• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python base.Dataset类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mvpa.datasets.base.Dataset的典型用法代码示例。如果您正苦于以下问题:Python Dataset类的具体用法?Python Dataset怎么用?Python Dataset使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Dataset类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_query_engine

def test_query_engine():
    data = np.arange(54)
    # indices in 3D
    ind = np.transpose((np.ones((3, 3, 3)).nonzero()))
    # sphere generator for 3 elements diameter
    sphere = ne.Sphere(1)
    # dataset with just one "space"
    ds = Dataset([data, data], fa={'s_ind': np.concatenate((ind, ind))})
    # and the query engine attaching the generator to the "index-space"
    qe = ne.IndexQueryEngine(s_ind=sphere)
    # cannot train since the engine does not know about the second space
    assert_raises(ValueError, qe.train, ds)
    # now do it again with a full spec
    ds = Dataset([data, data], fa={'s_ind': np.concatenate((ind, ind)),
                                   't_ind': np.repeat([0,1], 27)})
    qe = ne.IndexQueryEngine(s_ind=sphere, t_ind=None)
    qe.train(ds)
    # internal representation check
    # YOH: invalid for new implementation with lookup tables (dictionaries)
    #assert_array_equal(qe._searcharray,
    #                   np.arange(54).reshape(qe._searcharray.shape) + 1)
    # should give us one corner, collapsing the 't_ind'
    assert_array_equal(qe(s_ind=(0, 0, 0)),
                       [0, 1, 3, 9, 27, 28, 30, 36])
    # directly specifying an index for 't_ind' without having an ROI
    # generator, should give the same corner, but just once
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=0), [0, 1, 3, 9])
    # just out of the mask -- no match
    assert_array_equal(qe(s_ind=(3, 3, 3)), [])
    # also out of the mask -- but single match
    assert_array_equal(qe(s_ind=(2, 2, 3), t_ind=1), [53])
    # query by id
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=0), qe[0])
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=[0, 1]),
                       qe(s_ind=(0, 0, 0)))
    # should not fail if t_ind is outside
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=[0, 1, 10]),
                       qe(s_ind=(0, 0, 0)))

    # should fail if asked about some unknown thing
    assert_raises(ValueError, qe.__call__, s_ind=(0, 0, 0), buga=0)

    # Test by using some literal feature atttribute
    ds.fa['lit'] =  ['roi1', 'ro2', 'r3']*18
    # should work as well as before
    assert_array_equal(qe(s_ind=(0, 0, 0)), [0, 1, 3, 9, 27, 28, 30, 36])
    # should fail if asked about some unknown (yet) thing
    assert_raises(ValueError, qe.__call__, s_ind=(0,0,0), lit='roi1')

    # Create qe which can query literals as well
    qe_lit = ne.IndexQueryEngine(s_ind=sphere, t_ind=None, lit=None)
    qe_lit.train(ds)
    # should work as well as before
    assert_array_equal(qe_lit(s_ind=(0, 0, 0)), [0, 1, 3, 9, 27, 28, 30, 36])
    # and subselect nicely -- only /3 ones
    assert_array_equal(qe_lit(s_ind=(0, 0, 0), lit='roi1'),
                       [0, 3, 9, 27, 30, 36])
    assert_array_equal(qe_lit(s_ind=(0, 0, 0), lit=['roi1', 'ro2']),
                       [0, 1, 3, 9, 27, 28, 30, 36])
开发者ID:B-Rich,项目名称:PyMVPA,代码行数:59,代码来源:test_neighborhood.py


示例2: test_mergeds

def test_mergeds():
    data0 = Dataset.from_wizard(np.ones((5, 5)), targets=1)
    data0.fa['one'] = np.ones(5)
    data1 = Dataset.from_wizard(np.ones((5, 5)), targets=1, chunks=1)
    data1.fa['one'] = np.zeros(5)
    data2 = Dataset.from_wizard(np.ones((3, 5)), targets=2, chunks=1)
    data3 = Dataset.from_wizard(np.ones((4, 5)), targets=2)
    data4 = Dataset.from_wizard(np.ones((2, 5)), targets=3, chunks=2)
    data4.fa['test'] = np.arange(5)

    # cannot merge if there are attributes missing in one of the datasets
    assert_raises(DatasetError, data1.append, data0)

    merged = data1.copy()
    merged.append(data2)

    ok_( merged.nfeatures == 5 )
    l12 = [1]*5 + [2]*3
    l1 = [1]*8
    ok_((merged.targets == l12).all())
    ok_((merged.chunks == l1).all())

    data_append = data1.copy()
    data_append.append(data2)

    ok_(data_append.nfeatures == 5)
    ok_((data_append.targets == l12).all())
    ok_((data_append.chunks == l1).all())

    #
    # appending
    #

    # we need the same samples attributes in both datasets
    assert_raises(DatasetError, data2.append, data3)

    #
    # vstacking
    #
    if __debug__:
        # tested only in __debug__
        assert_raises(ValueError, vstack, (data0, data1, data2, data3))
    datasets = (data1, data2, data4)
    merged = vstack(datasets)
    assert_equal(merged.shape,
                 (np.sum([len(ds) for ds in datasets]), data1.nfeatures))
    assert_true('test' in merged.fa)
    assert_array_equal(merged.sa.targets, [1]*5 + [2]*3 + [3]*2)

    #
    # hstacking
    #
    assert_raises(ValueError, hstack, datasets)
    datasets = (data0, data1)
    merged = hstack(datasets)
    assert_equal(merged.shape,
                 (len(data1), np.sum([ds.nfeatures for ds in datasets])))
    assert_true('chunks' in merged.sa)
    assert_array_equal(merged.fa.one, [1]*5 + [0]*5)
开发者ID:geeragh,项目名称:PyMVPA,代码行数:59,代码来源:test_datasetng.py


示例3: test_labelpermutation_randomsampling

def test_labelpermutation_randomsampling():
    ds  = Dataset.from_wizard(np.ones((5, 1)),     targets=range(5), chunks=1)
    ds.append(Dataset.from_wizard(np.ones((5, 1)) + 1, targets=range(5), chunks=2))
    ds.append(Dataset.from_wizard(np.ones((5, 1)) + 2, targets=range(5), chunks=3))
    ds.append(Dataset.from_wizard(np.ones((5, 1)) + 3, targets=range(5), chunks=4))
    ds.append(Dataset.from_wizard(np.ones((5, 1)) + 4, targets=range(5), chunks=5))
    # use subclass for testing if it would survive
    ds.samples = ds.samples.view(myarray)

    ok_(ds.get_nsamples_per_attr('targets') == {0:5, 1:5, 2:5, 3:5, 4:5})
    sample = ds.random_samples(2)
    ok_(sample.get_nsamples_per_attr('targets').values() == [ 2, 2, 2, 2, 2 ])
    ok_((ds.sa['chunks'].unique == range(1, 6)).all())

    # keep the orig labels
    orig_labels = ds.targets[:]

    # also keep the orig dataset, but SHALLOW copy and leave everything
    # else as a view!
    ods = copy.copy(ds)

    ds.permute_targets()
    # some permutation should have happened
    assert_false((ds.targets == orig_labels).all())

    # but the original dataset should be uneffected
    assert_array_equal(ods.targets, orig_labels)
    # array subclass survives
    ok_(isinstance(ods.samples, myarray))

    # samples are really shared
    ds.samples[0, 0] = 123456
    assert_array_equal(ds.samples, ods.samples)

    # and other samples attributes too
    ds.chunks[0] = 9876
    assert_array_equal(ds.chunks, ods.chunks)

    # try to permute on custom target
    ds = ods.copy()
    otargets = ods.sa.targets.copy()
    ds.sa['custom'] = ods.sa.targets.copy()
    assert_array_equal(ds.sa.custom, otargets)
    assert_array_equal(ds.sa.targets, otargets)

    ds.permute_targets(targets_attr='custom')
    # original targets should still match
    assert_array_equal(ds.sa.targets, otargets)
    # but custom should get permuted
    assert_false((ds.sa.custom == otargets).all())
开发者ID:geeragh,项目名称:PyMVPA,代码行数:50,代码来源:test_datasetng.py


示例4: test_labelpermutation_randomsampling

def test_labelpermutation_randomsampling():
    ds = Dataset.from_wizard(np.ones((5, 10)),     targets=range(5), chunks=1)
    for i in xrange(1, 5):
        ds.append(Dataset.from_wizard(np.ones((5, 10)) + i,
                                      targets=range(5), chunks=i+1))
    # assign some feature attributes
    ds.fa['roi'] = np.repeat(np.arange(5), 2)
    ds.fa['lucky'] = np.arange(10)%2
    # use subclass for testing if it would survive
    ds.samples = ds.samples.view(myarray)

    ok_(ds.get_nsamples_per_attr('targets') == {0:5, 1:5, 2:5, 3:5, 4:5})
    sample = ds.random_samples(2)
    ok_(sample.get_nsamples_per_attr('targets').values() == [ 2, 2, 2, 2, 2 ])
    ok_((ds.sa['chunks'].unique == range(1, 6)).all())
开发者ID:esc,项目名称:PyMVPA,代码行数:15,代码来源:test_datasetng.py


示例5: test_icamapper

def test_icamapper():
    # data: 40 sample feature line in 2d space (40x2; samples x features)
    samples = np.vstack([np.arange(40.) for i in range(2)]).T
    samples -= samples.mean()
    samples +=  np.random.normal(size=samples.shape, scale=0.1)
    ndlin = Dataset(samples)

    pm = ICAMapper()
    pm.train(ndlin.copy())
    assert_equal(pm.proj.shape, (2, 2))

    p = pm.forward(ndlin.copy())
    assert_equal(p.shape, (40, 2))
    # check that the mapped data can be fully recovered by 'reverse()'
    assert_array_almost_equal(pm.reverse(p), ndlin)
开发者ID:arokem,项目名称:PyMVPA,代码行数:15,代码来源:test_mdp.py


示例6: _call

    def _call(self, dataset):
        # just for the beauty of it
        X = self._design

        # precompute transformation is not yet done
        if self._inv_design is None:
            self._inv_ip = (X.T * X).I
            self._inv_design = self._inv_ip * X.T

        # get parameter estimations for all features at once
        # (betas x features)
        betas = self._inv_design * dataset.samples

        # charge state
        self.ca.pe = pe = betas.T.A

        # if betas and no z-stats are desired return them right away
        if not self._voi == 'pe' or self.ca.is_enabled('zstat'):
            # compute residuals
            residuals = X * betas
            residuals -= dataset.samples

            # estimates of the parameter variance and compute zstats
            # assumption of mean(E) == 0 and equal variance
            # XXX next lines ignore off-diagonal elements and hence covariance
            # between regressors. The humble being writing these lines asks the
            # god of statistics for forgives, because it knows not what it does
            diag_ip = np.diag(self._inv_ip)
            # (features x betas)
            beta_vars = np.array([ r.var() * diag_ip for r in residuals.T ])
            # (parameter x feature)
            zstat = pe / np.sqrt(beta_vars)

            # charge state
            self.ca.zstat = zstat

        if self._voi == 'pe':
            # return as (beta x feature)
            result = Dataset(pe.T)
        elif self._voi == 'zstat':
            # return as (zstat x feature)
            result = Dataset(zstat.T)
        else:
            # we shall never get to this point
            raise ValueError, \
                  "Unknown variable of interest '%s'" % str(self._voi)
        result.sa['regressor'] = np.arange(len(result))
        return result
开发者ID:B-Rich,项目名称:PyMVPA,代码行数:48,代码来源:glm.py


示例7: test_h5py_io

def test_h5py_io():
    skip_if_no_external('h5py')

    tempdir = tempfile.mkdtemp()

    # store random dataset to file
    ds = datasets['3dlarge']
    ds.save(os.path.join(tempdir, 'plain.hdf5'))

    # reload and check for identity
    ds2 = Dataset.from_hdf5(os.path.join(tempdir, 'plain.hdf5'))
    assert_array_equal(ds.samples, ds2.samples)
    for attr in ds.sa:
        assert_array_equal(ds.sa[attr].value, ds2.sa[attr].value)
    for attr in ds.fa:
        assert_array_equal(ds.fa[attr].value, ds2.fa[attr].value)
    assert_true(len(ds.a.mapper), 2)
    # since we have no __equal__ do at least some comparison
    if __debug__:
        # debug mode needs special test as it enhances the repr output
        # with module info and id() appendix for objects
        assert_equal('#'.join(repr(ds.a.mapper).split('#')[:-1]),
                     '#'.join(repr(ds2.a.mapper).split('#')[:-1]))
    else:
        assert_equal(repr(ds.a.mapper), repr(ds2.a.mapper))


    #cleanup temp dir
    shutil.rmtree(tempdir, ignore_errors=True)
开发者ID:esc,项目名称:PyMVPA,代码行数:29,代码来源:test_datasetng.py


示例8: test_multidim_attrs

def test_multidim_attrs():
    samples = np.arange(24).reshape(2, 3, 4)
    # have a dataset with two samples -- mapped from 2d into 1d
    # but have 2d labels and 3d chunks -- whatever that is
    ds = Dataset.from_wizard(samples.copy(),
                             targets=samples.copy(),
                             chunks=np.random.normal(size=(2,10,4,2)))
    assert_equal(ds.nsamples, 2)
    assert_equal(ds.nfeatures, 12)
    assert_equal(ds.sa.targets.shape, (2,3,4))
    assert_equal(ds.sa.chunks.shape, (2,10,4,2))

    # try slicing
    subds = ds[0]
    assert_equal(subds.nsamples, 1)
    assert_equal(subds.nfeatures, 12)
    assert_equal(subds.sa.targets.shape, (1,3,4))
    assert_equal(subds.sa.chunks.shape, (1,10,4,2))

    # add multidim feature attr
    fattr = ds.mapper.forward(samples)
    assert_equal(fattr.shape, (2,12))
    # should puke -- first axis is #samples
    assert_raises(ValueError, ds.fa.__setitem__, 'moresamples', fattr)
    # but that should be fine
    ds.fa['moresamples'] = fattr.T
    assert_equal(ds.fa.moresamples.shape, (12,2))
开发者ID:geeragh,项目名称:PyMVPA,代码行数:27,代码来源:test_datasetng.py


示例9: test_labelschunks_access

def test_labelschunks_access():
    samples = np.arange(12).reshape((4, 3)).view(myarray)
    labels = range(4)
    chunks = [1, 1, 2, 2]
    ds = Dataset.from_wizard(samples, labels, chunks)

    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    assert_array_equal(ds.targets, labels)
    assert_array_equal(ds.chunks, chunks)

    # moreover they should point to the same thing
    ok_(ds.targets is ds.sa.targets)
    ok_(ds.targets is ds.sa['targets'].value)
    ok_(ds.chunks is ds.sa.chunks)
    ok_(ds.chunks is ds.sa['chunks'].value)

    # assignment should work at all levels including 1st
    ds.targets = chunks
    assert_array_equal(ds.targets, chunks)
    ok_(ds.targets is ds.sa.targets)
    ok_(ds.targets is ds.sa['targets'].value)

    # test broadcasting
    # but not for plain scalars
    assert_raises(ValueError, ds.set_attr, 'sa.bc', 5)
    # and not for plain plain str
    assert_raises(TypeError, ds.set_attr, 'sa.bc', "mike")
    # but for any iterable of len == 1
    ds.set_attr('sa.bc', (5,))
    ds.set_attr('sa.dc', ["mike"])
    assert_array_equal(ds.sa.bc, [5] * len(ds))
    assert_array_equal(ds.sa.dc, ["mike"] * len(ds))
开发者ID:esc,项目名称:PyMVPA,代码行数:34,代码来源:test_datasetng.py


示例10: test_origmask_extraction

def test_origmask_extraction():
    origdata = np.random.standard_normal((10, 2, 4, 3))
    data = Dataset.from_wizard(origdata, targets=2, chunks=2)

    # check with custom mask
    sel = data[:, 5]
    ok_(sel.samples.shape[1] == 1)
开发者ID:geeragh,项目名称:PyMVPA,代码行数:7,代码来源:test_datasetng.py


示例11: get_data

 def get_data(self):
     data = np.random.standard_normal(( 100, 2, 2, 2 ))
     labels = np.concatenate( ( np.repeat( 0, 50 ),
                               np.repeat( 1, 50 ) ) )
     chunks = np.repeat( range(5), 10 )
     chunks = np.concatenate( (chunks, chunks) )
     return Dataset.from_wizard(samples=data, targets=labels, chunks=chunks)
开发者ID:esc,项目名称:PyMVPA,代码行数:7,代码来源:test_ifs.py


示例12: test_feature_masking

def test_feature_masking():
    mask = np.zeros((5, 3), dtype='bool')
    mask[2, 1] = True
    mask[4, 0] = True
    data = Dataset.from_wizard(np.arange(60).reshape((4, 5, 3)),
                               targets=1, chunks=1, mask=mask)

    # check simple masking
    ok_(data.nfeatures == 2)

    # selection should be idempotent
    ok_(data[:, mask].nfeatures == data.nfeatures)
    # check that correct feature get selected
    assert_array_equal(data[:, 1].samples[:, 0], [12, 27, 42, 57])
    # XXX put back when coord -> fattr is implemented
    #ok_(tuple(data[:, 1].a.mapper.getInId(0)) == (4, 0))
    ok_(data[:, 1].a.mapper.forward1(mask).shape == (1,))

    # check sugarings
    # XXX put me back
    #self.failUnless(np.all(data.I == data.origids))
    assert_array_equal(data.C, data.chunks)
    assert_array_equal(data.UC, np.unique(data.chunks))
    assert_array_equal(data.T, data.targets)
    assert_array_equal(data.UT, np.unique(data.targets))
    assert_array_equal(data.S, data.samples)
    assert_array_equal(data.O, data.mapper.reverse(data.samples))
开发者ID:geeragh,项目名称:PyMVPA,代码行数:27,代码来源:test_datasetng.py


示例13: test_samples_shape

def test_samples_shape():
    ds = Dataset.from_wizard(np.ones((10, 2, 3, 4)), targets=1, chunks=1)
    ok_(ds.samples.shape == (10, 24))

    # what happens to 1D samples
    ds = Dataset(np.arange(5))
    assert_equal(ds.shape, (5, 1))
    assert_equal(ds.nfeatures, 1)
开发者ID:geeragh,项目名称:PyMVPA,代码行数:8,代码来源:test_datasetng.py


示例14: test_ex_from_masked

def test_ex_from_masked():
    ds = Dataset.from_wizard(samples=np.atleast_2d(np.arange(5)).view(myarray),
                             targets=1, chunks=1)
    # simple sequence has to be a single pattern
    assert_equal(ds.nsamples, 1)
    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    # check correct pattern layout (1x5)
    assert_array_equal(ds.samples, [[0, 1, 2, 3, 4]])

    # check for single label and origin
    assert_array_equal(ds.targets, [1])
    assert_array_equal(ds.chunks, [1])

    # now try adding pattern with wrong shape
    assert_raises(DatasetError, ds.append,
                  Dataset.from_wizard(np.ones((2,3)), targets=1, chunks=1))

    # now add two real patterns
    ds.append(Dataset.from_wizard(np.random.standard_normal((2, 5)),
                                  targets=2, chunks=2))
    assert_equal(ds.nsamples, 3)
    assert_array_equal(ds.targets, [1, 2, 2])
    assert_array_equal(ds.chunks, [1, 2, 2])

    # test unique class labels
    ds.append(Dataset.from_wizard(np.random.standard_normal((2, 5)),
                                  targets=3, chunks=5))
    assert_array_equal(ds.sa['targets'].unique, [1, 2, 3])

    # test wrong attributes length
    assert_raises(ValueError, Dataset.from_wizard,
                  np.random.standard_normal((4,2,3,4)), targets=[1, 2, 3],
                  chunks=2)
    assert_raises(ValueError, Dataset.from_wizard,
                  np.random.standard_normal((4,2,3,4)), targets=[1, 2, 3, 4],
                  chunks=[2, 2, 2])

    # no test one that is using from_masked
    ds = datasets['3dlarge']
    for a in ds.sa:
        assert_equal(len(ds.sa[a].value), len(ds))
    for a in ds.fa:
        assert_equal(len(ds.fa[a].value), ds.nfeatures)
开发者ID:geeragh,项目名称:PyMVPA,代码行数:45,代码来源:test_datasetng.py


示例15: test_shape_conversion

def test_shape_conversion():
    ds = Dataset.from_wizard(np.arange(24).reshape((2, 3, 4)).view(myarray),
                             targets=1, chunks=1)
    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    assert_equal(ds.nsamples, 2)
    assert_equal(ds.samples.shape, (2, 12))
    assert_array_equal(ds.samples, [range(12), range(12, 24)])
开发者ID:geeragh,项目名称:PyMVPA,代码行数:9,代码来源:test_datasetng.py


示例16: test_featuregroup_mapper

def test_featuregroup_mapper():
    ds = Dataset(np.arange(24).reshape(3,8))
    ds.fa['roi'] = [0, 1] * 4
    # just to check
    ds.sa['chunks'] = np.arange(3)

    # correct results
    csamples = [[3, 4], [11, 12], [19, 20]]
    croi = [0, 1]
    cchunks = np.arange(3)

    m = mean_group_feature(['roi'])
    mds = m.forward(ds)
    assert_equal(mds.shape, (3, 2))
    assert_array_equal(mds.samples, csamples)
    assert_array_equal(mds.fa.roi, np.unique([0, 1] * 4))
    # FAs should simply remain the same
    assert_array_equal(mds.sa.chunks, np.arange(3))
开发者ID:geeragh,项目名称:PyMVPA,代码行数:18,代码来源:test_fxmapper.py


示例17: test_icamapper

def test_icamapper():
    # data: 40 sample feature line in 2d space (40x2; samples x features)
    samples = np.vstack([np.arange(40.) for i in range(2)]).T
    samples -= samples.mean()
    samples +=  np.random.normal(size=samples.shape, scale=0.1)
    ndlin = Dataset(samples)

    pm = ICAMapper()
    try:
        pm.train(ndlin.copy())
        assert_equal(pm.proj.shape, (2, 2))
        p = pm.forward(ndlin.copy())
        assert_equal(p.shape, (40, 2))
        # check that the mapped data can be fully recovered by 'reverse()'
        assert_array_almost_equal(pm.reverse(p), ndlin)
    except mdp.NodeException:
        # do not puke if the ICA did not converge at all -- that is not our
        # fault but MDP's
        pass
开发者ID:B-Rich,项目名称:PyMVPA,代码行数:19,代码来源:test_mdp.py


示例18: setUp

 def setUp(self):
     data = np.random.standard_normal(( 100, 3, 4, 2 ))
     labels = np.concatenate( ( np.repeat( 0, 50 ),
                               np.repeat( 1, 50 ) ) )
     chunks = np.repeat( range(5), 10 )
     chunks = np.concatenate( (chunks, chunks) )
     mask = np.ones( (3, 4, 2), dtype='bool')
     mask[0,0,0] = 0
     mask[1,3,1] = 0
     self.dataset = Dataset.from_wizard(samples=data, targets=labels,
                                        chunks=chunks, mask=mask)
开发者ID:esc,项目名称:PyMVPA,代码行数:11,代码来源:test_perturbsensana.py


示例19: test_pcamapper

def test_pcamapper():
    # data: 40 sample feature line in 20d space (40x20; samples x features)
    ndlin = Dataset(np.concatenate([np.arange(40)
                               for i in range(20)]).reshape(20,-1).T)

    pm = PCAMapper()
    # train PCA
    assert_raises(mdp.NodeException, pm.train, ndlin)
    ndlin.samples = ndlin.samples.astype('float')
    ndlin_noise = ndlin.copy()
    ndlin_noise.samples += np.random.random(size=ndlin.samples.shape)
    # we have no variance for more than one PCA component, hence just one
    # actual non-zero eigenvalue
    assert_raises(mdp.NodeException, pm.train, ndlin)
    pm.train(ndlin_noise)
    assert_equal(pm.proj.shape, (20, 20))
    # now project data into PCA space
    p = pm.forward(ndlin.samples)
    assert_equal(p.shape, (40, 20))
    # check that the mapped data can be fully recovered by 'reverse()'
    assert_array_almost_equal(pm.reverse(p), ndlin)
开发者ID:arokem,项目名称:PyMVPA,代码行数:21,代码来源:test_mdp.py


示例20: test_basic_datamapping

def test_basic_datamapping():
    samples = np.arange(24).reshape((4, 3, 2)).view(myarray)

    ds = Dataset.from_wizard(samples)

    # array subclass survives
    ok_(isinstance(ds.samples, myarray))

    # mapper should end up in the dataset
    ok_(ds.a.has_key('mapper'))

    # check correct mapping
    ok_(ds.nsamples == 4)
    ok_(ds.nfeatures == 6)
开发者ID:geeragh,项目名称:PyMVPA,代码行数:14,代码来源:test_datasetng.py



注:本文中的mvpa.datasets.base.Dataset类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tools.assert_array_equal函数代码示例发布时间:2022-05-27
下一篇:
Python base.dataset_wizard函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap