• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python tools.random_seed函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中mystic.tools.random_seed函数的典型用法代码示例。如果您正苦于以下问题:Python random_seed函数的具体用法?Python random_seed怎么用?Python random_seed使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了random_seed函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: optimize

def optimize(cost,lb,ub):
  from pathos.pools import ProcessPool as Pool
  from mystic.solvers import DifferentialEvolutionSolver2
  from mystic.termination import CandidateRelativeTolerance as CRT
  from mystic.strategy import Best1Exp
  from mystic.monitors import VerboseMonitor, Monitor
  from mystic.tools import random_seed

  random_seed(123)

 #stepmon = VerboseMonitor(100)
  stepmon = Monitor()
  evalmon = Monitor()

  ndim = len(lb) # [(1 + RVend) - RVstart] + 1

  solver = DifferentialEvolutionSolver2(ndim,npop)
  solver.SetRandomInitialPoints(min=lb,max=ub)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(evalmon)
  solver.SetGenerationMonitor(stepmon)
  solver.SetMapper(Pool().map)

  tol = convergence_tol
  solver.Solve(cost,termination=CRT(tol,tol),strategy=Best1Exp, \
               CrossProbability=crossover,ScalingFactor=percent_change)

  print("solved: %s" % solver.bestSolution)
  scale = 1.0
  diameter_squared = -solver.bestEnergy / scale  #XXX: scale != 0
  func_evals = solver.evaluations
  return diameter_squared, func_evals
开发者ID:Magellen,项目名称:mystic,代码行数:33,代码来源:MM_surrogate_diam.py


示例2: optimize

  def optimize(cost, bounds, tolerance, _constraints):
    (lb,ub) = bounds
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import VTR
    from mystic.strategy import Best1Exp
    from mystic.monitors import VerboseMonitor, Monitor
    from mystic.tools import random_seed
    if debug: random_seed(123)
    evalmon = Monitor();  stepmon = Monitor()
    if debug: stepmon = VerboseMonitor(10)

    ndim = len(lb)
    solver = DifferentialEvolutionSolver2(ndim,npop)
    solver.SetRandomInitialPoints(min=lb,max=ub)
    solver.SetStrictRanges(min=lb,max=ub)
    solver.SetEvaluationLimits(maxiter,maxfun)
    solver.SetEvaluationMonitor(evalmon)
    solver.SetGenerationMonitor(stepmon)
    solver.Solve(cost,termination=VTR(tolerance),strategy=Best1Exp, \
                 CrossProbability=crossover,ScalingFactor=percent_change, \
                 constraints = _constraints)

    solved = solver.Solution()
    diameter_squared = solver.bestEnergy
    func_evals = len(evalmon)
    return solved, diameter_squared, func_evals
开发者ID:wulmer,项目名称:mystic,代码行数:26,代码来源:measures.py


示例3: main

    def main(self, *args, **kwds):
	# general solver

	# exception for DifferentialEvolutionSolver2
	if self.inventory.solver == 'DifferentialEvolution2':
            solvername = DifferentialEvolutionSolver2
        else:
	    solvername = eval(self.inventory.solver + 'Solver')

        # create the solver
	try:
            NP = self.mod.NP
	    solver = solvername(self.mod.ND, NP)
	except:
	    solver = solvername(self.mod.ND)

	costfunction  = self.mod.cost
        termination = self.mod.termination

        from mystic.tools import random_seed
        random_seed(123)

        # set initial points
	try:
            solver.SetInitialPoints(self.mod.x0)
	except:
	    solver.SetRandomInitialPoints(self.mod.min, self.mod.max)

        # set maximum number of iterations
        try:
            maxiter = self.mod.maxiter
            solver.SetEvaluationLimits(generations=maxiter)
        except:
            pass

        # set bounds, if applicable
        try:
            min_bounds = self.mod.min_bounds
            max_bounds = self.mod.max_bounds
            solver.SetStrictRanges(min_bounds, max_bounds)
        except:
            pass

        # additional arguments/kwds to the Solve() call
        try:
            solverkwds = self.mod.solverkwds
        except:
            solverkwds = {}
        
        solver.Solve(costfunction, termination, **solverkwds)
        self.solution = solver.Solution()
	return
开发者ID:Magellen,项目名称:mystic,代码行数:52,代码来源:testsolvers_pyre.py


示例4: __test2

def __test2():
  # From branches/UQ/math/cut.py
  from mystic.tools import random_seed
  random_seed(123)
  lower = [-60.0, -10.0, -50.0]
  upper = [105.0, 30.0, 75.0]

  def model(x):
    x1,x2,x3 = x
    if x1 > (x2 + x3): return x1*x2 - x3
    return 0.0

  failure,success = sample(model,lower,upper)
  pof = float(failure) / float(failure + success)
  print "PoF using method 1: %s" % pof
  random_seed(123)
  print "PoF using method 2: %s" % sampled_pof(model,lower,upper)
开发者ID:agamdua,项目名称:mystic,代码行数:17,代码来源:samples.py


示例5: optimize

def optimize(cost,_bounds,_constraints):
  from mystic.solvers import DifferentialEvolutionSolver2
  from mystic.termination import ChangeOverGeneration as COG
  from mystic.strategy import Best1Exp
  from mystic.monitors import VerboseMonitor, Monitor
  from mystic.tools import random_seed
  from mystic.termination import Or, CollapseWeight, CollapsePosition, state


  if debug:
      random_seed(123) # or 666 to force impose_unweighted reweighting
      stepmon = VerboseMonitor(1,1)
  else:
      stepmon = VerboseMonitor(10) if verbose else Monitor()
  stepmon._npts = npts
  evalmon = Monitor()

  lb,ub = _bounds
  ndim = len(lb)

  solver = DifferentialEvolutionSolver2(ndim,npop)
  solver.SetRandomInitialPoints(min=lb,max=ub)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(evalmon)
  solver.SetGenerationMonitor(stepmon)
  solver.SetConstraints(_constraints)

  tol = convergence_tol
  term = Or(COG(tol,ngen), CollapseWeight(), CollapsePosition())
  solver.Solve(cost,termination=term,strategy=Best1Exp, disp=verbose, \
               CrossProbability=crossover,ScalingFactor=percent_change)
 #while collapse and solver.Collapse(verbose): #XXX: total_evaluations?
 #    if debug: print(state(solver._termination).keys())
 #    solver.Solve() #XXX: cost, term, strategy, cross, scale ?
 #    if debug: solver.SaveSolver('debug.pkl')

  solved = solver.bestSolution
 #print("solved: %s" % solver.Solution())
  func_max = MINMAX * solver.bestEnergy       #NOTE: -solution assumes -Max
 #func_max = 1.0 + MINMAX*solver.bestEnergy   #NOTE: 1-sol => 1-success = fail
  func_evals = solver.evaluations
  from mystic.munge import write_support_file
  write_support_file(stepmon, npts=npts)
  return solved, func_max, func_evals
开发者ID:Magellen,项目名称:mystic,代码行数:45,代码来源:collapse_measures.py


示例6: test2

def test2(monitor, diffenv=None):
  if diffenv == True:
   #from mystic.solvers import DifferentialEvolutionSolver as DE
    from mystic.solvers import DifferentialEvolutionSolver2 as DE
  elif diffenv == False:
    from mystic.solvers import NelderMeadSimplexSolver as noDE
  else:
    from mystic.solvers import PowellDirectionalSolver as noDE
  from mystic.termination import ChangeOverGeneration as COG
  from mystic.tools import getch, random_seed

  random_seed(123)

  lb = [-100,-100,-100]
  ub = [1000,1000,1000]
  ndim = len(lb)
  npop = 5
  maxiter = 10
  maxfun = 1e+6
  convergence_tol = 1e-10; ngen = 100
  crossover = 0.9
  percent_change = 0.9

  def cost(x):
    ax,bx,c = x
    return (ax)**2 - bx + c

  if diffenv == True:
    solver = DE(ndim,npop)
  else:
    solver = noDE(ndim)
  solver.SetRandomInitialPoints(min=lb,max=ub)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(monitor)
 #solver.SetGenerationMonitor(monitor)

  tol = convergence_tol
  solver.Solve(cost, termination=COG(tol,ngen))

  solved = solver.Solution()
  monitor.info("solved: %s" % solved)
  func_max = -solver.bestEnergy 
  return solved, func_max
开发者ID:Magellen,项目名称:mystic,代码行数:44,代码来源:test_SOW.py


示例7: optimize

def optimize(cost,lower,upper,nbins):
  from mystic.tools import random_seed
  from pyina.launchers import TorqueMpi as Pool
  random_seed(123)

  # generate arrays of points defining a grid in parameter space
  grid_dimensions = len(lower)
  bins = []
  for i in range(grid_dimensions):
    step = abs(upper[i] - lower[i])/nbins[i]
    bins.append( [lower[i] + (j+0.5)*step for j in range(nbins[i])] )

  # build a grid of starting points
  from mystic.math.grid import gridpts
  from pool_helper import local_optimize
  from pool_helper import nnodes, queue, timelimit
  initial_values = gridpts(bins)

  # run optimizer for each grid point
  lb = [lower for i in range(len(initial_values))]
  ub = [upper for i in range(len(initial_values))]
  cf = [cost for i in range(len(initial_values))]
  # map:: params, energy, func_evals = local_optimize(cost,x0,lb,ub)
  config = {'queue':queue, 'timelimit':timelimit}
  results = Pool(nnodes, **config).map(local_optimize,cf,initial_values,lb,ub)
  #print "results = %s" % results

  # get the results with the lowest energy
  best = list(results[0][0]), results[0][1]
  func_evals = results[0][2]
  for result in results[1:]:
    func_evals += result[2] # add function evaluations
    if result[1] < best[1]: # compare energy
      best = list(result[0]), result[1]

  # return best
  print "solved: %s" % best[0]
  scale = 1.0
  diameter_squared = -best[1] / scale  #XXX: scale != 0
  return diameter_squared, func_evals
开发者ID:cdeil,项目名称:mystic,代码行数:40,代码来源:QSUB2_surrogate_diam_batchgrid.py


示例8: McKerns

#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2019 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE

from mystic.constraints import *
from mystic.penalty import quadratic_equality
from mystic.coupler import inner
from mystic.math import almostEqual
from mystic.tools import random_seed
random_seed(213)

def test_penalize():

  from mystic.math.measures import mean, spread
  def mean_constraint(x, target):
    return mean(x) - target

  def range_constraint(x, target):
    return spread(x) - target

  @quadratic_equality(condition=range_constraint, kwds={'target':5.0})
  @quadratic_equality(condition=mean_constraint, kwds={'target':5.0})
  def penalty(x):
    return 0.0

  def cost(x):
    return abs(sum(x) - 5.0)
开发者ID:uqfoundation,项目名称:mystic,代码行数:31,代码来源:test_constraints.py


示例9: print_solution

NP = 40
MAX_GENERATIONS = NP*NP
NNODES = NP/5

seed = 100


if __name__=='__main__':
    def print_solution(func):
        print poly1d(func)
        return

    psow = VerboseMonitor(10)
    ssow = VerboseMonitor(10)

    random_seed(seed)
    print "first sequential..."
    solver = DifferentialEvolutionSolver2(ND,NP)  #XXX: sequential
    solver.SetRandomInitialPoints(min=[-100.0]*ND, max=[100.0]*ND)
    solver.SetEvaluationLimits(generations=MAX_GENERATIONS)
    solver.SetGenerationMonitor(ssow)
    solver.Solve(ChebyshevCost, VTR(0.01), strategy=Best1Exp, \
                 CrossProbability=1.0, ScalingFactor=0.9, disp=1)
    print ""
    print_solution( solver.bestSolution )

    #'''
    random_seed(seed)
    print "\n and now parallel..."
    solver2 = DifferentialEvolutionSolver2(ND,NP)  #XXX: parallel
    solver2.SetMapper(Pool(NNODES).map)
开发者ID:agamdua,项目名称:mystic,代码行数:31,代码来源:ezmap_desolve.py


示例10: impose_expectation

def impose_expectation(param, f, npts, bounds=None, weights=None, **kwds):
  """impose a given expextation value (m +/- D) on a given function f.
Optimiziation on f over the given bounds seeks a mean 'm' with deviation 'D'.
  (this function is not 'mean-, range-, or variance-preserving')

Inputs:
    param -- a tuple of target parameters: param = (mean, deviation)
    f -- a function that takes a list and returns a number
    npts -- a tuple of dimensions of the target product measure
    bounds -- a tuple of sample bounds:   bounds = (lower_bounds, upper_bounds)
    weights -- a list of sample weights

Additional Inputs:
    constraints -- a function that takes a nested list of N x 1D discrete
        measure positions and weights   x' = constraints(x, w)

Outputs:
    samples -- a list of sample positions

For example:
    >>> # provide the dimensions and bounds
    >>> nx = 3;  ny = 2;  nz = 1
    >>> x_lb = [10.0];  y_lb = [0.0];  z_lb = [10.0]
    >>> x_ub = [50.0];  y_ub = [9.0];  z_ub = [90.0]
    >>> 
    >>> # prepare the bounds
    >>> lb = (nx * x_lb) + (ny * y_lb) + (nz * z_lb)
    >>> ub = (nx * x_ub) + (ny * y_ub) + (nz * z_ub)
    >>>
    >>> # generate a list of samples with mean +/- dev imposed
    >>> mean = 2.0;  dev = 0.01
    >>> samples = impose_expectation((mean,dev), f, (nx,ny,nz), (lb,ub))
    >>>
    >>> # test the results by calculating the expectation value for the samples
    >>> expectation(f, samples)
    >>> 2.00001001012246015
"""
  # param[0] is the target mean
  # param[1] is the acceptable deviation from the target mean

  # FIXME: the following is a HACK to recover from lost 'weights' information
  #        we 'mimic' discrete measures using the product measure weights
  # plug in the 'constraints' function:  samples' = constrain(samples, weights)
  constrain = None   # default is no constraints
  if 'constraints' in kwds: constrain = kwds['constraints']
  if not constrain:  # if None (default), there are no constraints
    constraints = lambda x: x
  else: #XXX: better to use a standard "xk' = constrain(xk)" interface ?
    def constraints(rv):
      coords = _pack( _nested(rv,npts) )
      coords = zip(*coords)              # 'mimic' a nested list
      coords = constrain(coords, [weights for i in range(len(coords))])
      coords = zip(*coords)              # revert back to a packed list
      return _flat( _unpack(coords,npts) )

  # construct cost function to reduce deviation from expectation value
  def cost(rv):
    """compute cost from a 1-d array of model parameters,
    where:  cost = | E[model] - m |**2 """
    # from mystic.math.measures import _pack, _nested, expectation
    samples = _pack( _nested(rv,npts) )
    Ex = expectation(f, samples, weights)
    return (Ex - param[0])**2

  # if bounds are not set, use the default optimizer bounds
  if not bounds:
    lower_bounds = []; upper_bounds = []
    for n in npts:
      lower_bounds += [None]*n
      upper_bounds += [None]*n
  else: 
    lower_bounds, upper_bounds = bounds

  # construct and configure optimizer
  debug = kwds['debug'] if 'debug' in kwds else False
  npop = 200
  maxiter = 1000;  maxfun = 1e+6
  crossover = 0.9; percent_change = 0.9

  def optimize(cost,(lb,ub),tolerance,_constraints):
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import VTR
    from mystic.strategy import Best1Exp
    from mystic.monitors import VerboseMonitor, Monitor
    from mystic.tools import random_seed
    if debug: random_seed(123)
    evalmon = Monitor();  stepmon = Monitor()
    if debug: stepmon = VerboseMonitor(10)

    ndim = len(lb)
    solver = DifferentialEvolutionSolver2(ndim,npop)
    solver.SetRandomInitialPoints(min=lb,max=ub)
    solver.SetStrictRanges(min=lb,max=ub)
    solver.SetEvaluationLimits(maxiter,maxfun)
    solver.SetEvaluationMonitor(evalmon)
    solver.SetGenerationMonitor(stepmon)
    solver.Solve(cost,termination=VTR(tolerance),strategy=Best1Exp, \
                 CrossProbability=crossover,ScalingFactor=percent_change, \
                 constraints = _constraints)

#.........这里部分代码省略.........
开发者ID:jcfr,项目名称:mystic,代码行数:101,代码来源:measures.py


示例11: test_griewangk

def test_griewangk():
    """Test Griewangk's function, which has many local minima.

Testing Griewangk:
Expected: x=[0.]*10 and f=0

Using DifferentialEvolutionSolver:
Solution:  [  8.87516194e-09   7.26058147e-09   1.02076001e-08   1.54219038e-08
  -1.54328461e-08   2.34589663e-08   2.02809360e-08  -1.36385836e-08
   1.38670373e-08   1.59668900e-08]
f value:  0.0
Iterations:  4120
Function evaluations:  205669
Time elapsed:  34.4936850071  seconds

Using DifferentialEvolutionSolver2:
Solution:  [ -2.02709316e-09   3.22017968e-09   1.55275472e-08   5.26739541e-09
  -2.18490470e-08   3.73725584e-09  -1.02315312e-09   1.24680355e-08
  -9.47898116e-09   2.22243557e-08]
f value:  0.0
Iterations:  4011
Function evaluations:  200215
Time elapsed:  32.8412370682  seconds
"""

    print "Testing Griewangk:"
    print "Expected: x=[0.]*10 and f=0"
    from mystic.models import griewangk as costfunc
    ndim = 10
    lb = [-400.]*ndim
    ub = [400.]*ndim
    maxiter = 10000
    seed = 123 # Re-seed for each solver to have them all start at same x0
    
    # DifferentialEvolutionSolver
    print "\nUsing DifferentialEvolutionSolver:"
    npop = 50
    random_seed(seed)
    from mystic.solvers import DifferentialEvolutionSolver
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.termination import CandidateRelativeTolerance as CRT
    from mystic.termination import VTR
    from mystic.strategy import Rand1Bin, Best1Bin, Rand1Exp
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver(ndim, npop)
    solver.SetRandomInitialPoints(lb, ub)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    solver.enable_signal_handler()
    #term = COG(1e-10)
    #term = CRT()
    term = VTR(0.)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Exp, \
                 CrossProbability=0.3, ScalingFactor=1.0)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)

    # DifferentialEvolutionSolver2
    print "\nUsing DifferentialEvolutionSolver2:"
    npop = 50
    random_seed(seed)
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.termination import CandidateRelativeTolerance as CRT
    from mystic.termination import VTR
    from mystic.strategy import Rand1Bin, Best1Bin, Rand1Exp
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver2(ndim, npop)
    solver.SetRandomInitialPoints(lb, ub)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    #term = COG(1e-10)
    #term = CRT()
    term = VTR(0.)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Exp, \
                 CrossProbability=0.3, ScalingFactor=1.0)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)
开发者ID:jcfr,项目名称:mystic,代码行数:100,代码来源:solver_test_best_performance.py


示例12: random_seed

    pylab.plot(x,y,style)
    pylab.legend(["Exact","Fitted"])
    pylab.axis([-1.4,1.4,-2,8],'k-')
    pylab.draw()
    return


if __name__ == '__main__':

    print "Differential Evolution"
    print "======================"

    # set range for random initial guess
    ndim = 9
    x0 = [(-100,100)]*ndim
    random_seed(321)

    # draw frame and exact coefficients
    plot_exact()

    # use DE to solve 8th-order Chebyshev coefficients
    npop = 10*ndim
    solution = diffev(chebyshev8cost,x0,npop)

    # use pretty print for polynomials
    print poly1d(solution)

    # compare solution with actual 8th-order Chebyshev coefficients
    print "\nActual Coefficients:\n %s\n" % poly1d(chebyshev8coeffs)

    # plot solution versus exact coefficients
开发者ID:jcfr,项目名称:mystic,代码行数:31,代码来源:example07.py


示例13: _run_solver

    def _run_solver(self, early_terminate=False, **kwds):
        from mystic.monitors import Monitor
        import numpy
        from mystic.tools import random_seed
        random_seed(321)
        esow = Monitor()
        ssow = Monitor() 

        solver = self.solver
        solver.SetRandomInitialPoints(min = self.min, max = self.max)
        if self.usebounds: solver.SetStrictRanges(self.min, self.max)
        if self.uselimits: solver.SetEvaluationLimits(self.maxiter, self.maxfun)
        if self.useevalmon: solver.SetEvaluationMonitor(esow)
        if self.usestepmon: solver.SetGenerationMonitor(ssow)
        solver.Solve(self.costfunction, self.term, **kwds)
        sol = solver.Solution()

        iter=1
       #if self.uselimits and self.maxiter == 0: iter=0
        # sanity check solver internals
        self.assertTrue(solver.generations == len(solver._stepmon.y)-iter)
        self.assertTrue(list(solver.bestSolution) == solver._stepmon.x[-1]) #XXX
        self.assertTrue(solver.bestEnergy == solver._stepmon.y[-1])
        self.assertTrue(solver.solution_history == solver._stepmon.x)
        self.assertTrue(solver.energy_history == solver._stepmon.y)
        if self.usestepmon:
            self.assertTrue(ssow.x == solver._stepmon.x)
            self.assertTrue(ssow.y == solver._stepmon.y)
        if self.useevalmon:
            self.assertTrue(solver.evaluations == len(solver._evalmon.y))
            self.assertTrue(esow.x == solver._evalmon.x)
            self.assertTrue(esow.y == solver._evalmon.y)

        # Fail appropriately for solver/termination mismatch
        if early_terminate:
            self.assertTrue(solver.generations < 2)
            return

        g = solver.generations
        calls = [(g+1)*self.NP, (2*g)+1]
        iters = [g]
        # Test early terminations
        if self.uselimits and self.maxfun == 0:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxfun == 1:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter == 0:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter == 1:
            calls += [20] #Powell's
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter >= 2 and self.maxiter <= 5:
            calls += [52, 79, 107, 141] #Powell's
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return

        # Verify solution is close to exact
        print sol
        for i in range(len(sol)):
            self.assertAlmostEqual(sol[i], self.exact[i], self.precision)
        return
开发者ID:eriknw,项目名称:mystic,代码行数:76,代码来源:solver_test_sanity.py


示例14: _run_solver

    def _run_solver(self, early_terminate=False, **kwds):
        from mystic.monitors import Monitor
        import numpy
        from mystic.tools import random_seed
        seed = 111 if self.maxiter is None else 321 #XXX: good numbers...
        random_seed(seed)
        esow = Monitor()
        ssow = Monitor() 

        solver = self.solver
        solver.SetRandomInitialPoints(min = self.min, max = self.max)
        if self.usebounds: solver.SetStrictRanges(self.min, self.max)
        if self.uselimits: solver.SetEvaluationLimits(self.maxiter, self.maxfun)
        if self.useevalmon: solver.SetEvaluationMonitor(esow)
        if self.usestepmon: solver.SetGenerationMonitor(ssow)
        #### run solver, but trap output
        _stdout = trap_stdout()
        solver.Solve(self.costfunction, self.term, **kwds)
        out = release_stdout(_stdout)
        ################################
        sol = solver.Solution()

        iter=1
       #if self.uselimits and self.maxiter == 0: iter=0
        # sanity check solver internals
        self.assertTrue(solver.generations == len(solver._stepmon._y)-iter)
        self.assertTrue(list(solver.bestSolution) == solver._stepmon.x[-1]) #XXX
        self.assertTrue(solver.bestEnergy == solver._stepmon.y[-1])
        self.assertTrue(solver.solution_history == solver._stepmon.x)
        self.assertTrue(solver.energy_history == solver._stepmon.y)
        if self.usestepmon:
            self.assertTrue(ssow.x == solver._stepmon.x)
            self.assertTrue(ssow.y == solver._stepmon.y)
            self.assertTrue(ssow._y == solver._stepmon._y)
        if self.useevalmon:
            self.assertTrue(solver.evaluations == len(solver._evalmon._y))
            self.assertTrue(esow.x == solver._evalmon.x)
            self.assertTrue(esow.y == solver._evalmon.y)
            self.assertTrue(esow._y == solver._evalmon._y)

        # Fail appropriately for solver/termination mismatch
        if early_terminate:
            self.assertTrue(solver.generations < 2)
            warn = "Warning: Invalid termination condition (nPop < 2)"
            self.assertTrue(warn in out)
            return

        g = solver.generations
        calls = [(g+1)*self.NP, (2*g)+1]
        iters = [g]
        # Test early terminations
        if self.uselimits and self.maxfun == 0:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxfun == 1:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter == 0:
            calls += [1, 20] #XXX: scipy*
            iters += [1]     #XXX: scipy*
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter == 1:
            calls += [20] #Powell's
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return
        if self.uselimits and self.maxiter and 2 <= self.maxiter <= 5:
            calls += [52, 79, 107, 141] #Powell's
            self.assertTrue(solver.evaluations in calls) 
            self.assertTrue(solver.generations in iters)
            return

        # Verify solution is close to exact
       #print(sol)
        for i in range(len(sol)):
            self.assertAlmostEqual(sol[i], self.exact[i], self.precision)
        return
开发者ID:uqfoundation,项目名称:mystic,代码行数:85,代码来源:test_solver_sanity.py



注:本文中的mystic.tools.random_seed函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python mytesttools.create_node函数代码示例发布时间:2022-05-27
下一篇:
Python tools.list_or_tuple_or_ndarray函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap