• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python setup.UploadDirManager类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mrjob.setup.UploadDirManager的典型用法代码示例。如果您正苦于以下问题:Python UploadDirManager类的具体用法?Python UploadDirManager怎么用?Python UploadDirManager使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了UploadDirManager类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_unhide_files

 def test_unhide_files(self):
     # avoid giving names to files that Hadoop will ignore as input
     sd = UploadDirManager('hdfs:///')
     sd.add('.foo.log')
     sd.add('_bar.txt')
     self.assertEqual(sd.path_to_uri(),
                      {'.foo.log': 'hdfs:///foo.log',
                       '_bar.txt': 'hdfs:///bar.txt'})
开发者ID:Affirm,项目名称:mrjob,代码行数:8,代码来源:test_setup.py


示例2: __init__

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hdfs_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
            self._opts['hdfs_scratch_dir'], self._job_name))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hdfs_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hdfs_tmp_dir, 'output'))

        self._hadoop_log_dir = hadoop_log_dir(self._opts['hadoop_home'])

        # Running jobs via hadoop assigns a new timestamp to each job.
        # Running jobs via mrjob only adds steps.
        # Store both of these values to enable log parsing.
        self._job_timestamp = None
        self._start_step_num = 0

        # init hadoop version cache
        self._hadoop_version = None
开发者ID:Infolaber,项目名称:mrjob,代码行数:31,代码来源:hadoop.py


示例3: __init__

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hadoop_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
                self._opts['hadoop_tmp_dir'], self._job_key))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hadoop_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hadoop_tmp_dir, 'output'))

        # Track job and (YARN) application ID to enable log parsing
        self._application_id = None
        self._job_id = None

        # Keep track of where the hadoop streaming jar is
        self._hadoop_streaming_jar = self._opts['hadoop_streaming_jar']
        self._searched_for_hadoop_streaming_jar = False

        # Keep track of the status of each step that ran
        #
        # these are dictionaries with the same keys as
        # mrjob.logs.parse._parse_hadoop_streaming_log()
        self._steps_info = []
开发者ID:BeeswaxIO,项目名称:mrjob,代码行数:34,代码来源:hadoop.py


示例4: __init__

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hadoop_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
                self._opts['hadoop_tmp_dir'], self._job_key))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hadoop_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hadoop_tmp_dir, 'output'))

        # Track job and (YARN) application ID to enable log parsing
        self._application_id = None
        self._job_id = None

        # Keep track of where the hadoop streaming jar is
        self._hadoop_streaming_jar = self._opts['hadoop_streaming_jar']
        self._searched_for_hadoop_streaming_jar = False

        # List of dicts (one for each step) potentially containing
        # the keys 'history', 'step', and 'task' ('step' will always
        # be filled because it comes from the hadoop jar command output,
        # others will be filled as needed)
        self._log_interpretations = []
开发者ID:mmontagna,项目名称:mrjob,代码行数:34,代码来源:hadoop.py


示例5: test_dot_underscore

    def test_dot_underscore(self):
        sd = UploadDirManager('hdfs:///')

        sd.add('._')
        sd.add('._.txt')
        sd.add('._foo')

        self.assertEqual(sd.path_to_uri(),
                         {'._': 'hdfs:///1',
                          '._.txt': 'hdfs:///1.txt',
                          '._foo': 'hdfs:///foo'})
开发者ID:Affirm,项目名称:mrjob,代码行数:11,代码来源:test_setup.py


示例6: test_unknown_uri

 def test_unknown_uri(self):
     sd = UploadDirManager("hdfs:///")
     sd.add("foo/bar.py")
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "hdfs:///bar.py"})
     self.assertEqual(sd.uri("hdfs://host/path/to/bar.py"), "hdfs://host/path/to/bar.py")
     # checking unknown URIs doesn't add them
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "hdfs:///bar.py"})
开发者ID:irskep,项目名称:mrjob,代码行数:7,代码来源:test_setup.py


示例7: test_name_collision

 def test_name_collision(self):
     sd = UploadDirManager('hdfs:///')
     sd.add('foo/bar.py')
     sd.add('bar.py')
     self.assertEqual(sd.path_to_uri(),
                      {'foo/bar.py': 'hdfs:///bar.py',
                       'bar.py': 'hdfs:///bar-1.py'})
开发者ID:anirudhreddy92,项目名称:mrjob,代码行数:7,代码来源:test_setup.py


示例8: test_underscores_only

    def test_underscores_only(self):
        sd = UploadDirManager('hdfs:///')
        sd.add('_')
        sd.add('_.txt')

        self.assertEqual(sd.path_to_uri(),
                         {'_': 'hdfs:///1',
                          '_.txt': 'hdfs:///1.txt'})
开发者ID:Affirm,项目名称:mrjob,代码行数:8,代码来源:test_setup.py


示例9: test_unknown_uri

 def test_unknown_uri(self):
     sd = UploadDirManager('hdfs:///')
     sd.add('foo/bar.py')
     self.assertEqual(sd.path_to_uri(), {'foo/bar.py': 'hdfs:///bar.py'})
     self.assertEqual(sd.uri('hdfs://host/path/to/bar.py'),
                      'hdfs://host/path/to/bar.py')
     # checking unknown URIs doesn't add them
     self.assertEqual(sd.path_to_uri(), {'foo/bar.py': 'hdfs:///bar.py'})
开发者ID:anirudhreddy92,项目名称:mrjob,代码行数:8,代码来源:test_setup.py


示例10: __init__

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hdfs_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
            self._opts['hdfs_scratch_dir'], self._job_name))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hdfs_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hdfs_tmp_dir, 'output'))
开发者ID:duedil-ltd,项目名称:mrjob,代码行数:20,代码来源:hadoop.py


示例11: test_uri

 def test_uri(self):
     sd = UploadDirManager("hdfs:///")
     sd.add("foo/bar.py")
     self.assertEqual(sd.uri("foo/bar.py"), "hdfs:///bar.py")
开发者ID:irskep,项目名称:mrjob,代码行数:4,代码来源:test_setup.py


示例12: test_add_is_idempotent

 def test_add_is_idempotent(self):
     sd = UploadDirManager("hdfs:///")
     sd.add("foo/bar.py")
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "hdfs:///bar.py"})
     sd.add("foo/bar.py")
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "hdfs:///bar.py"})
开发者ID:irskep,项目名称:mrjob,代码行数:6,代码来源:test_setup.py


示例13: test_name_collision

 def test_name_collision(self):
     sd = UploadDirManager("hdfs:///")
     sd.add("foo/bar.py")
     sd.add("bar.py")
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "hdfs:///bar.py", "bar.py": "hdfs:///bar-1.py"})
开发者ID:irskep,项目名称:mrjob,代码行数:5,代码来源:test_setup.py


示例14: DataprocJobRunner

class DataprocJobRunner(HadoopInTheCloudJobRunner):
    """Runs an :py:class:`~mrjob.job.MRJob` on Google Cloud Dataproc.
    Invoked when you run your job with ``-r dataproc``.

    :py:class:`DataprocJobRunner` runs your job in an Dataproc cluster, which
    is basically a temporary Hadoop cluster.

    Input, support, and jar files can be either local or on GCS; use
    ``gs://...`` URLs to refer to files on GCS.

    This class has some useful utilities for talking directly to GCS and
    Dataproc, so you may find it useful to instantiate it without a script::

        from mrjob.dataproc import DataprocJobRunner
        ...
    """
    alias = 'dataproc'

    OPT_NAMES = HadoopInTheCloudJobRunner.OPT_NAMES | {
        'gcp_project',
    }

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.dataproc.DataprocJobRunner` takes the same
        arguments as
        :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(DataprocJobRunner, self).__init__(**kwargs)

        # Dataproc requires a master and >= 2 core instances
        # num_core_instances refers ONLY to number of CORE instances and does
        # NOT include the required 1 instance for master
        # In other words, minimum cluster size is 3 machines, 1 master and 2
        # "num_core_instances" workers
        if self._opts['num_core_instances'] < _DATAPROC_MIN_WORKERS:
            raise DataprocException(
                'Dataproc expects at LEAST %d workers' % _DATAPROC_MIN_WORKERS)

        if (self._opts['core_instance_type'] !=
                self._opts['task_instance_type']):
            raise DataprocException(
                'Dataproc v1 expects core/task instance types to be identical')

        # Lazy-load gcloud config as needed - invocations fail in PyCharm
        # debugging
        self._gcloud_config = None

        # Google Cloud Platform - project
        self._gcp_project = (
            self._opts['gcp_project'] or self.gcloud_config()['core.project'])

        # Google Compute Engine - Region / Zone
        self._gce_region = (
            self._opts['region'] or self.gcloud_config()['compute.region'])
        self._gce_zone = (
            self._opts['zone'] or self.gcloud_config()['compute.zone'])

        # cluster_id can be None here
        self._cluster_id = self._opts['cluster_id']

        self._api_client = None
        self._gcs_fs = None
        self._fs = None

        # BEGIN - setup directories
        base_tmpdir = self._get_tmpdir(self._opts['cloud_tmp_dir'])

        self._cloud_tmp_dir = _check_and_fix_fs_dir(base_tmpdir)

        # use job key to make a unique tmp dir
        self._job_tmpdir = self._cloud_tmp_dir + self._job_key + '/'

        # pick/validate output dir
        if self._output_dir:
            self._output_dir = _check_and_fix_fs_dir(self._output_dir)
        else:
            self._output_dir = self._job_tmpdir + 'output/'
        # END - setup directories

        # manage local files that we want to upload to GCS. We'll add them
        # to this manager just before we need them.
        fs_files_dir = self._job_tmpdir + 'files/'
        self._upload_mgr = UploadDirManager(fs_files_dir)

        # when did our particular task start?
        self._dataproc_job_start = None

        # init hadoop, ami version caches
        self._image_version = None
        self._hadoop_version = None

        # This will be filled by _run_steps()
        # NOTE - log_interpretations will be empty except job_id until we
        # parse task logs
        self._log_interpretations = []

    def _default_opts(self):
        return combine_dicts(
            super(DataprocJobRunner, self)._default_opts(),
#.........这里部分代码省略.........
开发者ID:okomestudio,项目名称:mrjob,代码行数:101,代码来源:dataproc.py


示例15: HadoopJobRunner

class HadoopJobRunner(MRJobRunner):
    """Runs an :py:class:`~mrjob.job.MRJob` on your Hadoop cluster.

    Input and support files can be either local or on HDFS; use ``hdfs://...``
    URLs to refer to files on HDFS.
    """
    alias = 'hadoop'

    OPTION_STORE_CLASS = HadoopRunnerOptionStore

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hdfs_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
            self._opts['hdfs_scratch_dir'], self._job_name))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hdfs_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hdfs_tmp_dir, 'output'))

        self._hadoop_log_dir = hadoop_log_dir(self._opts['hadoop_home'])

        # Running jobs via hadoop assigns a new timestamp to each job.
        # Running jobs via mrjob only adds steps.
        # Store both of these values to enable log parsing.
        self._job_timestamp = None
        self._start_step_num = 0

        # init hadoop version cache
        self._hadoop_version = None

    @property
    def fs(self):
        """:py:class:`mrjob.fs.base.Filesystem` object for HDFS and the local
        filesystem.
        """
        if self._fs is None:
            self._fs = CompositeFilesystem(
                HadoopFilesystem(self._opts['hadoop_bin']),
                LocalFilesystem())
        return self._fs

    def get_hadoop_version(self):
        """Invoke the hadoop executable to determine its version"""
        if not self._hadoop_version:
            stdout = self.invoke_hadoop(['version'], return_stdout=True)
            if stdout:
                first_line = stdout.split('\n')[0]
                m = HADOOP_VERSION_RE.match(first_line)
                if m:
                    self._hadoop_version = m.group('version')
                    log.info("Using Hadoop version %s" % self._hadoop_version)
                    return self._hadoop_version
            self._hadoop_version = '0.20.203'
            log.info("Unable to determine Hadoop version. Assuming 0.20.203.")
        return self._hadoop_version

    def _run(self):
        if self._opts['bootstrap_mrjob']:
            self._add_python_archive(self._create_mrjob_tar_gz())

        self._check_input_exists()
        self._create_wrapper_script()
        self._add_job_files_for_upload()
        self._upload_local_files_to_hdfs()
        self._run_job_in_hadoop()

    def _check_input_exists(self):
        """Make sure all input exists before continuing with our job.
        """
        for path in self._input_paths:
            if path == '-':
                continue  # STDIN always exists

            if not self.path_exists(path):
                raise AssertionError(
                    'Input path %s does not exist!' % (path,))

    def _add_job_files_for_upload(self):
        """Add files needed for running the job (setup and input)
        to self._upload_mgr."""
        for path in self._get_input_paths():
            self._upload_mgr.add(path)

        for path in self._working_dir_mgr.paths():
            self._upload_mgr.add(path)

    def _upload_local_files_to_hdfs(self):
        """Copy files managed by self._upload_mgr to HDFS
#.........这里部分代码省略.........
开发者ID:Infolaber,项目名称:mrjob,代码行数:101,代码来源:hadoop.py


示例16: HadoopJobRunner

class HadoopJobRunner(MRJobBinRunner, LogInterpretationMixin):
    """Runs an :py:class:`~mrjob.job.MRJob` on your Hadoop cluster.
    Invoked when you run your job with ``-r hadoop``.

    Input and support files can be either local or on HDFS; use ``hdfs://...``
    URLs to refer to files on HDFS.
    """
    alias = 'hadoop'

    OPT_NAMES = MRJobBinRunner.OPT_NAMES | {
        'bootstrap_spark',
        'hadoop_bin',
        'hadoop_extra_args',
        'hadoop_log_dirs',
        'hadoop_streaming_jar',
        'hadoop_tmp_dir',
        'spark_master',
    }

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hadoop_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
                self._opts['hadoop_tmp_dir'], self._job_key))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hadoop_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hadoop_tmp_dir, 'output'))

        # Fully qualify step_output_dir, if set
        if self._step_output_dir:
            self._step_output_dir = fully_qualify_hdfs_path(
                self._step_output_dir)

        # Track job and (YARN) application ID to enable log parsing
        self._application_id = None
        self._job_id = None

        # Keep track of where the hadoop streaming jar is
        self._hadoop_streaming_jar = self._opts['hadoop_streaming_jar']
        self._searched_for_hadoop_streaming_jar = False

        # Keep track of where the spark-submit binary is
        self._spark_submit_bin = self._opts['spark_submit_bin']

        # List of dicts (one for each step) potentially containing
        # the keys 'history', 'step', and 'task' ('step' will always
        # be filled because it comes from the hadoop jar command output,
        # others will be filled as needed)
        self._log_interpretations = []

    def _default_opts(self):
        return combine_dicts(
            super(HadoopJobRunner, self)._default_opts(),
            dict(
                hadoop_tmp_dir='tmp/mrjob',
                spark_master='yarn',
            )
        )

    @property
    def fs(self):
        """:py:class:`mrjob.fs.base.Filesystem` object for HDFS and the local
        filesystem.
        """
        if self._fs is None:
            self._fs = CompositeFilesystem(
                HadoopFilesystem(self._opts['hadoop_bin']),
                LocalFilesystem())
        return self._fs

    def get_hadoop_version(self):
        """Invoke the hadoop executable to determine its version"""
        return self.fs.get_hadoop_version()

    def get_hadoop_bin(self):
        """Find the hadoop binary. A list: binary followed by arguments."""
        return self.fs.get_hadoop_bin()

    def get_hadoop_streaming_jar(self):
        """Find the path of the hadoop streaming jar, or None if not found."""
        if not (self._hadoop_streaming_jar or
                self._searched_for_hadoop_streaming_jar):

            self._hadoop_streaming_jar = self._find_hadoop_streaming_jar()

            if self._hadoop_streaming_jar:
                log.info('Found Hadoop streaming jar: %s' %
                         self._hadoop_streaming_jar)
#.........这里部分代码省略.........
开发者ID:okomestudio,项目名称:mrjob,代码行数:101,代码来源:hadoop.py


示例17: HadoopJobRunner

class HadoopJobRunner(MRJobRunner, LogInterpretationMixin):
    """Runs an :py:class:`~mrjob.job.MRJob` on your Hadoop cluster.
    Invoked when you run your job with ``-r hadoop``.

    Input and support files can be either local or on HDFS; use ``hdfs://...``
    URLs to refer to files on HDFS.
    """
    alias = 'hadoop'

    OPTION_STORE_CLASS = HadoopRunnerOptionStore

    def __init__(self, **kwargs):
        """:py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
        as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
        which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
        """
        super(HadoopJobRunner, self).__init__(**kwargs)

        self._hadoop_tmp_dir = fully_qualify_hdfs_path(
            posixpath.join(
                self._opts['hadoop_tmp_dir'], self._job_key))

        # Keep track of local files to upload to HDFS. We'll add them
        # to this manager just before we need them.
        hdfs_files_dir = posixpath.join(self._hadoop_tmp_dir, 'files', '')
        self._upload_mgr = UploadDirManager(hdfs_files_dir)

        # Set output dir if it wasn't set explicitly
        self._output_dir = fully_qualify_hdfs_path(
            self._output_dir or
            posixpath.join(self._hadoop_tmp_dir, 'output'))

        # Track job and (YARN) application ID to enable log parsing
        self._application_id = None
        self._job_id = None

        # Keep track of where the hadoop streaming jar is
        self._hadoop_streaming_jar = self._opts['hadoop_streaming_jar']
        self._searched_for_hadoop_streaming_jar = False

        # List of dicts (one for each step) potentially containing
        # the keys 'history', 'step', and 'task' ('step' will always
        # be filled because it comes from the hadoop jar command output,
        # others will be filled as needed)
        self._log_interpretations = []

    @property
    def fs(self):
        """:py:class:`mrjob.fs.base.Filesystem` object for HDFS and the local
        filesystem.
        """
        if self._fs is None:
            self._fs = CompositeFilesystem(
                HadoopFilesystem(self._opts['hadoop_bin']),
                LocalFilesystem())
        return self._fs

    def get_hadoop_version(self):
        """Invoke the hadoop executable to determine its version"""
        return self.fs.get_hadoop_version()

    def get_hadoop_bin(self):
        """Find the hadoop binary. A list: binary followed by arguments."""
        return self.fs.get_hadoop_bin()

    def get_hadoop_streaming_jar(self):
        """Find the path of the hadoop streaming jar, or None if not found."""
        if not (self._hadoop_streaming_jar or
                self._searched_for_hadoop_streaming_jar):

            self._hadoop_streaming_jar = self._find_hadoop_streaming_jar()

            if self._hadoop_streaming_jar:
                log.info('Found Hadoop streaming jar: %s' %
                         self._hadoop_streaming_jar)
            else:
                log.warning('Hadoop streaming jar not found. Use'
                            ' --hadoop-streaming-jar')

            self._searched_for_hadoop_streaming_jar = True

        return self._hadoop_streaming_jar

    def _find_hadoop_streaming_jar(self):
        """Search for the hadoop streaming jar. See
        :py:meth:`_hadoop_streaming_jar_dirs` for where we search."""
        for path in unique(self._hadoop_streaming_jar_dirs()):
            log.info('Looking for Hadoop streaming jar in %s' % path)

            streaming_jars = []
            for path in self.fs.ls(path):
                if HADOOP_STREAMING_JAR_RE.match(posixpath.basename(path)):
                    streaming_jars.append(path)

            if streaming_jars:
                # prefer shorter names and shallower paths
                def sort_key(p):
                    return (len(p.split('/')),
                            len(posixpath.basename(p)),
                            p)
#.........这里部分代码省略.........
开发者ID:mmontagna,项目名称:mrjob,代码行数:101,代码来源:hadoop.py


示例18: test_simple

 def test_simple(self):
     sd = UploadDirManager('hdfs:///')
     sd.add('foo/bar.py')
     self.assertEqual(sd.path_to_uri(), {'foo/bar.py': 'hdfs:///bar.py'})
开发者ID:anirudhreddy92,项目名称:mrjob,代码行数:4,代码来源:test_setup.py


示例19: uri_adds_trailing_slash

 def uri_adds_trailing_slash(self):
     sd = UploadDirManager("s3://bucket/dir")
     sd.add("foo/bar.py")
     self.assertEqual(sd.uri("foo/bar.py"), "s3://bucket/dir/bar.py")
     self.assertEqual(sd.path_to_uri(), {"foo/bar.py": "s3://bucket/dir/bar.py"})
开发者ID:irskep,项目名称:mrjob,代码行数:5,代码来源:test_setup.py


示例20: uri_adds_trailing_slash

 def uri_adds_trailing_slash(self):
     sd = UploadDirManager('s3://bucket/dir')
     sd.add('foo/bar.py')
     self.assertEqual(sd.uri('foo/bar.py'), 's3://bucket/dir/bar.py')
     self.assertEqual(sd.path_to_uri(),
                      {'foo/bar.py': 's3://bucket/dir/bar.py'})
开发者ID:anirudhreddy92,项目名称:mrjob,代码行数:6,代码来源:test_setup.py



注:本文中的mrjob.setup.UploadDirManager类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python setup.WorkingDirManager类代码示例发布时间:2022-05-27
下一篇:
Python setup.parse_setup_cmd函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap