• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python mpmath.fdiv函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mpmath.fdiv函数的典型用法代码示例。如果您正苦于以下问题:Python fdiv函数的具体用法?Python fdiv怎么用?Python fdiv使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了fdiv函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: getEclipseTotality

def getEclipseTotality( body1, body2, location, date ):
    '''Returns the angular size of an astronomical object in radians.'''
    if isinstance( location, str ):
        location = getLocation( location )

    if not isinstance( body1, RPNAstronomicalObject ) or not isinstance( body2, RPNAstronomicalObject ) and \
       not isinstance( location, RPNLocation ) or not isinstance( date, RPNDateTime ):
        raise ValueError( 'expected two astronomical objects, a location and a date-time' )

    separation = body1.getAngularSeparation( body2, location, date ).value

    radius1 = body1.getAngularSize( ).value
    radius2 = body2.getAngularSize( ).value

    if separation > fadd( radius1, radius2 ):
        return 0

    distance1 = body1.getDistanceFromEarth( date )
    distance2 = body2.getDistanceFromEarth( date )

    area1 = fmul( pi, power( radius1, 2 ) )
    area2 = fmul( pi, power( radius2, 2 ) )

    area_of_intersection = fadd( getCircleIntersectionTerm( radius1, radius2, separation ),
                                 getCircleIntersectionTerm( radius2, radius1, separation ) )

    if distance1 > distance2:
        result = fdiv( area_of_intersection, area1 )
    else:
        result = fdiv( area_of_intersection, area2 )

    if result > 1:
        return 1
    else:
        return result
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:35,代码来源:rpnAstronomy.py


示例2: cont_frac_expansion_sqrt

def cont_frac_expansion_sqrt(n):
	"""
	n is NOT square
	e.g. 2 --> (1,2) (2 repeats)
	"""
	if is_square(n):
		return 0
	seq = []
	r = mp.sqrt(n,prec=1000) # DOESNT MATTER?
	a = floor(r)
	fls = [r]
	seq.append(int(a))
	r = mp.fdiv(1.,mp.fsub(r,a,prec=1000),prec=1000)
	a = floor(r)
	fls.append(r)
	seq.append(int(a))
	r = mp.fdiv(1.,mp.fsub(r,a,prec=1000),prec=1000) #THESE TWO MATTER!!!
	a = floor(r)
	fls.append(r)
	seq.append(int(a))
	while not close(r, fls[1]):
		r = mp.fdiv(1.,mp.fsub(r,a,prec=1000),prec=1000) #THESE TWO MATTER!!!
		a = floor(r)
		fls.append(r)
		seq.append(int(a))
	# print seq
	seq.pop()
	return seq
开发者ID:domspad,项目名称:euler,代码行数:28,代码来源:p66.py


示例3: OLDgetPartitionNumber

def OLDgetPartitionNumber( n ):
    if n < 0:
        return 0

    if n < 2:
        return 1

    result = mpmathify( 0 )

    for k in arange( 1, n + 1 ):
        #n1 = n - k * ( 3 * k - 1 ) / 2
        n1 = fsub( n, fdiv( fmul( k, fsub( fmul( 3, k ), 1 ) ), 2 ) )
        #n2 = n - k * ( 3 * k + 1 ) / 2
        n2 = fsub( n, fdiv( fmul( k, fadd( fmul( 3, k ), 1 ) ), 2 ) )

        result = fadd( result, fmul( power( -1, fadd( k, 1 ) ), fadd( getPartitionNumber( n1 ), getPartitionNumber( n2 ) ) ) )

        if n1 <= 0:
            break

    #old = NOT_QUITE_AS_OLDgetPartitionNumber( n )
    #
    #if ( old != result ):
    #    raise ValueError( "It's broke." )

    return result
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:26,代码来源:rpnCombinatorics.py


示例4: getNthKFibonacciNumber

def getNthKFibonacciNumber( n, k ):
    if real( n ) < 0:
        raise ValueError( 'non-negative argument expected' )

    if real( k ) < 2:
        raise ValueError( 'argument <= 2 expected' )

    if n < k - 1:
        return 0

    nth = int( n ) + 4

    precision = int( fdiv( fmul( n, k ), 8 ) )

    if ( mp.dps < precision ):
        mp.dps = precision

    poly = [ 1 ]
    poly.extend( [ -1 ] * int( k ) )

    roots = polyroots( poly )
    nthPoly = getNthFibonacciPolynomial( k )

    result = 0
    exponent = fsum( [ nth, fneg( k ), -2 ] )

    for i in range( 0, int( k ) ):
        result += fdiv( power( roots[ i ], exponent ), polyval( nthPoly, roots[ i ] ) )

    return floor( fadd( re( result ), fdiv( 1, 2 ) ) )
开发者ID:flawr,项目名称:rpn,代码行数:30,代码来源:rpnNumberTheory.py


示例5: getInvertedBits

def getInvertedBits( n ):
    value = real_int( n )

    # determine how many groups of bits we will be looking at
    if value == 0:
        groupings = 1
    else:
        groupings = int( fadd( floor( fdiv( ( log( value, 2 ) ), g.bitwiseGroupSize ) ), 1 ) )

    placeValue = mpmathify( 1 << g.bitwiseGroupSize )
    multiplier = mpmathify( 1 )
    remaining = value

    result = mpmathify( 0 )

    for i in range( 0, groupings ):
        # Let's let Python do the actual inverting
        group = fmod( ~int( fmod( remaining, placeValue ) ), placeValue )

        result += fmul( group, multiplier )

        remaining = floor( fdiv( remaining, placeValue ) )
        multiplier = fmul( multiplier, placeValue )

    return result
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:25,代码来源:rpnComputer.py


示例6: getSkyLocation

def getSkyLocation( n, k ):
    if not isinstance( n, ephem.Body ) or not isinstance( k, RPNDateTime ):
        raise ValueError( '\'sky_location\' expects an astronomical object and a date-time' )

    n.compute( k.to( 'utc' ).format( ) )

    return [ fdiv( fmul( mpmathify( n.ra ), 180 ), pi ), fdiv( fmul( mpmathify( n.dec ), 180 ), pi ) ]
开发者ID:flawr,项目名称:rpn,代码行数:7,代码来源:rpnAstronomy.py


示例7: calculateDistance

def calculateDistance( measurement1, measurement2 ):
    validUnitTypes = [
        [ 'length', 'time' ],
        [ 'velocity', 'time' ],
        [ 'acceleration', 'time' ],
        [ 'jerk', 'time' ],
        [ 'jounce', 'time' ]
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'distance\' requires specific measurement types (see help)' )

    time = arguments[ 'time' ]

    if 'length' in arguments:
        distance = arguments[ 'length' ]
    elif 'acceleration' in arguments:
        # acceleration and time
        distance = getProduct( [ fdiv( 1, 2 ), arguments[ 'acceleration' ], time, time ] )
    elif 'jerk' in arguments:
        # jerk and time
        distance = calculateDistance( getProduct( [ fdiv( 1, 2 ), arguments[ 'jerk' ], time ] ), time )
    elif 'jounce' in arguments:
        # jounce and time
        distance = calculateDistance( getProduct( [ fdiv( 1, 2 ), arguments[ 'jounce' ], time ] ), time )
    else:
        # velocity and time
        distance = multiply( arguments[ 'velocity' ], time )

    return distance.convert( 'meter' )
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:32,代码来源:rpnPhysics.py


示例8: findCenteredPolygonalNumber

def findCenteredPolygonalNumber( n, k ):
    if real_int( k ) < 3:
        raise ValueError( 'the number of sides of the polygon cannot be less than 3,' )

    s = fdiv( k, 2 )

    return nint( fdiv( fadd( sqrt( s ),
                       sqrt( fsum( [ fmul( 4, real( n ) ), s, -4 ] ) ) ), fmul( 2, sqrt( s ) ) ) )
开发者ID:flawr,项目名称:rpn,代码行数:8,代码来源:rpnPolytope.py


示例9: getNthMotzkinNumber

def getNthMotzkinNumber( n ):
    result = 0

    for j in arange( 0, floor( fdiv( real( n ), 3 ) ) + 1 ):
        result = fadd( result, fprod( [ power( -1, j ), binomial( fadd( n, 1 ), j ),
                                      binomial( fsub( fmul( 2, n ), fmul( 3, j ) ), n ) ] ) )

    return fdiv( result, fadd( n, 1 ) )
开发者ID:flawr,项目名称:rpn,代码行数:8,代码来源:rpnCombinatorics.py


示例10: getNthNonagonalTriangularNumber

def getNthNonagonalTriangularNumber( n ):
    a = fmul( 3, sqrt( 7 ) )
    b = fadd( 8, a )
    c = fsub( 8, a )

    return nint( fsum( [ fdiv( 5, 14 ),
                         fmul( fdiv( 9, 28 ), fadd( power( b, real_int( n ) ), power( c, n ) ) ),
                         fprod( [ fdiv( 3, 28 ),
                                  sqrt( 7 ),
                                  fsub( power( b, n ), power( c, n ) ) ] ) ] ) )
开发者ID:flawr,项目名称:rpn,代码行数:10,代码来源:rpnPolytope.py


示例11: getAngularSize

    def getAngularSize( self, location=None, date=None ):
        if location and date:
            if isinstance( location, str ):
                location = getLocation( location )

            location.observer.date = date.to( 'utc' ).format( )
            self.object.compute( location.observer )

        # I have no idea why size seems to return the value in arcseconds... that
        # goes against the pyephem documentation that it always uses radians for angles.
        return RPNMeasurement( mpmathify( fdiv( fmul( fdiv( self.object.size, 3600 ), pi ), 180 ) ), 'radian' )
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:11,代码来源:rpnAstronomy.py


示例12: expandDataUnits

def expandDataUnits( ):
    # expand data measurements for all prefixes
    newConversions = { }

    for dataUnit in dataUnits:
        unitInfo = unitOperators[ dataUnit ]

        for prefix in dataPrefixes:
            newName = prefix[ 0 ] + dataUnit

            # constuct unit operator info
            helpText = '\n\'Using the standard SI prefixes, ' + newName + '\' is the equivalent\nof ' + \
                       '{:,}'.format( 10 ** prefix[ 2 ] ) + ' times the value of \'' + dataUnit + \
                       '\'.\n\nPlease see the help entry for \'' + dataUnit + '\' for more information.'

            if unitInfo.abbrev:
                newAbbrev = prefix[ 0 ] + unitInfo.abbrev
            else:
                newAbbrev = ''

            unitOperators[ newName ] = \
                RPNUnitInfo( unitInfo.unitType, prefix[ 0 ] + unitInfo.plural,
                             newAbbrev, [ ], unitInfo.categories, helpText, True )

            # create new conversions
            newConversion = power( 10, mpmathify( prefix[ 2 ] ) )
            newConversions[ ( newName, dataUnit ) ] = newConversion
            newConversion = fdiv( 1, newConversion )
            newConversions[ ( dataUnit, newName ) ] = newConversion

        for prefix in binaryPrefixes:
            newName = prefix[ 0 ] + dataUnit

            # constuct unit operator info
            helpText = '\n\'Using the binary data size prefixes, ' + newName + '\' is the equivalent\nof 2^' + \
                       str( prefix[ 2 ] ) + ' times the value of \'' + dataUnit + \
                       '\'.\n\nPlease see the help entry for \'' + dataUnit + '\' for more information.'

            if unitInfo.abbrev:
                newAbbrev = prefix[ 0 ] + unitInfo.abbrev
            else:
                newAbbrev = ''

            unitOperators[ newName ] = \
                RPNUnitInfo( unitInfo.unitType, prefix[ 0 ] + unitInfo.plural,
                             newAbbrev, [ ], unitInfo.categories, helpText, True )

            # create new conversions
            newConversion = power( 2, mpmathify( prefix[ 2 ] ) )
            newConversions[ ( newName, dataUnit ) ] = newConversion
            newConversion = fdiv( 1, newConversion )
            newConversions[ ( dataUnit, newName ) ] = newConversion

    return newConversions
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:54,代码来源:makeUnits.py


示例13: _crt

def _crt( a, b, m, n ):
    d = getGCD( m, n )

    if fmod( fsub( a, b ), d ) != 0:
        return None

    x = floor( fdiv( m, d ) )
    y = floor( fdiv( n, d ) )
    z = floor( fdiv( fmul( m, n ), d ) )
    p, q, r = getExtendedGCD( x, y )

    return fmod( fadd( fprod( [ b, p, x ] ), fprod( [ a, q, y ] ) ), z )
开发者ID:flawr,项目名称:rpn,代码行数:12,代码来源:rpnNumberTheory.py


示例14: getAntiprismSurfaceArea

def getAntiprismSurfaceArea( n, k ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the prism cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getAntiprismSurfaceArea( n, RPNMeasurement( real( k ), 'meter' ) )

    if k.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'antiprism_area\' argument 2 must be a length' )

    result = getProduct( [ fdiv( n, 2 ), fadd( cot( fdiv( pi, n ) ), sqrt( 3 ) ), getPower( k, 2 ) ] )
    return result.convert( 'meter^2' )
开发者ID:flawr,项目名称:rpn,代码行数:12,代码来源:rpnGeometry.py


示例15: getNthStern

def getNthStern( n ):
    """Return the nth number of Stern's diatomic series recursively"""
    if real_int( n ) < 0:
        raise ValueError( 'non-negative, real integer expected' )

    if n in [ 0, 1 ]:
        return n
    elif n % 2 == 0: # even
        return getNthStern( floor( fdiv( n, 2 ) ) )
    else:
        return fadd( getNthStern( floor( fdiv( fsub( n, 1 ), 2 ) ) ),
                     getNthStern( floor( fdiv( fadd( n, 1 ), 2 ) ) ) )
开发者ID:flawr,项目名称:rpn,代码行数:12,代码来源:rpnNumberTheory.py


示例16: isFriendly

def isFriendly( n ):
    first = True

    abundance = 0

    for i in n:
        if first:
            abundance = fdiv( getSigma( i ), i )
            first = False
        elif fdiv( getSigma( i ), i ) != abundance:
            return 0

    return 1
开发者ID:flawr,项目名称:rpn,代码行数:13,代码来源:rpnNumberTheory.py


示例17: getNthDecagonalCenteredSquareNumber

def getNthDecagonalCenteredSquareNumber( n ):
    sqrt10 = sqrt( 10 )

    dps = 7 * int( real_int( n ) )

    if mp.dps < dps:
        mp.dps = dps

    return nint( floor( fsum( [ fdiv( 1, 8 ),
                              fmul( fdiv( 7, 16 ), power( fsub( 721, fmul( 228, sqrt10 ) ), fsub( n, 1 ) ) ),
                              fmul( fmul( fdiv( 1, 8 ), power( fsub( 721, fmul( 228, sqrt10 ) ), fsub( n, 1 ) ) ), sqrt10 ),
                              fmul( fmul( fdiv( 1, 8 ), power( fadd( 721, fmul( 228, sqrt10 ) ), fsub( n, 1 ) ) ), sqrt10 ),
                              fmul( fdiv( 7, 16 ), power( fadd( 721, fmul( 228, sqrt10 ) ), fsub( n, 1 ) ) ) ] ) ) )
开发者ID:flawr,项目名称:rpn,代码行数:13,代码来源:rpnPolytope.py


示例18: getRegularPolygonArea

def getRegularPolygonArea( n, k ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the polygon cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getRegularPolygonArea( n, RPNMeasurement( real( k ), 'meter' ) )

    dimensions = k.getDimensions( )

    if dimensions != { 'length' : 1 }:
        raise ValueError( '\'polygon_area\' argument 2 must be a length' )

    return multiply( fdiv( n, fmul( 4, tan( fdiv( pi, n ) ) ) ), getPower( k, 2 ) ).convert( 'meter^2' )
开发者ID:flawr,项目名称:rpn,代码行数:13,代码来源:rpnGeometry.py


示例19: solveQuadraticPolynomial

def solveQuadraticPolynomial( a, b, c ):
    if a == 0:
        if b == 0:
            raise ValueError( 'invalid expression, no variable coefficients' )
        else:
            # linear equation, one root
            return [ fdiv( fneg( c ), b ) ]
    else:
        d = sqrt( fsub( power( b, 2 ), fmul( 4, fmul( a, c ) ) ) )

        x1 = fdiv( fadd( fneg( b ), d ), fmul( 2, a ) )
        x2 = fdiv( fsub( fneg( b ), d ), fmul( 2, a ) )

        return [ x1, x2 ]
开发者ID:flawr,项目名称:rpn,代码行数:14,代码来源:rpnPolynomials.py


示例20: getPartitionNumber

def getPartitionNumber( n ):
    '''
    This version is, um, less recursive than the original, which I've kept.
    The strategy is to create a list of the smaller partition numbers we need
    to calculate and then start calling them recursively, starting with the
    smallest.  This will minimize the number of recursions necessary, and in
    combination with caching values, will calculate practically any integer
    partition without the risk of a stack overflow.

    I can't help but think this is still grossly inefficient compared to what's
    possible.  It seems that using this algorithm, calculating any integer
    partition ends up necessitating calculating the integer partitions of
    every integer smaller than the original argument.
    '''
    debugPrint( 'partition', int( n ) )

    if real_int( n ) < 0:
        raise ValueError( 'non-negative argument expected' )
    elif n in ( 0, 1 ):
        return 1

    sign = 1
    i = 1
    k = 1

    estimate = log10( fdiv( power( e, fmul( pi, sqrt( fdiv( fmul( 2, n ), 3 ) ) ) ),
                            fprod( [ 4, n, sqrt( 3 ) ] ) ) )
    if mp.dps < estimate + 5:
        mp.dps = estimate + 5

    partitionList = [ ]
    signList = [ ]

    while n - k >= 0:
        partitionList.append( ( fsub( n, k ), sign ) )
        i += 1

        if i % 2:
            sign *= -1

        k = getNthGeneralizedPolygonalNumber( i, 5 )

    partitionList = partitionList[ : : -1 ]

    total = 0

    for partition, sign in partitionList:
        total = fadd( total, fmul( sign, getPartitionNumber( partition ) ) )

    return total
开发者ID:ConceptJunkie,项目名称:rpn,代码行数:50,代码来源:rpnCombinatorics.py



注:本文中的mpmath.fdiv函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mpmath.findroot函数代码示例发布时间:2022-05-27
下一篇:
Python mpmath.fadd函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap