test change to illegal channel type
    mapping = {'EOG 061': 'xxx'}
    assert_raises(ValueError, raw.set_channel_types, mapping)
    # Test changing type if in proj (avg eeg ref here)
    mapping = {'EEG 058': 'ecog', 'EEG 059': 'ecg', 'EEG 060': 'eog',
               'EOG 061': 'seeg', 'MEG 2441': 'eeg', 'MEG 2443': 'eeg',
               'MEG 2442': 'hbo'}
    assert_raises(RuntimeError, raw.set_channel_types, mapping)
    # Test type change
    raw2 = read_raw_fif(raw_fname)
    raw2.info['bads'] = ['EEG 059', 'EEG 060', 'EOG 061']
    with warnings.catch_warnings(record=True):  # MEG channel change
        assert_raises(RuntimeError, raw2.set_channel_types, mapping)  # has prj
    raw2.add_proj([], remove_existing=True)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw2.set_channel_types(mapping)
    assert_true(len(w) >= 1, msg=[str(ww.message) for ww in w])
    assert_true(all('The unit for channel' in str(ww.message) for ww in w))
    info = raw2.info
    assert_true(info['chs'][372]['ch_name'] == 'EEG 058')
    assert_true(info['chs'][372]['kind'] == FIFF.FIFFV_ECOG_CH)
    assert_true(info['chs'][372]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][372]['coil_type'] == FIFF.FIFFV_COIL_EEG)
    assert_true(info['chs'][373]['ch_name'] == 'EEG 059')
    assert_true(info['chs'][373]['kind'] == FIFF.FIFFV_ECG_CH)
    assert_true(info['chs'][373]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][373]['coil_type'] == FIFF.FIFFV_COIL_NONE)
    assert_true(info['chs'][374]['ch_name'] == 'EEG 060')
    assert_true(info['chs'][374]['kind'] == FIFF.FIFFV_EOG_CH)
    assert_true(info['chs'][374]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][374]['coil_type'] == FIFF.FIFFV_COIL_NONE)
    assert_true(info['chs'][375]['ch_name'] == 'EOG 061')
    assert_true(info['chs'][375]['kind'] == FIFF.FIFFV_SEEG_CH)
    assert_true(info['chs'][375]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][375]['coil_type'] == FIFF.FIFFV_COIL_EEG)
    for idx in pick_channels(raw.ch_names, ['MEG 2441', 'MEG 2443']):
        assert_true(info['chs'][idx]['kind'] == FIFF.FIFFV_EEG_CH)
        assert_true(info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V)
        assert_true(info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_EEG)
    idx = pick_channels(raw.ch_names, ['MEG 2442'])[0]
    assert_true(info['chs'][idx]['kind'] == FIFF.FIFFV_FNIRS_CH)
    assert_true(info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_MOL)
    assert_true(info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO)

    # Test meaningful error when setting channel type with unknown unit
    raw.info['chs'][0]['unit'] = 0.
    ch_types = {raw.ch_names[0]: 'misc'}
    assert_raises(ValueError, raw.set_channel_types, ch_types)
开发者ID:Hugo-W,项目名称:mne-python,代码行数:56,代码来源:test_channels.py


示例3: test_set_channel_types

def test_set_channel_types():
    """Test set_channel_types."""
    raw = read_raw_fif(raw_fname)
    # Error Tests
    # Test channel name exists in ch_names
    mapping = {'EEG 160': 'EEG060'}
    pytest.raises(ValueError, raw.set_channel_types, mapping)
    # Test change to illegal channel type
    mapping = {'EOG 061': 'xxx'}
    pytest.raises(ValueError, raw.set_channel_types, mapping)
    # Test changing type if in proj (avg eeg ref here)
    mapping = {'EEG 058': 'ecog', 'EEG 059': 'ecg', 'EEG 060': 'eog',
               'EOG 061': 'seeg', 'MEG 2441': 'eeg', 'MEG 2443': 'eeg',
               'MEG 2442': 'hbo'}
    pytest.raises(RuntimeError, raw.set_channel_types, mapping)
    # Test type change
    raw2 = read_raw_fif(raw_fname)
    raw2.info['bads'] = ['EEG 059', 'EEG 060', 'EOG 061']
    pytest.raises(RuntimeError, raw2.set_channel_types, mapping)  # has prj
    raw2.add_proj([], remove_existing=True)
    with pytest.warns(RuntimeWarning, match='The unit for channel'):
        raw2.set_channel_types(mapping)
    info = raw2.info
    assert info['chs'][372]['ch_name'] == 'EEG 058'
    assert info['chs'][372]['kind'] == FIFF.FIFFV_ECOG_CH
    assert info['chs'][372]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][372]['coil_type'] == FIFF.FIFFV_COIL_EEG
    assert info['chs'][373]['ch_name'] == 'EEG 059'
    assert info['chs'][373]['kind'] == FIFF.FIFFV_ECG_CH
    assert info['chs'][373]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][373]['coil_type'] == FIFF.FIFFV_COIL_NONE
    assert info['chs'][374]['ch_name'] == 'EEG 060'
    assert info['chs'][374]['kind'] == FIFF.FIFFV_EOG_CH
    assert info['chs'][374]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][374]['coil_type'] == FIFF.FIFFV_COIL_NONE
    assert info['chs'][375]['ch_name'] == 'EOG 061'
    assert info['chs'][375]['kind'] == FIFF.FIFFV_SEEG_CH
    assert info['chs'][375]['unit'] == FIFF.FIFF_UNIT_V
    assert info['chs'][375]['coil_type'] == FIFF.FIFFV_COIL_EEG
    for idx in pick_channels(raw.ch_names, ['MEG 2441', 'MEG 2443']):
        assert info['chs'][idx]['kind'] == FIFF.FIFFV_EEG_CH
        assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V
        assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_EEG
    idx = pick_channels(raw.ch_names, ['MEG 2442'])[0]
    assert info['chs'][idx]['kind'] == FIFF.FIFFV_FNIRS_CH
    assert info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_MOL
    assert info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_FNIRS_HBO

    # Test meaningful error when setting channel type with unknown unit
    raw.info['chs'][0]['unit'] = 0.
    ch_types = {raw.ch_names[0]: 'misc'}
    pytest.raises(ValueError, raw.set_channel_types, ch_types)
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:52,代码来源:test_channels.py


示例4: test_picks_by_channels

def test_picks_by_channels():
    """Test creating pick_lists."""
    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    _assert_channel_types(info)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)
    # This acts as a set, not an order
    assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
                       [0, 1])

    # Make sure checks for list input work.
    pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
    pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    # pick_types type check
    pytest.raises(ValueError, raw.pick_types, eeg='string')

    # duplicate check
    names = ['MEG 002', 'MEG 002']
    assert len(pick_channels(raw.info['ch_names'], names)) == 1
    assert len(raw.copy().pick_channels(names)[0][0]) == 1
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:51,代码来源:test_pick.py


示例5: test_cov_estimation_on_raw_segment

def test_cov_estimation_on_raw_segment():
    """Test estimation from raw on continuous recordings (typically empty room)
    """
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=False)
    cov = compute_raw_data_covariance(raw)
    cov_mne = read_cov(erm_cov_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro')
                / linalg.norm(cov.data, ord='fro') < 1e-4)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_data_covariance(raw, picks=picks)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
                ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_data_covariance(raw_2)
    assert_true(len(w) == 1)
开发者ID:LizetteH,项目名称:mne-python,代码行数:30,代码来源:test_cov.py


示例6: test_cov_estimation_on_raw

def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)"""
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=False)
    cov_mne = read_cov(erm_cov_fname)

    cov = compute_raw_covariance(raw, tstep=None)
    assert_equal(cov.ch_names, cov_mne.ch_names)
    assert_equal(cov.nfree, cov_mne.nfree)
    assert_snr(cov.data, cov_mne.data, 1e4)

    cov = compute_raw_covariance(raw)  # tstep=0.2 (default)
    assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
    assert_snr(cov.data, cov_mne.data, 1e2)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_covariance(raw, picks=picks, tstep=None)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
    cov = compute_raw_covariance(raw, picks=picks)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 90)  # cutoff samps
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_covariance(raw_2)
    assert_true(any('Too few samples' in str(ww.message) for ww in w))
开发者ID:GrantRVD,项目名称:mne-python,代码行数:35,代码来源:test_cov.py


示例7: test_interpolate_meg_ctf

def test_interpolate_meg_ctf():
    """Test interpolation of MEG channels from CTF system."""
    thresh = .7
    tol = .05  # assert the new interpol correlates at least .05 "better"
    bad = 'MLC22-2622'  # select a good channel to test the interpolation

    raw = io.read_raw_fif(raw_fname_ctf, preload=True)  # 3 secs
    raw.apply_gradient_compensation(3)

    # Show that we have to exclude ref_meg for interpolating CTF MEG-channels
    # (fixed in #5965):
    raw.info['bads'] = [bad]
    pick_bad = pick_channels(raw.info['ch_names'], raw.info['bads'])
    data_orig = raw[pick_bad, :][0]
    # mimic old behavior (the ref_meg-arg in _interpolate_bads_meg only serves
    # this purpose):
    data_interp_refmeg = _this_interpol(raw, ref_meg=True)[pick_bad, :][0]
    # new:
    data_interp_no_refmeg = _this_interpol(raw, ref_meg=False)[pick_bad, :][0]

    R = dict()
    R['no_refmeg'] = np.corrcoef(data_orig, data_interp_no_refmeg)[0, 1]
    R['with_refmeg'] = np.corrcoef(data_orig, data_interp_refmeg)[0, 1]

    print('Corrcoef of interpolated with original channel: ', R)
    assert R['no_refmeg'] > R['with_refmeg'] + tol
    assert R['no_refmeg'] > thresh
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:27,代码来源:test_interpolation.py


示例8: apply_ica_hcp

def apply_ica_hcp(raw, ica_mat, exclude):
    """ Apply the HCP ICA.

    Operates in place.

    Parameters
    ----------
    raw : instance of Raw
        the hcp raw data.
    ica_mat : numpy structured array
        The hcp ICA solution
    exclude : array-like
        the components to be excluded.
    """
    ch_names = ica_mat['topolabel'].tolist().tolist()
    picks = mne.pick_channels(raw.info['ch_names'], include=ch_names)
    assert ch_names == [raw.ch_names[p] for p in picks]

    unmixing_matrix = np.array(ica_mat['unmixing'].tolist())

    n_components, n_channels = unmixing_matrix.shape
    mixing = np.array(ica_mat['topo'].tolist())

    proj_mat = (np.eye(n_channels) - np.dot(
        mixing[:, exclude], unmixing_matrix[exclude]))
    raw._data *= 1e15
    raw._data[picks] = np.dot(proj_mat, raw._data[picks])
    raw._data /= 1e15
开发者ID:JohnGriffiths,项目名称:mne-hcp,代码行数:28,代码来源:preprocessing.py


示例9: _check_channel_names

def _check_channel_names(inst, ref_names):
    if isinstance(ref_names, str):
        ref_names = [ref_names]

    # Test that the names of the reference channels are present in `ch_names`
    ref_idx = pick_channels(inst.info['ch_names'], ref_names)
    assert_true(len(ref_idx), len(ref_names))

    # Test that the names of the reference channels are present in the `chs`
    # list
    inst.info._check_consistency()  # Should raise no exceptions
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:11,代码来源:test_reference.py


示例10: test_comparision_with_c

def test_comparision_with_c():
    """Test of average obtained vs C code
    """
    c_evoked = read_evokeds(evoked_nf_name, condition=0)
    epochs = Epochs(raw, events, event_id, tmin, tmax, baseline=None, preload=True, reject=None, flat=None)
    evoked = epochs.average()
    sel = pick_channels(c_evoked.ch_names, evoked.ch_names)
    evoked_data = evoked.data
    c_evoked_data = c_evoked.data[sel]

    assert_true(evoked.nave == c_evoked.nave)
    assert_array_almost_equal(evoked_data, c_evoked_data, 10)
    assert_array_almost_equal(evoked.times, c_evoked.times, 12)
开发者ID:rgoj,项目名称:mne-python,代码行数:13,代码来源:test_epochs.py


示例11: test_cov_estimation_on_raw

def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)"""
    tempdir = _TempDir()
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    for method in (None, ['empirical']):  # None is cast to 'empirical'
        cov = compute_raw_covariance(raw, tstep=None, method=method)
        assert_equal(cov.ch_names, cov_mne.ch_names)
        assert_equal(cov.nfree, cov_mne.nfree)
        assert_snr(cov.data, cov_mne.data, 1e4)

        cov = compute_raw_covariance(raw, method=method)  # tstep=0.2 (default)
        assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
        assert_snr(cov.data, cov_mne.data, 1e2)

        # test IO when computation done in Python
        cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
        cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
        assert_true(cov_read.ch_names == cov.ch_names)
        assert_true(cov_read.nfree == cov.nfree)
        assert_array_almost_equal(cov.data, cov_read.data)

        # test with a subset of channels
        picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
        raw_pick = raw.copy().pick_channels(
            [raw.ch_names[pick] for pick in picks])
        raw_pick.info.normalize_proj()
        cov = compute_raw_covariance(raw_pick, picks=picks, tstep=None,
                                     method=method)
        assert_true(cov_mne.ch_names[:5] == cov.ch_names)
        assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
        cov = compute_raw_covariance(raw_pick, picks=picks, method=method)
        assert_snr(cov.data, cov_mne.data[picks][:, picks], 90)  # cutoff samps
        # make sure we get a warning with too short a segment
        raw_2 = read_raw_fif(raw_fname).crop(0, 1, copy=False)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            cov = compute_raw_covariance(raw_2, method=method)
        assert_true(any('Too few samples' in str(ww.message) for ww in w))
        # no epochs found due to rejection
        assert_raises(ValueError, compute_raw_covariance, raw, tstep=None,
                      method='empirical', reject=dict(eog=200e-6))
        # but this should work
        cov = compute_raw_covariance(raw.copy().crop(0, 10., copy=False),
                                     tstep=None, method=method,
                                     reject=dict(eog=1000e-6))
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:50,代码来源:test_cov.py


示例12: test_interpolation_meg

def test_interpolation_meg():
    """Test interpolation of MEG channels."""
    # speed accuracy tradeoff: channel subselection is faster but the
    # correlation drops
    thresh = 0.7

    raw, epochs_meg = _load_data('meg')

    # check that interpolation works when non M/EEG channels are present
    # before MEG channels
    raw.crop(0, 0.1).load_data().pick_channels(epochs_meg.ch_names)
    raw.info.normalize_proj()
    with pytest.warns(RuntimeWarning, match='unit .* changed from .* to .*'):
        raw.set_channel_types({raw.ch_names[0]: 'stim'})
    raw.info['bads'] = [raw.ch_names[1]]
    raw.load_data()
    raw.interpolate_bads(mode='fast')
    del raw

    # check that interpolation works for MEG
    epochs_meg.info['bads'] = ['MEG 0141']
    evoked = epochs_meg.average()
    pick = pick_channels(epochs_meg.info['ch_names'], epochs_meg.info['bads'])

    # MEG -- raw
    raw_meg = io.RawArray(data=epochs_meg._data[0], info=epochs_meg.info)
    raw_meg.info['bads'] = ['MEG 0141']
    data1 = raw_meg[pick, :][0][0]

    raw_meg.info.normalize_proj()
    data2 = raw_meg.interpolate_bads(reset_bads=False,
                                     mode='fast')[pick, :][0][0]
    assert np.corrcoef(data1, data2)[0, 1] > thresh
    # the same number of bads as before
    assert len(raw_meg.info['bads']) == len(raw_meg.info['bads'])

    # MEG -- epochs
    data1 = epochs_meg.get_data()[:, pick, :].ravel()
    epochs_meg.info.normalize_proj()
    epochs_meg.interpolate_bads(mode='fast')
    data2 = epochs_meg.get_data()[:, pick, :].ravel()
    assert np.corrcoef(data1, data2)[0, 1] > thresh
    assert len(epochs_meg.info['bads']) == 0

    # MEG -- evoked (plus auto origin)
    data1 = evoked.data[pick]
    evoked.info.normalize_proj()
    data2 = evoked.interpolate_bads(origin='auto').data[pick]
    assert np.corrcoef(data1, data2)[0, 1] > thresh
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:49,代码来源:test_interpolation.py


示例13: clean_by_interp

def clean_by_interp(inst, picks=None, dots=None, verbose='progressbar'):
    """Clean epochs/evoked by LOOCV.

    Parameters
    ----------
    inst : instance of mne.Evoked or mne.Epochs
        The evoked or epochs object.
    picks : ndarray, shape(n_channels,) | None
        The channels to be considered for autoreject. If None, defaults
        to data channels {'meg', 'eeg'}.
    dots : tuple of ndarray
        The self dots and cross dots.
    verbose : 'tqdm', 'tqdm_notebook', 'progressbar' or False
        The verbosity of progress messages.
        If `'progressbar'`, use `mne.utils.ProgressBar`.
        If `'tqdm'`, use `tqdm.tqdm`.
        If `'tqdm_notebook'`, use `tqdm.tqdm_notebook`.
        If False, suppress all output messages.

    Returns
    -------
    inst_clean : instance of mne.Evoked or mne.Epochs
        Instance after interpolation of bad channels.
    """
    inst_interp = inst.copy()
    mesg = 'Creating augmented epochs'
    picks = _handle_picks(info=inst_interp.info, picks=picks)

    BaseEpochs = _get_epochs_type()
    ch_names = [inst.info['ch_names'][p] for p in picks]
    for ch_idx, (pick, ch) in enumerate(_pbar(list(zip(picks, ch_names)),
                                        desc=mesg, verbose=verbose)):
        inst.info['bads'] = [ch]
        pick_interp = mne.pick_channels(inst.info['ch_names'], [ch])[0]
        data_orig = inst._data[:, pick_interp].copy()

        interpolate_bads(inst, picks=picks, dots=dots,
                         reset_bads=True, mode='fast')

        if isinstance(inst, mne.Evoked):
            inst_interp.data[pick] = inst.data[pick_interp]
        elif isinstance(inst, BaseEpochs):
            inst_interp._data[:, pick] = inst._data[:, pick_interp]
        else:
            raise ValueError('Unrecognized type for inst')
        inst._data[:, pick_interp] = data_orig.copy()
    return inst_interp
开发者ID:autoreject,项目名称:autoreject,代码行数:47,代码来源:utils.py


示例14: test_set_channel_types

def test_set_channel_types():
    """Test set_channel_types
    """
    raw = Raw(raw_fname)
    # Error Tests
    # Test channel name exists in ch_names
    mapping = {'EEG 160': 'EEG060'}
    assert_raises(ValueError, raw.set_channel_types, mapping)
    # Test change to illegal channel type
    mapping = {'EOG 061': 'xxx'}
    assert_raises(ValueError, raw.set_channel_types, mapping)
    # Test changing type if in proj (avg eeg ref here)
    mapping = {'EEG 060': 'eog', 'EEG 059': 'ecg', 'EOG 061': 'seeg',
               'MEG 2441': 'eeg', 'MEG 2443': 'eeg'}
    assert_raises(RuntimeError, raw.set_channel_types, mapping)
    # Test type change
    raw2 = Raw(raw_fname, add_eeg_ref=False)
    raw2.info['bads'] = ['EEG 059', 'EEG 060', 'EOG 061']
    assert_raises(RuntimeError, raw2.set_channel_types, mapping)  # has proj
    raw2.add_proj([], remove_existing=True)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        raw2.set_channel_types(mapping)
    assert_true(len(w) >= 1, msg=[str(ww.message) for ww in w])
    assert_true(all('The unit for channel' in str(ww.message) for ww in w))
    info = raw2.info
    assert_true(info['chs'][374]['ch_name'] == 'EEG 060')
    assert_true(info['chs'][374]['kind'] == FIFF.FIFFV_EOG_CH)
    assert_true(info['chs'][374]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][374]['coil_type'] == FIFF.FIFFV_COIL_NONE)
    assert_true(info['chs'][373]['ch_name'] == 'EEG 059')
    assert_true(info['chs'][373]['kind'] == FIFF.FIFFV_ECG_CH)
    assert_true(info['chs'][373]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][373]['coil_type'] == FIFF.FIFFV_COIL_NONE)
    assert_true(info['chs'][375]['ch_name'] == 'EOG 061')
    assert_true(info['chs'][375]['kind'] == FIFF.FIFFV_SEEG_CH)
    assert_true(info['chs'][375]['unit'] == FIFF.FIFF_UNIT_V)
    assert_true(info['chs'][375]['coil_type'] == FIFF.FIFFV_COIL_EEG)
    for idx in pick_channels(raw.ch_names, ['MEG 2441', 'MEG 2443']):
        assert_true(info['chs'][idx]['kind'] == FIFF.FIFFV_EEG_CH)
        assert_true(info['chs'][idx]['unit'] == FIFF.FIFF_UNIT_V)
        assert_true(info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_EEG)
开发者ID:The3DWizard,项目名称:mne-python,代码行数:42,代码来源:test_channels.py


示例15: test_viz

def test_viz():
    """Test viz."""
    import matplotlib.pyplot as plt

    events = mne.find_events(raw)
    picks = mne.pick_channels(raw.info['ch_names'],
                              ['MEG 2443', 'MEG 2442', 'MEG 2441'])
    epochs = mne.Epochs(raw, events, picks=picks, baseline=(None, 0),
                        reject=None, preload=True,
                        event_id={'1': 1, '2': 2, '3': 3, '4': 4})
    bad_epochs_idx = [0, 1, 3]
    n_epochs, n_channels, _ = epochs.get_data().shape
    bad_epochs = np.zeros(n_epochs, dtype=bool)
    bad_epochs[bad_epochs_idx] = True

    labels = np.zeros((n_epochs, n_channels))
    reject_log = autoreject.RejectLog(bad_epochs, labels, epochs.ch_names)
    reject_log.plot_epochs(epochs)
    assert_raises(ValueError, reject_log.plot_epochs, epochs[:2])
    plt.close('all')
开发者ID:autoreject,项目名称:autoreject,代码行数:20,代码来源:test_viz.py


示例16: test_viz

def test_viz():
    """Test viz."""
    import matplotlib.pyplot as plt

    events = mne.find_events(raw)
    picks = mne.pick_channels(raw.info['ch_names'],
                              ['MEG 2443', 'MEG 2442', 'MEG 2441'])
    epochs = mne.Epochs(raw, events, picks=picks, baseline=(None, 0),
                        reject=None, preload=True,
                        event_id={'1': 1, '2': 2, '3': 3, '4': 4})
    bad_epochs_idx = [0, 1, 3]
    n_epochs, n_channels, _ = epochs.get_data().shape
    fix_log = np.zeros((n_epochs, n_channels))

    print(bad_epochs_idx)
    plot_epochs(epochs, bad_epochs_idx=bad_epochs_idx, fix_log=fix_log)
    plot_epochs(epochs, bad_epochs_idx=bad_epochs_idx)
    plot_epochs(epochs, fix_log=fix_log)
    assert_raises(ValueError, plot_epochs, epochs[:2],
                  bad_epochs_idx=bad_epochs_idx, fix_log=fix_log)
    plt.close('all')
开发者ID:jasmainak,项目名称:autoreject,代码行数:21,代码来源:test_viz.py


示例17: _interpolate_bads_meg_fast

def _interpolate_bads_meg_fast(inst, mode='accurate', verbose=None):
    """Interpolate bad channels from data in good channels.
    """
    from mne.channels.interpolation import _do_interp_dots
    from mne import pick_types, pick_channels

    picks_meg = pick_types(inst.info, meg=True, eeg=False, exclude=[])
    ch_names = [inst.info['ch_names'][p] for p in picks_meg]
    picks_good = pick_types(inst.info, meg=True, eeg=False, exclude='bads')

    # select the bad meg channel to be interpolated
    if len(inst.info['bads']) == 0:
        picks_bad = []
    else:
        picks_bad = pick_channels(ch_names, inst.info['bads'],
                                  exclude=[])

    # return without doing anything if there are no meg channels
    if len(picks_meg) == 0 or len(picks_bad) == 0:
        return

    mapping = _fast_map_meg_channels(inst, picks_good, picks_bad, mode=mode)

    _do_interp_dots(inst, mapping, picks_good, picks_bad)
开发者ID:dengemann,项目名称:autoreject,代码行数:24,代码来源:utils.py


示例18: test_interpolation

def test_interpolation():
    """Test interpolation"""
    raw, epochs, epochs_eeg, epochs_meg = _load_data()

    # It's a trade of between speed and accuracy. If every second channel is
    # selected the tests are more than 3x faster but the correlation
    # drops to 0.8
    thresh = 0.80

    # create good and bad channels for EEG
    epochs_eeg.info['bads'] = []
    goods_idx = np.ones(len(epochs_eeg.ch_names), dtype=bool)
    goods_idx[epochs_eeg.ch_names.index('EEG 012')] = False
    bads_idx = ~goods_idx

    evoked_eeg = epochs_eeg.average()
    ave_before = evoked_eeg.data[bads_idx]

    # interpolate bad channels for EEG
    pos = epochs_eeg._get_channel_positions()
    pos_good = pos[goods_idx]
    pos_bad = pos[bads_idx]
    interpolation = _make_interpolation_matrix(pos_good, pos_bad)
    assert_equal(interpolation.shape, (1, len(epochs_eeg.ch_names) - 1))
    ave_after = np.dot(interpolation, evoked_eeg.data[goods_idx])

    epochs_eeg.info['bads'] = ['EEG 012']
    evoked_eeg = epochs_eeg.average()
    assert_array_equal(ave_after, evoked_eeg.interpolate_bads().data[bads_idx])

    assert_allclose(ave_before, ave_after, atol=2e-6)

    # check that interpolation fails when preload is False
    epochs_eeg.preload = False
    assert_raises(ValueError,  epochs_eeg.interpolate_bads)
    epochs_eeg.preload = True

    # check that interpolation changes the data in raw
    raw_eeg = io.RawArray(data=epochs_eeg._data[0], info=epochs_eeg.info)
    raw_before = raw_eeg._data[bads_idx]
    raw_after = raw_eeg.interpolate_bads()._data[bads_idx]
    assert_equal(np.all(raw_before == raw_after), False)

    # check that interpolation fails when preload is False
    for inst in [raw, epochs]:
        assert hasattr(inst, 'preload')
        inst.preload = False
        inst.info['bads'] = [inst.ch_names[1]]
        assert_raises(ValueError, inst.interpolate_bads)

    # check that interpolation works with few channels
    raw_few = raw.copy().crop(0, 0.1).load_data()
    raw_few.pick_channels(raw_few.ch_names[:1] + raw_few.ch_names[3:4])
    assert_equal(len(raw_few.ch_names), 2)
    raw_few.del_proj()
    raw_few.info['bads'] = [raw_few.ch_names[-1]]
    orig_data = raw_few[1][0]
    raw_few.interpolate_bads(reset_bads=False)
    new_data = raw_few[1][0]
    assert_true((new_data == 0).mean() < 0.5)
    assert_true(np.corrcoef(new_data, orig_data)[0, 1] > 0.1)

    # check that interpolation works when non M/EEG channels are present
    # before MEG channels
    with warnings.catch_warnings(record=True):  # change of units
        raw.rename_channels({'MEG 0113': 'TRIGGER'})
        raw.set_channel_types({'TRIGGER': 'stim'})
        raw.info['bads'] = [raw.info['ch_names'][1]]
        raw.load_data()
        raw.interpolate_bads()

    # check that interpolation works for MEG
    epochs_meg.info['bads'] = ['MEG 0141']
    evoked = epochs_meg.average()
    pick = pick_channels(epochs_meg.info['ch_names'], epochs_meg.info['bads'])

    # MEG -- raw
    raw_meg = io.RawArray(data=epochs_meg._data[0], info=epochs_meg.info)
    raw_meg.info['bads'] = ['MEG 0141']
    data1 = raw_meg[pick, :][0][0]

    raw_meg.info.normalize_proj()
    data2 = raw_meg.interpolate_bads(reset_bads=False)[pick, :][0][0]
    assert_true(np.corrcoef(data1, data2)[0, 1] > thresh)
    # the same number of bads as before
    assert_true(len(raw_meg.info['bads']) == len(raw_meg.info['bads']))

    # MEG -- epochs
    data1 = epochs_meg.get_data()[:, pick, :].ravel()
    epochs_meg.info.normalize_proj()
    epochs_meg.interpolate_bads()
    data2 = epochs_meg.get_data()[:, pick, :].ravel()
    assert_true(np.corrcoef(data1, data2)[0, 1] > thresh)
    assert_true(len(epochs_meg.info['bads']) == 0)

    # MEG -- evoked
    data1 = evoked.data[pick]
    evoked.info.normalize_proj()
    data2 = evoked.interpolate_bads().data[pick]
    assert_true(np.corrcoef(data1, data2)[0, 1] > thresh)
开发者ID:HSMin,项目名称:mne-python,代码行数:100,代码来源:test_interpolation.py


示例19: permutation_t_test

                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))
data = epochs.get_data()
times = epochs.times

temporal_mask = np.logical_and(0.04 <= times, times <= 0.06)
data = np.mean(data[:, :, temporal_mask], axis=2)

n_permutations = 50000
T0, p_values, H0 = permutation_t_test(data, n_permutations, n_jobs=2)

significant_sensors = picks[p_values <= 0.05]
significant_sensors_names = [raw.ch_names[k] for k in significant_sensors]

print("Number of significant sensors : %d" % len(significant_sensors))
print("Sensors names : %s" % significant_sensors_names)

###############################################################################
# View location of significantly active sensors

evoked = mne.EvokedArray(-np.log10(p_values)[:, np.newaxis],
                         epochs.info, tmin=0.)

# Extract mask and indices of active sensors in layout
stats_picks = mne.pick_channels(evoked.ch_names, significant_sensors_names)
mask = p_values[:, np.newaxis] <= 0.05

evoked.plot_topomap(ch_type='grad', times=[0], scale=1, time_format=None,
                    cmap='Reds', vmin=0., vmax=np.max,
                    unit='-log10(p)', format='-%0.1f', mask=mask,
                    size=3, show_names=lambda x: x[4:] + ' ' * 20)
开发者ID:BushraR,项目名称:mne-python,代码行数:30,代码来源:plot_sensor_permutation_test.py


示例20: test_find_events

def test_find_events():
    """Test find_events in rt_epochs."""
    raw = read_raw_fif(raw_fname, preload=True, verbose=False)
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    event_id = [0, 5, 6]
    tmin, tmax = -0.2, 0.5

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 500:520] = 5
    raw._data[stim_channel_idx, 520:530] = 6
    raw._data[stim_channel_idx, 530:532] = 5
    raw._data[stim_channel_idx, 540] = 6
    raw._update_times()

    # consecutive=False
    find_events = dict(consecutive=False)

    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    # make sure next() works even if no iter-method has been called before
    rt_epochs.next()

    events = [5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 1

    # consecutive=True
    find_events = dict(consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 3

    # min_duration=0.002
    find_events = dict(consecutive=False, min_duration=0.002)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0

    # output='step', consecutive=True
    find_events = dict(output='step', consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 0, 6, 0]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 5

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle events at the beginning of the buffer
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 1000:1005] = 5
    raw._update_times()

    # Check that we find events that start at the beginning of the buffer
    find_events = dict(consecutive=False)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0
#.........这里部分代码省略.........
开发者ID:SherazKhan,项目名称:mne-python,代码行数:101,代码来源:test_mockclient.py

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.pick_info函数代码示例发布时间:2022-05-27
下一篇:
Python mne.morph_data函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap