• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python volgeom.from_any函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mvpa2.misc.surfing.volgeom.from_any函数的典型用法代码示例。如果您正苦于以下问题:Python from_any函数的具体用法?Python from_any怎么用?Python from_any使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了from_any函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_volgeom_masking

    def test_volgeom_masking(self):
        maskstep = 5
        vg = volgeom.VolGeom((2 * maskstep, 2 * maskstep, 2 * maskstep), np.identity(4))

        mask = vg.get_empty_array()
        sh = vg.shape

        # mask a subset of the voxels
        rng = range(0, sh[0], maskstep)
        for i in rng:
            for j in rng:
                for k in rng:
                    mask[i, j, k] = 1

        # make a new volgeom instance
        vg = volgeom.VolGeom(vg.shape, vg.affine, mask)

        data = vg.get_masked_nifti_image(nt=1)
        msk = vg.get_masked_nifti_image()
        dset = fmri_dataset(data, mask=msk)
        vg_dset = volgeom.from_any(dset)

        # ensure that the mask is set properly and
        assert_equal(vg.nvoxels, vg.nvoxels_mask * maskstep ** 3)
        assert_equal(vg_dset, vg)

        dilates = range(0, 8, 2)
        nvoxels_masks = [] # keep track of number of voxels for each size
        for dilate in dilates:
            covers_full_volume = dilate * 2 >= maskstep * 3 ** .5 + 1

            # constr gets values: None, Sphere(0), 2, Sphere(2), ...
            for i, constr in enumerate([Sphere, lambda x:x if x else None]):
                dilater = constr(dilate)

                img_dilated = vg.get_masked_nifti_image(dilate=dilater)
                data = img_dilated.get_data()

                assert_array_equal(data, vg.get_masked_array(dilate=dilater))
                n = np.sum(data)

                # number of voxels in mask is increasing
                assert_true(all(n >= p for p in nvoxels_masks))

                # results should be identical irrespective of constr
                if i == 0:
                    # - first call with this value of dilate: has to be more
                    #   voxels than very previous dilation value, unless the
                    #   full volume is covered - then it can be equal too
                    # - every next call: ensure size matches
                    cmp = lambda x, y:(x >= y if covers_full_volume else x > y)
                    assert_true(all(cmp(n, p) for p in nvoxels_masks))
                    nvoxels_masks.append(n)
                else:
                    # same size as previous call
                    assert_equal(n, nvoxels_masks[-1])

                # if dilate is not None or zero, then it should
                # have selected all the voxels if the radius is big enough
                assert_equal(np.sum(data) == vg.nvoxels, covers_full_volume)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:60,代码来源:test_surfing.py


示例2: __init__

    def __init__(self, vg, white, pial, intermediate=None):
        '''
        Parameters
        ----------
        volgeom: volgeom.VolGeom
            Volume geometry
        white: surf.Surface
            Surface representing white-grey matter boundary
        pial: surf.Surface
            Surface representing pial-grey matter boundary
        intermediate: surf.Surface (default: None).
            Surface representing intermediate surface. If omitted
            it is the node-wise average of white and pial.
            This parameter is usually ignored, except when used
            in a VolSurfMinimalLowresMapping.

        Notes
        -----
        'pial' and 'white' should have the same topology.
        '''
        self._volgeom = volgeom.from_any(vg)
        self._pial = surf.from_any(pial)
        self._white = surf.from_any(white)

        if not self._pial.same_topology(self._white):
            raise Exception("Not same topology for white and pial")

        #if intermediate is None:
        #    intermediate = (self.pial_surface * .5) + (self.white_surface * .5)
        self._intermediate = surf.from_any(intermediate)
开发者ID:mfalkiewicz,项目名称:PyMVPA,代码行数:30,代码来源:volsurf.py


示例3: __init__

    def __init__(self, vg, source, meta=None, src2nbr=None, src2aux=None):
        """
        Parameters
        ----------
        vg: volgeom.VolGeom or fmri_dataset-like or str
            data structure that contains volume geometry information.
        source: Surface.surf or numpy.ndarray or None
            structure that contains the geometric information of
            (the centers of) each mask. In the case of surface-searchlights this
            should be a surface used as the center for searchlights.
        meta: dict or None
            Optional meta data stored with this instance (such as searchlight
            radius and volumetric information). A use case is storing an instance
            and loading it later, and then checking whether the meta information
            is correct when it used to run a searchlight analysis.
        src2nbr: dict or None
            In a typical use case it contains a mapping from node center
            indices to lists of voxel indices.
        src2aux: dict or None
            In a typical use case it can contain auxiliary information such as
            distance of each voxel to each center.
        """
        self._volgeom = volgeom.from_any(vg)
        self._source = source

        self._src2nbr = dict() if src2nbr is None else src2nbr
        self._src2aux = dict() if src2nbr is None else src2aux

        self._meta = meta

        # this attribute is initially set to None
        # upon the first call that requires an inverse mapping
        # it is generated.
        self._lazy_nbr2src = None
开发者ID:neurosbh,项目名称:PyMVPA,代码行数:34,代码来源:volume_mask_dict.py


示例4: from_volume

def from_volume(v):
    '''Makes a pseudo-surface from a volume.
    Each voxels corresponds to a node; there is no topology.
    A use case is mimicking traditional volume-based searchlights

    Parameters
    ----------
    v: str of NiftiImage
        input volume

    Returns
    -------
    s: surf.Surface
        Surface with an equal number as nodes as there are voxels
        in the input volume. The associated topology is empty.
    '''
    vg = volgeom.from_any(v)
    vs = VolumeBasedSurface(vg)

    return VolSurfMaximalMapping(vg, vs, vs, vs)
开发者ID:mfalkiewicz,项目名称:PyMVPA,代码行数:20,代码来源:volsurf.py


示例5: train

    def train(self, dataset):
        '''Train the query engine on a dataset'''
        vg = self.voxsel.volgeom
        # We are creating a map from big unmasked indices of voxels
        # known to voxsel into the dataset's feature indexes.
        # We verify that the current dataset has the necessary
        # features (i.e. are not masked out) and that the volume
        # geometry matches that of the original voxel selection

        vg_ds = None
        try:
            vg_ds = volgeom.from_any(dataset)
        except:
            vg_ds = None

        if vg_ds:
            eps = .0001
            if np.max(np.abs(vg_ds.affine - vg.affine)) > eps:
                raise ValueError("Mismatch in affine matrix: %r !+ %r" %
                                        (vg_ds.affine, vg.affine))
            if not vg_ds.same_shape(vg):
                raise ValueError("Mismatch in shape: (%s,%s,%s) != "
                                 "(%s,%s,%s)" %
                                        (vg_ds.shape[:3], vg.shape[:3]))
        else:
            warning("Could not find dataset volume geometry for %r" % dataset)


        self._map_voxel_coord = map_voxel_coord = {}
        long_is = vg.ijk2lin(dataset.fa[self.space].value)
        long_is_invol = vg.contains_lin(long_is)
        for i, long_i in enumerate(long_is):
            if not long_is_invol[i]:
                raise ValueError('Feature id %d (with voxel id %d)'
                                 ' is not in the (possibly masked) '
                                 'volume geometry %r)' % (i, long_i, vg))
            if long_i in map_voxel_coord:
                map_voxel_coord[long_i].append(i)
            else:
                map_voxel_coord[long_i] = [i]
开发者ID:hanke,项目名称:PyMVPA,代码行数:40,代码来源:queryengine.py


示例6: __init__

    def __init__(self, vg, source, src2nbr=None, src2aux=None):
        """
        Parameters
        ----------
        vg: volgeom.VolGeom or fmri_dataset-like or str
            data structure that contains volume geometry information.
        source: Surface.surf or numpy.ndarray or None
            structure that contains the geometric information of 
            (the centers of) each mask. In the case of surface-searchlights this
            should be a surface used as the center for searchlights. 
        """
        self._volgeom = volgeom.from_any(vg)
        self._source = source


        self._src2nbr = dict() if src2nbr is None else src2nbr
        self._src2aux = dict() if src2nbr is None else src2aux

        # this attribute is initially set to None
        # upon the first call that requires an inverse mapping
        # it is generated.
        self._lazy_nbr2src = None
开发者ID:andreirusu,项目名称:PyMVPA,代码行数:22,代码来源:volume_mask_dict.py


示例7: run_voxel_selection

def run_voxel_selection(radius, volume, white_surf, pial_surf,
                         source_surf=None, source_surf_nodes=None,
                         volume_mask=None, distance_metric='dijkstra',
                         start_mm=0, stop_mm=0, start_fr=0., stop_fr=1.,
                         nsteps=10, eta_step=1, nproc=None,
                         outside_node_margin=None,
                         results_backend=None, tmp_prefix='tmpvoxsel',
                         node_voxel_mapping='maximal'):

    """
    Voxel selection wrapper for multiple center nodes on the surface

    Parameters
    ----------
    radius: int or float
        Size of searchlight. If an integer, then it indicates the number of
        voxels. If a float, then it indicates the radius of the disc
    volume: Dataset or NiftiImage or volgeom.Volgeom
        Volume in which voxels are selected.
    white_surf: str of surf.Surface
        Surface of white-matter to grey-matter boundary, or filename
        of file containing such a surface.
    pial_surf: str of surf.Surface
        Surface of grey-matter to pial-matter boundary, or filename
        of file containing such a surface.
    source_surf: surf.Surface or None
        Surface used to compute distance between nodes. If omitted, it is
        the average of the gray and white surfaces.
    source_surf_nodes: list of int or numpy array or None
        Indices of nodes in source_surf that serve as searchlight center.
        By default every node serves as a searchlight center.
    volume_mask: None (default) or False or int
        Mask from volume to apply from voxel selection results. By default
        no mask is applied. If volume_mask is an integer k, then the k-th
        volume from volume is used to mask the data. If volume is a Dataset
        and has a property volume.fa.voxel_indices, then these indices
        are used to mask the data, unless volume_mask is False or an integer.
    distance_metric: str
        Distance metric between nodes. 'euclidean' or 'dijksta' (default)
    start_fr: float (default: 0)
            Relative start position of line in gray matter, 0.=white
            surface, 1.=pial surface
    stop_fr: float (default: 1)
        Relative stop position of line (as in see start)
    start_mm: float (default: 0)
        Absolute start position offset (as in start_fr)
    stop_mm: float (default: 0)
        Absolute start position offset (as in start_fr)
    nsteps: int (default: 10)
        Number of steps from white to pial surface
    eta_step: int (default: 1)
        After how many searchlights an estimate should be printed of the
        remaining time until completion of all searchlights
    nproc: int or None
        Number of parallel threads. None means as many threads as the
        system supports. The pprocess is required for parallel threads; if
        it cannot be used, then a single thread is used.
    outside_node_margin: float or None (default)
        By default nodes outside the volume are skipped; using this
        parameter allows for a marign. If this value is a float (possibly
        np.inf), then all nodes within outside_node_margin Dijkstra
        distance from any node within the volume are still assigned
        associated voxels. If outside_node_margin is True, then a node is
        always assigned voxels regardless of its position in the volume.
    results_backend : 'native' or 'hdf5' or None (default).
        Specifies the way results are provided back from a processing block
        in case of nproc > 1. 'native' is pickling/unpickling of results by
        pprocess, while 'hdf5' would use h5save/h5load functionality.
        'hdf5' might be more time and memory efficient in some cases.
        If None, then 'hdf5' if used if available, else 'native'.
    tmp_prefix : str, optional
        If specified -- serves as a prefix for temporary files storage
        if results_backend == 'hdf5'.  Thus can specify the directory to use
        (trailing file path separator is not added automagically).
    node_voxel_mapping: 'minimal' or 'maximal' or 'minimal_lowres'
        If 'minimal' then each voxel is associated with at most one node.
        If 'maximal' it is associated with as many nodes that contain the
        voxel (default: 'maximal').
        If 'minimal_lowres' then each voxel is associated with at most one
        node, and each node that is mapped onto has a corresponding node
        (at the same spatial location) in source_surf.


    Returns
    -------
    sel: volume_mask_dict.VolumeMaskDictionary
        Voxel selection results, that associates, which each node, the indices
        of the surrounding voxels.
    """

    vg = volgeom.from_any(volume, volume_mask)

    mapper_dict = dict(maximal=volsurf.VolSurfMaximalMapping,
                       minimal=volsurf.VolSurfMinimalMapping,
                       minimal_lowres=volsurf.VolSurfMinimalLowresMapping)

    mapper = mapper_dict[node_voxel_mapping]

    vsm = mapper(vg, white=white_surf, pial=pial_surf,
                 intermediate=source_surf, nsteps=nsteps, start_fr=start_fr,
#.........这里部分代码省略.........
开发者ID:JohnGriffiths,项目名称:nidata,代码行数:101,代码来源:surf_voxel_selection.py


示例8: test_volgeom


#.........这里部分代码省略.........
        nv = sz[0] * sz[1] * sz[2] # number of voxels
        nt = sz[3] # number of time points
        assert_equal(vg.nvoxels, nv)

        # a couple of hard-coded test cases
        # last two are outside the volume
        linidxs = [0, 1, sz[2], sz[1] * sz[2], nv - 1, -1 , nv]
        subidxs = ([(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
                    (sz[0] - 1, sz[1] - 1, sz[2] - 1)]
                   + [(sz[0], sz[1], sz[2])] * 2)

        xyzs = ([(xo, yo, zo), (xo, yo, zo + d), (xo, yo + d, zo),
                 (xo + d, yo, zo),
                 (xo + d * (sz[0] - 1), yo + d * (sz[1] - 1), zo + d * (sz[2] - 1))]
                + [(np.nan, np.nan, np.nan)] * 2)

        for i, linidx in enumerate(linidxs):
            lin = np.asarray([linidx])
            ijk = vg.lin2ijk(lin)


            ijk_expected = np.reshape(np.asarray(subidxs[i]), (1, 3))
            assert_array_almost_equal(ijk, ijk_expected)

            xyz = vg.lin2xyz(lin)

            xyz_expected = np.reshape(np.asarray(xyzs[i]), (1, 3))
            assert_array_almost_equal(xyz, xyz_expected)


        # check that some identities hold
        ab, bc, ac = vg.lin2ijk, vg.ijk2xyz, vg.lin2xyz
        ba, cb, ca = vg.ijk2lin, vg.xyz2ijk, vg.xyz2lin
        identities = [lambda x:ab(ba(x)),
                      lambda x:bc(cb(x)),
                      lambda x:ac(ca(x)),
                      lambda x:ba(ab(x)),
                      lambda x:cb(bc(x)),
                      lambda x:ca(ac(x)),
                      lambda x:bc(ab(ca(x))),
                      lambda x:ba(cb(ac(x)))]

        # 0=lin, 1=ijk, 2=xyz
        identities_input = [1, 2, 2, 0, 1, 0, 2, 0]

        # voxel indices to test
        linrange = [0, 1, sz[2], sz[1] * sz[2]] + range(0, nv, nv // 100)

        lin = np.reshape(np.asarray(linrange), (-1,))
        ijk = vg.lin2ijk(lin)
        xyz = vg.ijk2xyz(ijk)

        for j, identity in enumerate(identities):
            inp = identities_input[j]
            x = {0: lin,
                 1: ijk,
                 2: xyz}[inp]

            assert_array_equal(x, identity(x))

        # check that masking works
        assert_true(vg.contains_lin(lin).all())
        assert_false(vg.contains_lin(-lin - 1).any())

        assert_true(vg.contains_ijk(ijk).all())
        assert_false(vg.contains_ijk(-ijk - 1).any())


        # ensure that we have no rounding issues
        deltas = [-.51, -.49, 0., .49, .51]
        should_raise = [True, False, False, False, True]

        for delta, r in zip(deltas, should_raise):
            xyz_d = xyz + delta * d
            lin_d = vg.xyz2lin(xyz_d)

            if r:
                assert_raises(AssertionError,
                              assert_array_almost_equal, lin_d, lin)
            else:
                assert_array_almost_equal(lin_d, lin)


        # some I/O testing

        img = vg.get_empty_nifti_image()
        img.to_filename(temp_fn)

        assert_true(os.path.exists(temp_fn))

        vg2 = volgeom.from_any(img)
        vg3 = volgeom.from_any(temp_fn)

        assert_array_equal(vg.affine, vg2.affine)
        assert_array_equal(vg.affine, vg3.affine)

        assert_equal(vg.shape[:3], vg2.shape[:3], 0)
        assert_equal(vg.shape[:3], vg3.shape[:3], 0)

        assert_true(len('%s%r' % (vg, vg)) > 0)
开发者ID:Arthurkorn,项目名称:PyMVPA,代码行数:101,代码来源:test_surfing.py


示例9: test_voxel_selection

    def test_voxel_selection(self):
        """Compare surface and volume based searchlight"""

        """
        Tests to see whether results are identical for surface-based
        searchlight (just one plane; Euclidean distnace) and volume-based
        searchlight.

        Note that the current value is a float; if it were int, it would
        specify the number of voxels in each searchlight"""

        radius = 10.0

        """Define input filenames"""
        epi_fn = pathjoin(pymvpa_dataroot, "bold.nii.gz")
        maskfn = pathjoin(pymvpa_dataroot, "mask.nii.gz")

        """
        Use the EPI datafile to define a surface.
        The surface has as many nodes as there are voxels
        and is parallel to the volume 'slice'
        """
        vg = volgeom.from_any(maskfn, mask_volume=True)

        aff = vg.affine
        nx, ny, nz = vg.shape[:3]

        """Plane goes in x and y direction, so we take these vectors
        from the affine transformation matrix of the volume"""
        plane = surf.generate_plane(aff[:3, 3], aff[:3, 0], aff[:3, 1], nx, ny)

        """
        Simulate pial and white matter as just above and below
        the central plane
        """
        normal_vec = aff[:3, 2]
        outer = plane + normal_vec
        inner = plane + -normal_vec

        """
        Combine volume and surface information
        """
        vsm = volsurf.VolSurfMaximalMapping(vg, outer, inner)

        """
        Run voxel selection with specified radius (in mm), using
        Euclidean distance measure
        """
        surf_voxsel = surf_voxel_selection.voxel_selection(vsm, radius, distance_metric="e")

        """Define the measure"""

        # run_slow=True would give an actual cross-validation with meaningful
        # accuracies. Because this is a unit-test only the number of voxels
        # in each searchlight is tested.
        run_slow = False

        if run_slow:
            meas = CrossValidation(GNB(), OddEvenPartitioner(), errorfx=lambda p, t: np.mean(p == t))
            postproc = mean_sample
        else:
            meas = _Voxel_Count_Measure()
            postproc = lambda x: x

        """
        Surface analysis: define the query engine, cross validation,
        and searchlight
        """
        surf_qe = SurfaceVerticesQueryEngine(surf_voxsel)
        surf_sl = Searchlight(meas, queryengine=surf_qe, postproc=postproc)

        """
        new (Sep 2012): also test 'simple' queryengine wrapper function
        """

        surf_qe2 = disc_surface_queryengine(
            radius, maskfn, inner, outer, plane, volume_mask=True, distance_metric="euclidean"
        )
        surf_sl2 = Searchlight(meas, queryengine=surf_qe2, postproc=postproc)

        """
        Same for the volume analysis
        """
        element_sizes = tuple(map(abs, (aff[0, 0], aff[1, 1], aff[2, 2])))
        sph = Sphere(radius, element_sizes=element_sizes)
        kwa = {"voxel_indices": sph}

        vol_qe = IndexQueryEngine(**kwa)
        vol_sl = Searchlight(meas, queryengine=vol_qe, postproc=postproc)

        """The following steps are similar to start_easy.py"""
        attr = SampleAttributes(pathjoin(pymvpa_dataroot, "attributes_literal.txt"))

        mask = surf_voxsel.get_mask()

        dataset = fmri_dataset(
            samples=pathjoin(pymvpa_dataroot, "bold.nii.gz"), targets=attr.targets, chunks=attr.chunks, mask=mask
        )

        if run_slow:
#.........这里部分代码省略.........
开发者ID:beausievers,项目名称:PyMVPA,代码行数:101,代码来源:test_surfing_voxelselection.py


示例10: test_voxel_selection_alternative_calls


#.........这里部分代码省略.........
                    16,
                    16,
                    18,
                    16,
                ]
            ]
        )

        params = dict(
            intermediate_=(intermediate, intermediatefn, None),
            center_nodes_=(None, range(nv)),
            volume_=(volimg, volfn, volds, volfngz, voldsgz),
            surf_src_=("filename", "surf"),
            volume_mask_=(None, True, 0, 2),
            call_method_=("qe", "rvs", "gam"),
        )

        combis = _cartprod(params)  # compute all possible combinations
        combistep = 17  # 173
        # some fine prime number to speed things up
        # if this value becomes too big then not all
        # cases are covered
        # the unit test tests itself whether all values
        # occur at least once

        tested_params = dict()

        def val2str(x):
            return "%r:%r" % (type(x), x)

        for i in xrange(0, len(combis), combistep):
            combi = combis[i]

            intermediate_ = combi["intermediate_"]
            center_nodes_ = combi["center_nodes_"]
            volume_ = combi["volume_"]
            surf_src_ = combi["surf_src_"]
            volume_mask_ = combi["volume_mask_"]
            call_method_ = combi["call_method_"]

            # keep track of which values were used -
            # so that this unit test tests itself

            for k in combi.keys():
                if not k in tested_params:
                    tested_params[k] = set()
                tested_params[k].add(val2str(combi[k]))

            if surf_src_ == "filename":
                s_i, s_m, s_o = inner, intermediate, outer
            elif surf_src_ == "surf":
                s_i, s_m, s_o = innerfn, intermediatefn, outerfn
            else:
                raise ValueError("this should not happen")

            if call_method_ == "qe":
                # use the fancy query engine wrapper
                qe = disc_surface_queryengine(
                    radius, volume_, s_i, s_o, s_m, source_surf_nodes=center_nodes_, volume_mask=volume_mask_
                )
                sl = Searchlight(m, queryengine=qe)
                r = sl(ds).samples

            elif call_method_ == "rvs":
                # use query-engine but build the
                # ingredients by hand
                vg = volgeom.from_any(volume_, volume_mask_)
                vs = volsurf.VolSurfMaximalMapping(vg, s_i, s_o)
                sel = surf_voxel_selection.voxel_selection(vs, radius, source_surf=s_m, source_surf_nodes=center_nodes_)
                qe = SurfaceVerticesQueryEngine(sel)
                sl = Searchlight(m, queryengine=qe)
                r = sl(ds).samples

            elif call_method_ == "gam":
                # build everything from the ground up
                vg = volgeom.from_any(volume_, volume_mask_)
                vs = volsurf.VolSurfMaximalMapping(vg, s_i, s_o)
                sel = surf_voxel_selection.voxel_selection(vs, radius, source_surf=s_m, source_surf_nodes=center_nodes_)
                mp = sel

                ks = sel.keys()
                nk = len(ks)
                r = np.zeros((1, nk))
                for i, k in enumerate(ks):
                    r[0, i] = len(mp[k])

            # check if result is as expected
            assert_array_equal(r_expected, r)

        # clean up
        all_fns = [volfn, volfngz, outerfn, innerfn, intermediatefn]
        map(os.remove, all_fns)

        for k, vs in params.iteritems():
            if not k in tested_params:
                raise ValueError("Missing key: %r" % k)
            for v in vs:
                vstr = val2str(v)
                if not vstr in tested_params[k]:
                    raise ValueError("Missing value %r for %s" % (tested_params[k], k))
开发者ID:beausievers,项目名称:PyMVPA,代码行数:101,代码来源:test_surfing_voxelselection.py



注:本文中的mvpa2.misc.surfing.volgeom.from_any函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python copy.copy函数代码示例发布时间:2022-05-27
下一篇:
Python data_generators.normal_feature_dataset函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap