• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python label.label_sign_flip函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mne.label.label_sign_flip函数的典型用法代码示例。如果您正苦于以下问题:Python label_sign_flip函数的具体用法?Python label_sign_flip怎么用?Python label_sign_flip使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了label_sign_flip函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_apply_mne_inverse_epochs

def test_apply_mne_inverse_epochs():
    """Test MNE with precomputed inverse operator on Epochs
    """
    event_id, tmin, tmax = 1, -0.2, 0.5

    picks = fiff.pick_types(raw.info, meg=True, eeg=False, stim=True,
                            ecg=True, eog=True, include=['STI 014'])
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
    flat = dict(grad=1e-15, mag=1e-15)

    events = read_events(fname_event)[:15]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject, flat=flat)
    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                label=label, pick_normal=True)

    assert_true(len(stcs) == 4)
    assert_true(3 < stcs[0].data.max() < 10)

    data = sum(stc.data for stc in stcs) / len(stcs)
    flip = label_sign_flip(label, inverse_operator['src'])

    label_mean = np.mean(data, axis=0)
    label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)

    assert_true(label_mean.max() < label_mean_flip.max())
开发者ID:sudo-nim,项目名称:mne-python,代码行数:26,代码来源:test_inverse.py


示例2: test_apply_mne_inverse_epochs

def test_apply_mne_inverse_epochs():
    """Test MNE with precomputed inverse operator on Epochs
    """
    inverse_operator = read_inverse_operator(fname_inv)
    label_lh = read_label(fname_label % 'Aud-lh')
    label_rh = read_label(fname_label % 'Aud-rh')
    event_id, tmin, tmax = 1, -0.2, 0.5
    raw = fiff.Raw(fname_raw)

    picks = fiff.pick_types(raw.info, meg=True, eeg=False, stim=True,
                            ecg=True, eog=True, include=['STI 014'],
                            exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
    flat = dict(grad=1e-15, mag=1e-15)

    events = read_events(fname_event)[:15]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject, flat=flat)
    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                label=label_lh, pick_ori="normal")

    assert_true(len(stcs) == 4)
    assert_true(3 < stcs[0].data.max() < 10)
    assert_true(stcs[0].subject == 'sample')

    data = sum(stc.data for stc in stcs) / len(stcs)
    flip = label_sign_flip(label_lh, inverse_operator['src'])

    label_mean = np.mean(data, axis=0)
    label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)

    assert_true(label_mean.max() < label_mean_flip.max())

    # test extracting a BiHemiLabel
    stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_rh, pick_ori="normal")
    stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_lh + label_rh,
                                   pick_ori="normal")

    n_lh = len(stcs[0].data)
    assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
    assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])

    # test without using a label (so delayed computation is used)
    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                pick_ori="normal")
    assert_true(stcs[0].subject == 'sample')
    label_stc = stcs[0].in_label(label_rh)
    assert_true(label_stc.subject == 'sample')
    assert_array_almost_equal(stcs_rh[0].data, label_stc.data)
开发者ID:Anevar,项目名称:mne-python,代码行数:51,代码来源:test_inverse.py


示例3: test_label_sign_flip

def test_label_sign_flip():
    """Test label sign flip computation."""
    src = read_source_spaces(src_fname)
    label = Label(vertices=src[0]['vertno'][:5], hemi='lh')
    src[0]['nn'][label.vertices] = np.array(
        [[1., 0., 0.],
         [0.,  1., 0.],
         [0,  0, 1.],
         [1. / np.sqrt(2), 1. / np.sqrt(2), 0.],
         [1. / np.sqrt(2), 1. / np.sqrt(2), 0.]])
    known_flips = np.array([1, 1, np.nan, 1, 1])
    idx = [0, 1, 3, 4]  # indices that are usable (third row is orthognoal)
    flip = label_sign_flip(label, src)
    assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
    bi_label = label + Label(vertices=src[1]['vertno'][:5], hemi='rh')
    src[1]['nn'][src[1]['vertno'][:5]] = -src[0]['nn'][label.vertices]
    flip = label_sign_flip(bi_label, src)
    known_flips = np.array([1, 1, np.nan, 1, 1, 1, 1, np.nan, 1, 1])
    idx = [0, 1, 3, 4, 5, 6, 8, 9]
    assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), 0.)
    src[1]['nn'][src[1]['vertno'][:5]] *= -1
    flip = label_sign_flip(bi_label, src)
    assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx))
开发者ID:kambysese,项目名称:mne-python,代码行数:23,代码来源:test_label.py


示例4: test_label_sign_flip

def test_label_sign_flip():
    src = read_source_spaces(src_fname)
    label = Label(vertices=src[0]['vertno'][:5], hemi='lh')
    src[0]['nn'][label.vertices] = np.array(
        [[1., 0., 0.],
         [0.,  1., 0.],
         [0,  0, 1.],
         [1. / np.sqrt(2), 1. / np.sqrt(2), 0.],
         [1. / np.sqrt(2), 1. / np.sqrt(2), 0.]])
    known_flips = np.array([1, 1, np.nan, 1, 1])
    idx = [0, 1, 3, 4]  # indices that are usable (third row is orthognoal)
    flip = label_sign_flip(label, src)
    # Need the abs here because the direction is arbitrary
    assert_array_almost_equal(np.abs(np.dot(flip[idx], known_flips[idx])),
                              len(idx))
开发者ID:kingjr,项目名称:decoding_challenge_cortana_2016_3rd,代码行数:15,代码来源:test_label.py


示例5: test_apply_mne_inverse_epochs

    def test_apply_mne_inverse_epochs(self):
        """Test MNE with precomputed inverse operator on Epochs
        """
        event_id, tmin, tmax = 1, -0.2, 0.5

        picks = fiff.pick_types(raw.info, meg=True, eeg=False, stim=True,
                                ecg=True, eog=True, include=['STI 014'],
                                exclude='bads')
        reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
        flat = dict(grad=1e-15, mag=1e-15)

        events = read_events(fname_event)[:15]
        epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), reject=reject, flat=flat)
        stcs = apply_inverse_epochs(epochs, self.inv_op, lambda2, "dSPM",
                                    label=label_lh, pick_normal=True)

        assert_true(len(stcs) == 4)
        assert_true(3 < stcs[0].data.max() < 10)

        data = sum(stc.data for stc in stcs) / len(stcs)
        flip = label_sign_flip(label_lh, self.inv_op['src'])

        label_mean = np.mean(data, axis=0)
        label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)

        assert_true(label_mean.max() < label_mean_flip.max())

        # test extracting a BiHemiLabel
        stcs_rh = apply_inverse_epochs(epochs, self.inv_op, lambda2, "dSPM",
                                       label=label_rh, pick_normal=True)
        stcs_bh = apply_inverse_epochs(epochs, self.inv_op, lambda2, "dSPM",
                                       label=label_lh + label_rh,
                                       pick_normal=True)

        n_lh = len(stcs[0].data)
        assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
        assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])
开发者ID:mshamalainen,项目名称:mne-python,代码行数:38,代码来源:test_inverse.py


示例6: test_extract_label_time_course

def test_extract_label_time_course():
    """Test extraction of label time courses from stc
    """
    n_stcs = 3
    n_times = 50

    src = read_inverse_operator(fname_inv)['src']
    vertices = [src[0]['vertno'], src[1]['vertno']]
    n_verts = len(vertices[0]) + len(vertices[1])

    # get some labels
    labels_lh, _ = labels_from_parc('sample', hemi='lh',
                                    subjects_dir=subjects_dir)
    labels_rh, _ = labels_from_parc('sample', hemi='rh',
                                    subjects_dir=subjects_dir)
    labels = list()
    labels.extend(labels_lh[:5])
    labels.extend(labels_rh[:4])

    n_labels = len(labels)

    label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))

    # compute the mean with sign flip
    label_means_flipped = np.zeros_like(label_means)
    for i, label in enumerate(labels):
        label_means_flipped[i] = i * np.mean(label_sign_flip(label, src))

    # generate some stc's with known data
    stcs = list()
    for i in range(n_stcs):
        data = np.zeros((n_verts, n_times))
        # set the value of the stc within each label
        for j, label in enumerate(labels):
            if label.hemi == 'lh':
                idx = np.intersect1d(vertices[0], label.vertices)
                idx = np.searchsorted(vertices[0], idx)
            elif label.hemi == 'rh':
                idx = np.intersect1d(vertices[1], label.vertices)
                idx = len(vertices[0]) + np.searchsorted(vertices[1], idx)
            data[idx] = label_means[j]

        this_stc = SourceEstimate(data, vertices, 0, 1)
        stcs.append(this_stc)

    # test some invalid inputs
    assert_raises(ValueError, extract_label_time_course, stcs, labels,
                  src, mode='notamode')

    # have an empty label
    empty_label = labels[0].copy()
    empty_label.vertices += 1000000
    assert_raises(ValueError, extract_label_time_course, stcs, empty_label,
                  src, mode='mean')

    # but this works:
    tc = extract_label_time_course(stcs, empty_label, src, mode='mean',
                                   allow_empty=True)
    for arr in tc:
        assert_true(arr.shape == (1, n_times))
        assert_array_equal(arr, np.zeros((1, n_times)))

    # test the different modes
    modes = ['mean', 'mean_flip', 'pca_flip']

    for mode in modes:
        label_tc = extract_label_time_course(stcs, labels, src, mode=mode)
        label_tc_method = [stc.extract_label_time_course(labels, src,
                           mode=mode) for stc in stcs]
        assert_true(len(label_tc) == n_stcs)
        assert_true(len(label_tc_method) == n_stcs)
        for tc1, tc2 in zip(label_tc, label_tc_method):
            assert_true(tc1.shape == (n_labels, n_times))
            assert_true(tc2.shape == (n_labels, n_times))
            assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16))
            if mode == 'mean':
                assert_array_almost_equal(tc1, label_means)
            if mode == 'mean_flip':
                assert_array_almost_equal(tc1, label_means_flipped)
开发者ID:mshamalainen,项目名称:mne-python,代码行数:79,代码来源:test_source_estimate.py


示例7: test_apply_mne_inverse_epochs

def test_apply_mne_inverse_epochs():
    """Test MNE with precomputed inverse operator on Epochs."""
    inverse_operator = read_inverse_operator(fname_full)
    label_lh = read_label(fname_label % 'Aud-lh')
    label_rh = read_label(fname_label % 'Aud-rh')
    event_id, tmin, tmax = 1, -0.2, 0.5
    raw = read_raw_fif(fname_raw)

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True, ecg=True,
                       eog=True, include=['STI 014'], exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
    flat = dict(grad=1e-15, mag=1e-15)

    events = read_events(fname_event)[:15]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject, flat=flat)

    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2,
                                                method="dSPM")
    for pick_ori in [None, "normal", "vector"]:
        stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                    label=label_lh, pick_ori=pick_ori)
        stcs2 = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                     label=label_lh, pick_ori=pick_ori,
                                     prepared=True)
        # test if using prepared and not prepared inverse operator give the
        # same result
        assert_array_almost_equal(stcs[0].data, stcs2[0].data)
        assert_array_almost_equal(stcs[0].times, stcs2[0].times)

        assert (len(stcs) == 2)
        assert (3 < stcs[0].data.max() < 10)
        assert (stcs[0].subject == 'sample')
    inverse_operator = read_inverse_operator(fname_full)

    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                label=label_lh, pick_ori='normal')
    data = sum(stc.data for stc in stcs) / len(stcs)
    flip = label_sign_flip(label_lh, inverse_operator['src'])

    label_mean = np.mean(data, axis=0)
    label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)

    assert (label_mean.max() < label_mean_flip.max())

    # test extracting a BiHemiLabel
    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2,
                                                method="dSPM")
    stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_rh, pick_ori="normal",
                                   prepared=True)
    stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_lh + label_rh,
                                   pick_ori="normal",
                                   prepared=True)

    n_lh = len(stcs[0].data)
    assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
    assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])

    # test without using a label (so delayed computation is used)
    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                pick_ori="normal", prepared=True)
    assert (stcs[0].subject == 'sample')
    label_stc = stcs[0].in_label(label_rh)
    assert (label_stc.subject == 'sample')
    assert_array_almost_equal(stcs_rh[0].data, label_stc.data)
开发者ID:teonbrooks,项目名称:mne-python,代码行数:69,代码来源:test_inverse.py



注:本文中的mne.label.label_sign_flip函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python label.read_label函数代码示例发布时间:2022-05-27
下一篇:
Python test_raw._test_raw_reader函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap