• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python msqr.modular_sqrt函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中msqr.modular_sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python modular_sqrt函数的具体用法?Python modular_sqrt怎么用?Python modular_sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了modular_sqrt函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: from_signature

    def from_signature(cls, sig, recid, h, curve):
        """ See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
        from ecdsa import util, numbertheory
        import msqr

        curveFp = curve.curve
        G = curve.generator
        order = G.order()
        # extract r,s from signature
        r, s = util.sigdecode_string(sig, order)
        # 1.1
        x = r + (recid / 2) * order
        # 1.3
        alpha = (x * x * x + curveFp.a() * x + curveFp.b()) % curveFp.p()
        beta = msqr.modular_sqrt(alpha, curveFp.p())
        y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
        # 1.4 the constructor checks that nR is at infinity
        R = Point(curveFp, x, y, order)
        # 1.5 compute e from message:
        e = string_to_number(h)
        minus_e = -e % order
        # 1.6 compute Q = r^-1 (sR - eG)
        inv_r = numbertheory.inverse_mod(r, order)
        Q = inv_r * (s * R + minus_e * G)
        return cls.from_public_point(Q, curve)
开发者ID:iamfx,项目名称:reddcoin-electrum,代码行数:25,代码来源:bitcoin.py


示例2: _decode_pub_compressed

def _decode_pub_compressed(bytes):
    if bytes[0] not in ['\x02', '\x03']:
        raise Error('first byte not x02 or \x03')
    x = decode_bigint(bytes[1:])
    alpha = (x * x * x  + curve_secp256k1.a() * x + curve_secp256k1.b()) % curve_secp256k1.p()
    beta = msqr.modular_sqrt(alpha, curve_secp256k1.p())
    y = beta if (beta - ord(bytes[0])) % 2 == 0 else curve_secp256k1.p() - beta
    return ecdsa.ellipticcurve.Point(
        curve_secp256k1, x, y, secp256k1.order)
开发者ID:evrimulgen,项目名称:Blockchain-Tracker,代码行数:9,代码来源:key.py


示例3: verify_message

    def verify_message(self, address, signature, message):
        """See http://www.secg.org/download/aid-780/sec1-v2.pdf
           for the math"""
        import msqr
        curve = curve_secp256k1
        G = generator_secp256k1
        order = G.order()
        # extract r,s from signature
        sig = base64.b64decode(signature)
        if len(sig) != 65:
            raise BaseException("Wrong encoding")
        r, s = ecdsa.util.sigdecode_string(sig[1:], order)
        nV = ord(sig[0])
        if nV < 27 or nV >= 35:
            raise BaseException("Bad encoding")
        if nV >= 31:
            compressed = True
            nV -= 4
        else:
            compressed = False

        recid = nV - 27
        # 1.1
        x = r + (recid/2) * order
        # 1.3
        alpha = (x * x * x + curve.a() * x + curve.b()) % curve.p()
        beta = msqr.modular_sqrt(alpha, curve.p())
        y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
        # 1.4 the constructor checks that nR is at infinity
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        # 1.5 compute e from message:
        h = Hash(msg_magic(message))
        e = string_to_number(h)
        minus_e = -e % order
        # 1.6 compute Q = r^-1 (sR - eG)
        inv_r = ecdsa.numbertheory.inverse_mod(r, order)
        Q = inv_r * (s * R + minus_e * G)
        public_key = ecdsa.VerifyingKey.from_public_point(Q, curve=SECP256k1)
        # check that Q is the public key
        public_key.verify_digest(
            sig[1:], h, sigdecode=ecdsa.util.sigdecode_string
        )
        # check that we get the original signing address
        addr = public_key_to_bc_address(encode_point(public_key, compressed))
        if address != addr:
            raise BaseException("Bad signature")
开发者ID:M31MOTH,项目名称:python-libbitcoinclient,代码行数:46,代码来源:bitcoin.py



注:本文中的msqr.modular_sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python msrest.Serializer类代码示例发布时间:2022-05-27
下一篇:
Python msprime.simulate函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap