• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python cluster.NDGrid类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中msmbuilder.cluster.NDGrid的典型用法代码示例。如果您正苦于以下问题:Python NDGrid类的具体用法?Python NDGrid怎么用?Python NDGrid使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NDGrid类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_uncertainties_backward

def test_uncertainties_backward():
    n = 4
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    trajs = DoubleWell(random_state=0).get_cached().trajectories
    seqs = grid.fit_transform(trajs)

    model = ContinuousTimeMSM(verbose=False).fit(seqs)
    sigma_ts = model.uncertainty_timescales()
    sigma_lambda = model.uncertainty_eigenvalues()
    sigma_pi = model.uncertainty_pi()
    sigma_K = model.uncertainty_K()

    yield lambda: np.testing.assert_array_almost_equal(
        sigma_ts, [9.508936, 0.124428, 0.117638])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_lambda,
        [1.76569687e-19, 7.14216858e-05, 3.31210649e-04, 3.55556718e-04])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_pi, [0.007496, 0.006564, 0.006348, 0.007863])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_K,
        [[0.000339, 0.000339, 0., 0.],
         [0.000352, 0.000372, 0.000122, 0.],
         [0., 0.000103, 0.000344, 0.000329],
         [0., 0., 0.00029, 0.00029]])
    yield lambda: np.testing.assert_array_almost_equal(
        model.ratemat_,
        [[-0.0254, 0.0254, 0., 0.],
         [0.02636, -0.029629, 0.003269, 0.],
         [0., 0.002764, -0.030085, 0.027321],
         [0., 0., 0.024098, -0.024098]])
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:31,代码来源:test_ratematrix.py


示例2: test_uncertainties_backward

def test_uncertainties_backward():
    n = 4
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(verbose=False).fit(seqs)
    sigma_ts = model.uncertainty_timescales()
    sigma_lambda = model.uncertainty_eigenvalues()
    sigma_pi = model.uncertainty_pi()
    sigma_K = model.uncertainty_K()

    yield lambda: np.testing.assert_array_almost_equal(
        sigma_ts, [9.13698928, 0.12415533, 0.11713719])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_lambda, [1.76569687e-19, 7.14216858e-05, 3.31210649e-04, 3.55556718e-04])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_pi, [0.00741467, 0.00647945, 0.00626743, 0.00777847])
    yield lambda: np.testing.assert_array_almost_equal(
        sigma_K,
        [[  3.39252419e-04, 3.39246173e-04, 0.00000000e+00, 1.62090239e-06],
         [  3.52062861e-04, 3.73305510e-04, 1.24093936e-04, 0.00000000e+00],
         [  0.00000000e+00, 1.04708186e-04, 3.45098923e-04, 3.28820213e-04],
         [  1.25455972e-06, 0.00000000e+00, 2.90118599e-04, 2.90122944e-04]])
    yield lambda: np.testing.assert_array_almost_equal(
        model.ratemat_,
        [[ -2.54439564e-02, 2.54431791e-02,  0.00000000e+00,  7.77248586e-07],
         [  2.64044208e-02,-2.97630373e-02,  3.35861646e-03,  0.00000000e+00],
         [  0.00000000e+00, 2.83988103e-03, -3.01998380e-02,  2.73599570e-02],
         [  6.01581838e-07, 0.00000000e+00,  2.41326592e-02, -2.41332608e-02]])
开发者ID:kyleabeauchamp,项目名称:msmbuilder,代码行数:29,代码来源:test_ratematrix.py


示例3: test_score_1

def test_score_1():
    grid = NDGrid(n_bins_per_feature=5, min=-np.pi, max=np.pi)
    trajs = DoubleWell(random_state=0).get_cached().trajectories
    seqs = grid.fit_transform(trajs)
    model = (ContinuousTimeMSM(verbose=False, lag_time=10, n_timescales=3)
             .fit(seqs))
    np.testing.assert_approx_equal(model.score(seqs), model.score_)
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:7,代码来源:test_ratematrix.py


示例4: test_5

def test_5():
    grid = NDGrid(n_bins_per_feature=2)
    seqs = grid.fit_transform(load_quadwell(random_state=0)['trajectories'])

    model2 = BayesianContinuousTimeMSM(n_samples=100).fit(seqs)

    print(model2.summarize())
开发者ID:back2mars,项目名称:msmbuilder,代码行数:7,代码来源:test_bayes_ratematrix.py


示例5: test_doublewell

def test_doublewell():
    trjs = load_doublewell(random_state=0)['trajectories']
    for n_states in [10, 50]:
        clusterer = NDGrid(n_bins_per_feature=n_states)
        assignments = clusterer.fit_transform(trjs)

        for sliding_window in [True, False]:
            model = ContinuousTimeMSM(lag_time=100, sliding_window=sliding_window)
            model.fit(assignments)
            assert model.optimizer_state_.success
开发者ID:rmcgibbo,项目名称:msmbuilder,代码行数:10,代码来源:test_ratematrix.py


示例6: test_optimize_1

def test_optimize_1():
    n = 100
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(use_sparse=True, verbose=True).fit(seqs)

    y, x, n = model.loglikelihoods_.T
    x = x-x[0]
    cross = np.min(np.where(n==n[-1])[0])
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:10,代码来源:test_ratematrix.py


示例7: test_ndgrid_2

def test_ndgrid_2():
    X = np.random.RandomState(0).randn(100, 2)
    ndgrid = NDGrid(n_bins_per_feature=2, min=-5, max=5)
    labels = ndgrid.fit([X]).predict([X])[0]

    mask0 = np.logical_and(X[:, 0] < 0, X[:, 1] < 0)
    assert np.all(labels[mask0] == 0)
    mask1 = np.logical_and(X[:, 0] > 0, X[:, 1] < 0)
    assert np.all(labels[mask1] == 1)
    mask2 = np.logical_and(X[:, 0] < 0, X[:, 1] > 0)
    assert np.all(labels[mask2] == 2)
    mask3 = np.logical_and(X[:, 0] > 0, X[:, 1] > 0)
    assert np.all(labels[mask3] == 3)
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:13,代码来源:test_ndgrid.py


示例8: test_hessian

def test_hessian():
    grid = NDGrid(n_bins_per_feature=10, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])
    seqs = [seqs[i] for i in range(10)]

    lag_time = 10
    model = ContinuousTimeMSM(verbose=True, lag_time=lag_time)
    model.fit(seqs)
    msm = MarkovStateModel(verbose=False, lag_time=lag_time)
    print(model.summarize())
    print('MSM timescales\n', msm.fit(seqs).timescales_)
    print('Uncertainty K\n', model.uncertainty_K())
    print('Uncertainty pi\n', model.uncertainty_pi())
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:13,代码来源:test_ratematrix.py


示例9: test_hessian_3

def test_hessian_3():
    grid = NDGrid(n_bins_per_feature=4, min=-np.pi, max=np.pi)
    trajs = DoubleWell(random_state=0).get_cached().trajectories
    seqs = grid.fit_transform(trajs)
    seqs = [seqs[i] for i in range(10)]

    lag_time = 10
    model = ContinuousTimeMSM(verbose=False, lag_time=lag_time)
    model.fit(seqs)
    msm = MarkovStateModel(verbose=False, lag_time=lag_time)
    print(model.summarize())
    # print('MSM timescales\n', msm.fit(seqs).timescales_)
    print('Uncertainty K\n', model.uncertainty_K())
    print('Uncertainty eigs\n', model.uncertainty_eigenvalues())
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:14,代码来源:test_ratematrix.py


示例10: test_ndgrid_3

def test_ndgrid_3():
    X = np.random.RandomState(0).randn(100, 3)
    ndgrid = NDGrid(n_bins_per_feature=2, min=-5, max=5)
    labels = ndgrid.fit([X]).predict([X])[0]

    operators = [np.less, np.greater]
    x = X[:, 0]
    y = X[:, 1]
    z = X[:, 2]

    it = itertools.product(operators, repeat=3)

    for indx, (op_z, op_y, op_x) in enumerate(it):
        mask = np.logical_and.reduce((op_x(x, 0), op_y(y, 0), op_z(z, 0)))
        assert np.all(labels[mask] == indx)
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:15,代码来源:test_ndgrid.py


示例11: test_5

def test_5():
    trjs = DoubleWell(random_state=0).get_cached().trajectories
    clusterer = NDGrid(n_bins_per_feature=5)
    mle_msm = MarkovStateModel(lag_time=100, verbose=False)
    b_msm = BayesianMarkovStateModel(lag_time=100, n_samples=1000, n_chains=8, n_steps=1000, random_state=0)

    states = clusterer.fit_transform(trjs)
    b_msm.fit(states)
    mle_msm.fit(states)

    # this is a pretty silly test. it checks that the mean transition
    # matrix is not so dissimilar from the MLE transition matrix.
    # This shouldn't necessarily be the case anyways -- the likelihood is
    # not "symmetric". And the cutoff chosen is just heuristic.
    assert np.linalg.norm(b_msm.all_transmats_.mean(axis=0) - mle_msm.transmat_) < 1e-2
开发者ID:jadeshi,项目名称:msmbuilder-1,代码行数:15,代码来源:test_metzner_mcmc.py


示例12: test_hessian_1

def test_hessian_1():
    n = 5
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(use_sparse=False).fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C, n)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C, n)[1])
    hessian2 = Hfun(theta)

    # not sure what the cutoff here should be (see plot_test_hessian)
    assert np.linalg.norm(hessian1-hessian2) < 1
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:15,代码来源:test_ratematrix.py


示例13: test_fit_2

def test_fit_2():
    grid = NDGrid(n_bins_per_feature=5, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(verbose=True, lag_time=10)
    model.fit(seqs)
    t1 = np.sort(model.timescales_)
    t2 = -1/np.sort(np.log(np.linalg.eigvals(model.transmat_))[1:])

    model = MarkovStateModel(verbose=False, lag_time=10)
    model.fit(seqs)
    t3 = np.sort(model.timescales_)

    np.testing.assert_array_almost_equal(t1, t2)
    # timescales should be similar to MSM (withing 50%)
    assert abs(t1[-1] - t3[-1]) / t1[-1] < 0.50
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:16,代码来源:test_ratematrix.py


示例14: test_guess

def test_guess():
    ds = MullerPotential(random_state=0).get_cached().trajectories
    cluster = NDGrid(n_bins_per_feature=5,
                     min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
                     max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])
    assignments = cluster.fit_transform(ds)

    model1 = ContinuousTimeMSM(guess='log')
    model1.fit(assignments)

    model2 = ContinuousTimeMSM(guess='pseudo')
    model2.fit(assignments)

    diff = model1.loglikelihoods_[-1] - model2.loglikelihoods_[-1]
    assert np.abs(diff) < 1e-3
    assert np.max(np.abs(model1.ratemat_ - model2.ratemat_)) < 1e-1
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:16,代码来源:test_ratematrix.py


示例15: test_score_2

def test_score_2():
    ds = MullerPotential(random_state=0).get_cached().trajectories
    cluster = NDGrid(n_bins_per_feature=6,
                     min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
                     max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])
    assignments = cluster.fit_transform(ds)
    test_indices = [5, 0, 4, 1, 2]
    train_indices = [3, 6, 7, 8, 9]

    model = ContinuousTimeMSM(lag_time=3, n_timescales=1)
    model.fit([assignments[i] for i in train_indices])
    test = model.score([assignments[i] for i in test_indices])
    train = model.score_
    print('train', train, 'test', test)
    assert 1 <= test < 2
    assert 1 <= train < 2
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:16,代码来源:test_ratematrix.py


示例16: test_score_2

def test_score_2():
    from msmbuilder.example_datasets.muller import MULLER_PARAMETERS as PARAMS
    ds = MullerPotential(random_state=0).get()['trajectories']
    cluster = NDGrid(n_bins_per_feature=6,
          min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
          max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])
    assignments = cluster.fit_transform(ds)
    test_indices = [5, 0, 4, 1, 2]
    train_indices = [3, 6, 7, 8, 9]

    model = ContinuousTimeMSM(lag_time=3, n_timescales=1)
    model.fit([assignments[i] for i in train_indices])
    test = model.score([assignments[i] for i in test_indices])
    train = model.score_
    print('train', train, 'test', test)
    assert 1 <= test < 2
    assert 1 <= train < 2
开发者ID:kyleabeauchamp,项目名称:msmbuilder,代码行数:17,代码来源:test_ratematrix.py


示例17: test_guess

def test_guess():
    from msmbuilder.example_datasets.muller import MULLER_PARAMETERS as PARAMS

    cluster = NDGrid(n_bins_per_feature=5,
          min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
          max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])

    ds = MullerPotential(random_state=0).get()['trajectories']
    assignments = cluster.fit_transform(ds)

    model1 = ContinuousTimeMSM(guess='log')
    model1.fit(assignments)

    model2 = ContinuousTimeMSM(guess='pseudo')
    model2.fit(assignments)

    assert np.abs(model1.loglikelihoods_[-1] - model2.loglikelihoods_[-1]) < 1e-3
    assert np.max(np.abs(model1.ratemat_ - model2.ratemat_)) < 1e-1
开发者ID:rmcgibbo,项目名称:msmbuilder,代码行数:18,代码来源:test_ratematrix.py


示例18: test_score_3

def test_score_3():
    ds = MullerPotential(random_state=0).get_cached().trajectories
    cluster = NDGrid(n_bins_per_feature=6,
                     min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
                     max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])

    assignments = cluster.fit_transform(ds)

    train_indices = [9, 4, 3, 6, 2]
    test_indices = [8, 0, 5, 7, 1]

    model = ContinuousTimeMSM(lag_time=3, n_timescales=1, sliding_window=False,
                              ergodic_cutoff=1)
    train_data = [assignments[i] for i in train_indices]
    test_data = [assignments[i] for i in test_indices]

    model.fit(train_data)
    train = model.score_
    test = model.score(test_data)
    print(train, test)
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:20,代码来源:test_ratematrix.py


示例19: _plot_test_hessian

def _plot_test_hessian():
    # plot the difference between the numerical hessian and the analytic
    # approximate hessian (opens Matplotlib window)
    n = 5
    grid = NDGrid(n_bins_per_feature=n, min=-np.pi, max=np.pi)
    seqs = grid.fit_transform(load_doublewell(random_state=0)['trajectories'])

    model = ContinuousTimeMSM(use_sparse=False).fit(seqs)
    theta = model.theta_
    C = model.countsmat_

    hessian1 = _ratematrix.hessian(theta, C, n)
    Hfun = nd.Jacobian(lambda x: _ratematrix.loglikelihood(x, C, n)[1])
    hessian2 = Hfun(theta)

    import matplotlib.pyplot as pp
    pp.scatter(hessian1.flat, hessian2.flat, marker='x')
    pp.plot(pp.xlim(), pp.xlim(), 'k')
    print('Plotting...', file=sys.stderr)
    pp.show()
开发者ID:synapticarbors,项目名称:msmbuilder-1,代码行数:20,代码来源:test_ratematrix.py


示例20: test_score_3

def test_score_3():
    from msmbuilder.example_datasets.muller import MULLER_PARAMETERS as PARAMS

    cluster = NDGrid(n_bins_per_feature=6,
          min=[PARAMS['MIN_X'], PARAMS['MIN_Y']],
          max=[PARAMS['MAX_X'], PARAMS['MAX_Y']])

    ds = MullerPotential(random_state=0).get()['trajectories']
    assignments = cluster.fit_transform(ds)

    train_indices = [9, 4, 3, 6, 2]
    test_indices = [8, 0, 5, 7, 1]

    model = ContinuousTimeMSM(lag_time=3, n_timescales=1, sliding_window=False, ergodic_cutoff=1)
    train_data = [assignments[i] for i in train_indices]
    test_data = [assignments[i] for i in test_indices]

    model.fit(train_data)
    train = model.score_
    test = model.score(test_data)
    print(train, test)
开发者ID:rmcgibbo,项目名称:msmbuilder,代码行数:21,代码来源:test_ratematrix.py



注:本文中的msmbuilder.cluster.NDGrid类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python dataset.dataset函数代码示例发布时间:2022-05-27
下一篇:
Python arglib.die_if_path_exists函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap