• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python mne.read_events函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.read_events函数的典型用法代码示例。如果您正苦于以下问题:Python read_events函数的具体用法?Python read_events怎么用?Python read_events使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了read_events函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_ems

def test_ems():
    """Test event-matched spatial filters"""
    raw = io.Raw(raw_fname, preload=False)

    # create unequal number of events
    events = read_events(event_name)
    events[-2, 2] = 3
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[1:13:3]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    assert_raises(ValueError, compute_ems, epochs, ['aud_l', 'vis_l'])
    epochs.equalize_event_counts(epochs.event_id, copy=False)

    assert_raises(KeyError, compute_ems, epochs, ['blah', 'hahah'])
    surrogates, filters, conditions = compute_ems(epochs)
    assert_equal(list(set(conditions)), [1, 3])

    events = read_events(event_name)
    event_id2 = dict(aud_l=1, aud_r=2, vis_l=3)
    epochs = Epochs(raw, events, event_id2, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    epochs.equalize_event_counts(epochs.event_id, copy=False)

    n_expected = sum([len(epochs[k]) for k in ['aud_l', 'vis_l']])

    assert_raises(ValueError, compute_ems, epochs)
    surrogates, filters, conditions = compute_ems(epochs, ['aud_r', 'vis_l'])
    assert_equal(n_expected, len(surrogates))
    assert_equal(n_expected, len(conditions))
    assert_equal(list(set(conditions)), [2, 3])
    raw.close()
开发者ID:BushraR,项目名称:mne-python,代码行数:33,代码来源:test_ems.py


示例2: test_io_events

def test_io_events():
    """Test IO for events
    """
    events = mne.read_events(fname)
    mne.write_events('events.fif', events)
    events2 = mne.read_events('events.fif')
    assert_array_almost_equal(events, events2)
开发者ID:emilyruzich,项目名称:mne-python,代码行数:7,代码来源:test_event.py


示例3: test_info

def test_info():
    """Test info object"""
    raw = io.Raw(raw_fname)
    event_id, tmin, tmax = 1, -0.2, 0.5
    events = read_events(event_name)
    event_id = int(events[0, 2])
    epochs = Epochs(raw, events[:1], event_id, tmin, tmax, picks=None,
                    baseline=(None, 0))

    evoked = epochs.average()

    events = read_events(event_name)

    # Test subclassing was successful.
    info = Info(a=7, b='aaaaa')
    assert_true('a' in info)
    assert_true('b' in info)
    info[42] = 'foo'
    assert_true(info[42] == 'foo')

    # test info attribute in API objects
    for obj in [raw, epochs, evoked]:
        assert_true(isinstance(obj.info, Info))
        info_str = '%s' % obj.info
        assert_equal(len(info_str.split('\n')), (len(obj.info.keys()) + 2))
        assert_true(all(k in info_str for k in obj.info.keys()))
开发者ID:agramfort,项目名称:mne-python,代码行数:26,代码来源:test_meas_info.py


示例4: test_io_cov

def test_io_cov():
    """Test IO for noise covariance matrices
    """
    events = mne.read_events(fname)
    mne.write_events('events.fif', events)
    events2 = mne.read_events(fname)
    assert_array_almost_equal(events, events2)
开发者ID:arokem,项目名称:mne-python,代码行数:7,代码来源:test_event.py


示例5: test_info

def test_info():
    """Test info object"""
    raw = Raw(raw_fname)
    event_id, tmin, tmax = 1, -0.2, 0.5
    events = read_events(event_name)
    event_id = int(events[0, 2])
    epochs = Epochs(raw, events[:1], event_id, tmin, tmax, picks=None,
                    baseline=(None, 0))

    evoked = epochs.average()

    events = read_events(event_name)

    # Test subclassing was successful.
    info = Info(a=7, b='aaaaa')
    assert_true('a' in info)
    assert_true('b' in info)
    info[42] = 'foo'
    assert_true(info[42] == 'foo')

    # Test info attribute in API objects
    for obj in [raw, epochs, evoked]:
        assert_true(isinstance(obj.info, Info))
        info_str = '%s' % obj.info
        assert_equal(len(info_str.split('\n')), len(obj.info.keys()) + 2)
        assert_true(all(k in info_str for k in obj.info.keys()))

    # Test read-only fields
    info = raw.info.copy()
    nchan = len(info['chs'])
    ch_names = [ch['ch_name'] for ch in info['chs']]
    assert_equal(info['nchan'], nchan)
    assert_equal(list(info['ch_names']), ch_names)

    # Deleting of regular fields should work
    info['foo'] = 'bar'
    del info['foo']

    # Test updating of fields
    del info['chs'][-1]
    info._update_redundant()
    assert_equal(info['nchan'], nchan - 1)
    assert_equal(list(info['ch_names']), ch_names[:-1])

    info['chs'][0]['ch_name'] = 'foo'
    info._update_redundant()
    assert_equal(info['ch_names'][0], 'foo')

    # Test casting to and from a dict
    info_dict = dict(info)
    info2 = Info(info_dict)
    assert_equal(info, info2)
开发者ID:esdalmaijer,项目名称:mne-python,代码行数:52,代码来源:test_meas_info.py


示例6: test_info

def test_info():
    """Test info object."""
    raw = read_raw_fif(raw_fname)
    event_id, tmin, tmax = 1, -0.2, 0.5
    events = read_events(event_name)
    event_id = int(events[0, 2])
    epochs = Epochs(raw, events[:1], event_id, tmin, tmax, picks=None, baseline=(None, 0))

    evoked = epochs.average()

    events = read_events(event_name)

    # Test subclassing was successful.
    info = Info(a=7, b="aaaaa")
    assert_true("a" in info)
    assert_true("b" in info)
    info[42] = "foo"
    assert_true(info[42] == "foo")

    # Test info attribute in API objects
    for obj in [raw, epochs, evoked]:
        assert_true(isinstance(obj.info, Info))
        info_str = "%s" % obj.info
        assert_equal(len(info_str.split("\n")), len(obj.info.keys()) + 2)
        assert_true(all(k in info_str for k in obj.info.keys()))

    # Test read-only fields
    info = raw.info.copy()
    nchan = len(info["chs"])
    ch_names = [ch["ch_name"] for ch in info["chs"]]
    assert_equal(info["nchan"], nchan)
    assert_equal(list(info["ch_names"]), ch_names)

    # Deleting of regular fields should work
    info["foo"] = "bar"
    del info["foo"]

    # Test updating of fields
    del info["chs"][-1]
    info._update_redundant()
    assert_equal(info["nchan"], nchan - 1)
    assert_equal(list(info["ch_names"]), ch_names[:-1])

    info["chs"][0]["ch_name"] = "foo"
    info._update_redundant()
    assert_equal(info["ch_names"][0], "foo")

    # Test casting to and from a dict
    info_dict = dict(info)
    info2 = Info(info_dict)
    assert_equal(info, info2)
开发者ID:mne-tools,项目名称:mne-python,代码行数:51,代码来源:test_meas_info.py


示例7: test_regularized_csp

def test_regularized_csp():
    """Test Common Spatial Patterns algorithm using regularized covariance."""
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[1:13:3]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)
    epochs_data = epochs.get_data()
    n_channels = epochs_data.shape[1]

    n_components = 3
    reg_cov = [None, 0.05, 'ledoit_wolf', 'oas']
    for reg in reg_cov:
        csp = CSP(n_components=n_components, reg=reg, norm_trace=False)
        csp.fit(epochs_data, epochs.events[:, -1])
        y = epochs.events[:, -1]
        X = csp.fit_transform(epochs_data, y)
        assert_true(csp.filters_.shape == (n_channels, n_channels))
        assert_true(csp.patterns_.shape == (n_channels, n_channels))
        assert_array_almost_equal(csp.fit(epochs_data, y).
                                  transform(epochs_data), X)

        # test init exception
        assert_raises(ValueError, csp.fit, epochs_data,
                      np.zeros_like(epochs.events))
        assert_raises(ValueError, csp.fit, epochs, y)
        assert_raises(ValueError, csp.transform, epochs)

        csp.n_components = n_components
        sources = csp.transform(epochs_data)
        assert_true(sources.shape[1] == n_components)
开发者ID:Hugo-W,项目名称:mne-python,代码行数:33,代码来源:test_csp.py


示例8: test_psdestimator

def test_psdestimator():
    """Test methods of PSDEstimator
    """
    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(
        raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads')
    picks = picks[1:13:3]
    epochs = Epochs(
        raw,
        events,
        event_id,
        tmin,
        tmax,
        picks=picks,
        baseline=(None, 0),
        preload=True)
    epochs_data = epochs.get_data()
    psd = PSDEstimator(2 * np.pi, 0, np.inf)
    y = epochs.events[:, -1]
    X = psd.fit_transform(epochs_data, y)

    assert_true(X.shape[0] == epochs_data.shape[0])
    assert_array_equal(psd.fit(epochs_data, y).transform(epochs_data), X)

    # Test init exception
    assert_raises(ValueError, psd.fit, epochs, y)
    assert_raises(ValueError, psd.transform, epochs, y)
开发者ID:vwyart,项目名称:mne-python,代码行数:28,代码来源:test_transformer.py


示例9: _get_data

def _get_data(tmin=-0.2, tmax=0.5, event_id=dict(aud_l=1, vis_l=3),
              event_id_gen=dict(aud_l=2, vis_l=4), test_times=None):
    """Aux function for testing GAT viz."""
    with warnings.catch_warnings(record=True):  # deprecated
        gat = GeneralizationAcrossTime()
    raw = read_raw_fif(raw_fname)
    raw.add_proj([], remove_existing=True)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg='mag', stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[1:13:3]
    decim = 30
    # Test on time generalization within one condition
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        preload=True, decim=decim)
    epochs_list = [epochs[k] for k in event_id]
    equalize_epoch_counts(epochs_list)
    epochs = concatenate_epochs(epochs_list)

    # Test default running
    with warnings.catch_warnings(record=True):  # deprecated
        gat = GeneralizationAcrossTime(test_times=test_times)
    gat.fit(epochs)
    gat.score(epochs)
    return gat
开发者ID:nfoti,项目名称:mne-python,代码行数:26,代码来源:test_decoding.py


示例10: test_unsupervised_spatial_filter

def test_unsupervised_spatial_filter():
    """Test unsupervised spatial filter."""
    from sklearn.decomposition import PCA
    from sklearn.kernel_ridge import KernelRidge
    raw = io.read_raw_fif(raw_fname)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[1:13:3]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False)

    # Test estimator
    assert_raises(ValueError, UnsupervisedSpatialFilter, KernelRidge(2))

    # Test fit
    X = epochs.get_data()
    n_components = 4
    usf = UnsupervisedSpatialFilter(PCA(n_components))
    usf.fit(X)
    usf1 = UnsupervisedSpatialFilter(PCA(n_components))

    # test transform
    assert_equal(usf.transform(X).ndim, 3)
    # test fit_transform
    assert_array_almost_equal(usf.transform(X), usf1.fit_transform(X))
    # assert shape
    assert_equal(usf.transform(X).shape[1], n_components)

    # Test with average param
    usf = UnsupervisedSpatialFilter(PCA(4), average=True)
    usf.fit_transform(X)
    assert_raises(ValueError, UnsupervisedSpatialFilter, PCA(4), 2)
开发者ID:Hugo-W,项目名称:mne-python,代码行数:33,代码来源:test_transformer.py


示例11: _get_data

def _get_data():
    # Read raw data
    raw = Raw(raw_fname)
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set picks
    picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                                stim=False, exclude='bads')

    # Read several epochs
    event_id, tmin, tmax = 1, -0.2, 0.5
    events = mne.read_events(event_fname)[0:100]
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12))

    # Create an epochs object with one epoch and one channel of artificial data
    event_id, tmin, tmax = 1, 0.0, 1.0
    epochs_sin = mne.Epochs(raw, events[0:5], event_id, tmin, tmax, proj=True,
                            picks=[0], baseline=(None, 0), preload=True,
                            reject=dict(grad=4000e-13))
    freq = 10
    epochs_sin._data = np.sin(2 * np.pi * freq
                              * epochs_sin.times)[None, None, :]
    return epochs, epochs_sin
开发者ID:anywave,项目名称:aw-export-fif,代码行数:25,代码来源:test_csd.py


示例12: test_n_components_and_max_pca_components_none

def test_n_components_and_max_pca_components_none(method):
    """Test n_components and max_pca_components=None."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    max_pca_components = None
    n_components = None
    random_state = 12345

    tempdir = _TempDir()
    output_fname = op.join(tempdir, 'test_ica-ica.fif')
    ica = ICA(max_pca_components=max_pca_components, method=method,
              n_components=n_components, random_state=random_state)
    with pytest.warns(None):  # convergence
        ica.fit(epochs)
    ica.save(output_fname)

    ica = read_ica(output_fname)

    # ICA.fit() replaced max_pca_components, which was previously None,
    # with the appropriate integer value.
    assert_equal(ica.max_pca_components, epochs.info['nchan'])
    assert ica.n_components is None
开发者ID:Eric89GXL,项目名称:mne-python,代码行数:27,代码来源:test_ica.py


示例13: test_continuous_regression_no_overlap

def test_continuous_regression_no_overlap():
    """Test regression without overlap correction, on real data."""
    tmin, tmax = -.1, .5

    raw = mne.io.read_raw_fif(raw_fname, preload=True)
    raw.apply_proj()
    events = mne.read_events(event_fname)
    event_id = dict(audio_l=1, audio_r=2)

    raw = raw.pick_channels(raw.ch_names[:2])

    epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
                        baseline=None, reject=None)

    revokeds = linear_regression_raw(raw, events, event_id,
                                     tmin=tmin, tmax=tmax,
                                     reject=None)

    # Check that evokeds and revokeds are nearly equivalent
    for cond in event_id.keys():
        assert_allclose(revokeds[cond].data,
                        epochs[cond].average().data, rtol=1e-15)

    # Test events that will lead to "duplicate" errors
    old_latency = events[1, 0]
    events[1, 0] = events[0, 0]
    assert_raises(ValueError, linear_regression_raw,
                  raw, events, event_id, tmin, tmax)

    events[1, 0] = old_latency
    events[:, 0] = range(len(events))
    assert_raises(ValueError, linear_regression_raw, raw,
                  events, event_id, tmin, tmax, decim=2)
开发者ID:nfoti,项目名称:mne-python,代码行数:33,代码来源:test_regression.py


示例14: test_epochs_vectorizer

def test_epochs_vectorizer():
    """Test methods of EpochsVectorizer
    """
    raw = io.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude="bads")
    picks = picks[1:13:3]
    with warnings.catch_warnings(record=True):
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True)
    epochs_data = epochs.get_data()
    vector = EpochsVectorizer(epochs.info)
    y = epochs.events[:, -1]
    X = vector.fit_transform(epochs_data, y)

    # Check data dimensions
    assert_true(X.shape[0] == epochs_data.shape[0])
    assert_true(X.shape[1] == epochs_data.shape[1] * epochs_data.shape[2])

    assert_array_equal(vector.fit(epochs_data, y).transform(epochs_data), X)

    # Check if data is preserved
    n_times = epochs_data.shape[2]
    assert_array_equal(epochs_data[0, 0, 0:n_times], X[0, 0:n_times])

    # Check inverse transform
    Xi = vector.inverse_transform(X, y)
    assert_true(Xi.shape[0] == epochs_data.shape[0])
    assert_true(Xi.shape[1] == epochs_data.shape[1])
    assert_array_equal(epochs_data[0, 0, 0:n_times], Xi[0, 0, 0:n_times])

    # Test init exception
    assert_raises(ValueError, vector.fit, epochs, y)
    assert_raises(ValueError, vector.transform, epochs, y)
开发者ID:rajul,项目名称:mne-python,代码行数:33,代码来源:test_transformer.py


示例15: _get_data

def _get_data():
    raw = io.Raw(raw_fname, add_eeg_ref=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, eeg=True, stim=True,
                       ecg=True, eog=True, include=['STI 014'],
                       exclude='bads')
    return raw, events, picks
开发者ID:MadsJensen,项目名称:mne-python,代码行数:7,代码来源:test_epochs.py


示例16: _load_data

def _load_data():
    """Helper function to load data."""
    # It is more memory efficient to load data in a separate
    # function so it's loaded on-demand
    raw = io.read_raw_fif(raw_fname, add_eeg_ref=False)
    events = read_events(event_name)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude=[])
    # select every second channel for faster speed but compensate by using
    # mode='accurate'.
    picks_meg = pick_types(raw.info, meg=True, eeg=False, exclude=[])[1::2]
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=[])

    with warnings.catch_warnings(record=True):  # proj
        epochs_eeg = Epochs(raw, events, event_id, tmin, tmax, picks=picks_eeg, preload=True, reject=dict(eeg=80e-6))
        epochs_meg = Epochs(
            raw, events, event_id, tmin, tmax, picks=picks_meg, preload=True, reject=dict(grad=1000e-12, mag=4e-12)
        )
        epochs = Epochs(
            raw,
            events,
            event_id,
            tmin,
            tmax,
            picks=picks,
            preload=True,
            reject=dict(eeg=80e-6, grad=1000e-12, mag=4e-12),
        )
    return raw, epochs, epochs_eeg, epochs_meg
开发者ID:mmagnuski,项目名称:mne-python,代码行数:28,代码来源:test_interpolation.py


示例17: test_stockwell_api

def test_stockwell_api():
    """Test stockwell functions."""
    raw = read_raw_fif(raw_fname)
    event_id, tmin, tmax = 1, -0.2, 0.5
    event_name = op.join(base_dir, 'test-eve.fif')
    events = read_events(event_name)
    epochs = Epochs(raw, events,  # XXX pick 2 has epochs of zeros.
                    event_id, tmin, tmax, picks=[0, 1, 3])
    for fmin, fmax in [(None, 50), (5, 50), (5, None)]:
        with warnings.catch_warnings(record=True):  # zero papdding
            power, itc = tfr_stockwell(epochs, fmin=fmin, fmax=fmax,
                                       return_itc=True)
        if fmax is not None:
            assert_true(power.freqs.max() <= fmax)
        with warnings.catch_warnings(record=True):  # padding
            power_evoked = tfr_stockwell(epochs.average(), fmin=fmin,
                                         fmax=fmax, return_itc=False)
        # for multitaper these don't necessarily match, but they seem to
        # for stockwell... if this fails, this maybe could be changed
        # just to check the shape
        assert_array_almost_equal(power_evoked.data, power.data)
    assert_true(isinstance(power, AverageTFR))
    assert_true(isinstance(itc, AverageTFR))
    assert_equal(power.data.shape, itc.data.shape)
    assert_true(itc.data.min() >= 0.0)
    assert_true(itc.data.max() <= 1.0)
    assert_true(np.log(power.data.max()) * 20 <= 0.0)
    assert_true(np.log(power.data.max()) * 20 <= 0.0)
开发者ID:HSMin,项目名称:mne-python,代码行数:28,代码来源:test_stockwell.py


示例18: _get_data

def _get_data():
    raw = io.read_raw_fif(raw_fname, add_eeg_ref=False, verbose=False,
                          preload=True)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=False, eeg=True, stim=False,
                       ecg=False, eog=False, exclude='bads')[::8]
    return raw, events, picks
开发者ID:EmanuelaLiaci,项目名称:mne-python,代码行数:7,代码来源:test_xdawn.py


示例19: test_find_events

def test_find_events():
    """Test find events in raw file
    """
    events = mne.read_events(fname)
    raw = mne.fiff.Raw(raw_fname)
    events2 = mne.find_events(raw)
    assert_array_almost_equal(events, events2)
开发者ID:emilyruzich,项目名称:mne-python,代码行数:7,代码来源:test_event.py


示例20: test_concatenatechannels

def test_concatenatechannels():
    """Test methods of ConcatenateChannels
    """
    raw = fiff.Raw(raw_fname, preload=False)
    events = read_events(event_name)
    picks = fiff.pick_types(raw.info, meg=True, stim=False, ecg=False,
                            eog=False, exclude='bads')
    picks = picks[1:13:3]
    with warnings.catch_warnings(record=True) as w:
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True)
    epochs_data = epochs.get_data()
    concat = ConcatenateChannels(epochs.info)
    y = epochs.events[:, -1]
    X = concat.fit_transform(epochs_data, y)

    # Check data dimensions
    assert_true(X.shape[0] == epochs_data.shape[0])
    assert_true(X.shape[1] == epochs_data.shape[1] * epochs_data.shape[2])

    assert_array_equal(concat.fit(epochs_data, y).transform(epochs_data), X)

    # Check if data is preserved
    n_times = epochs_data.shape[2]
    assert_array_equal(epochs_data[0, 0, 0:n_times], X[0, 0:n_times])

    # Test init exception
    assert_raises(ValueError, concat.fit, epochs, y)
    assert_raises(ValueError, concat.transform, epochs, y)
开发者ID:Anevar,项目名称:mne-python,代码行数:29,代码来源:test_classifier.py



注:本文中的mne.read_events函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mne.read_evokeds函数代码示例发布时间:2022-05-27
下一篇:
Python mne.read_epochs函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap