• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python models.Model类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中neon.models.Model的典型用法代码示例。如果您正苦于以下问题:Python Model类的具体用法?Python Model怎么用?Python Model使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了Model类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

  def __init__(self, num_actions, args):
    # remember parameters
    self.num_actions = num_actions
    self.batch_size = args.batch_size
    self.discount_rate = args.discount_rate
    self.history_length = args.history_length
    self.screen_dim = (args.screen_height, args.screen_width)
    self.clip_error = args.clip_error
    self.min_reward = args.min_reward
    self.max_reward = args.max_reward
    self.batch_norm = args.batch_norm

    # create Neon backend
    self.be = gen_backend(backend = args.backend,
                 batch_size = args.batch_size,
                 rng_seed = args.random_seed,
                 device_id = args.device_id,
                 datatype = np.dtype(args.datatype).type,
                 stochastic_round = args.stochastic_round)

    # prepare tensors once and reuse them
    self.input_shape = (self.history_length,) + self.screen_dim + (self.batch_size,)
    self.input = self.be.empty(self.input_shape)
    self.input.lshape = self.input_shape # HACK: needed for convolutional networks
    self.targets = self.be.empty((self.num_actions, self.batch_size))

    # create model
    layers = self._createLayers(num_actions)
    self.model = Model(layers = layers)
    self.cost = GeneralizedCost(costfunc = SumSquared())
    # Bug fix
    for l in self.model.layers.layers:
      l.parallelism = 'Disabled'
    self.model.initialize(self.input_shape[:-1], self.cost)
    if args.optimizer == 'rmsprop':
      self.optimizer = RMSProp(learning_rate = args.learning_rate, 
          decay_rate = args.decay_rate, 
          stochastic_round = args.stochastic_round)
    elif args.optimizer == 'adam':
      self.optimizer = Adam(learning_rate = args.learning_rate, 
          stochastic_round = args.stochastic_round)
    elif args.optimizer == 'adadelta':
      self.optimizer = Adadelta(decay = args.decay_rate, 
          stochastic_round = args.stochastic_round)
    else:
      assert false, "Unknown optimizer"

    # create target model
    self.train_iterations = 0
    if args.target_steps:
      self.target_model = Model(layers = self._createLayers(num_actions))
      # Bug fix
      for l in self.target_model.layers.layers:
        l.parallelism = 'Disabled'
      self.target_model.initialize(self.input_shape[:-1])
      self.save_weights_prefix = args.save_weights_prefix
    else:
      self.target_model = self.model

    self.callback = None
开发者ID:mthrok,项目名称:simple_dqn,代码行数:60,代码来源:deepqnetwork.py


示例2: __init__

    def __init__(self, depth=9):
        self.depth = depth

        depth = 9
        train = (3, 32, 32)

        nfms = [2**(stage + 4) for stage in sorted(list(range(3)) * depth)]
        strides = [1 if cur == prev else 2 for cur, prev in zip(nfms[1:], nfms[:-1])]

        # Now construct the network
        layers = [Conv(**self.conv_params(3, 16))]
        layers.append(self.module_s1(nfms[0], True))

        for nfm, stride in zip(nfms[1:], strides):
            res_module = self.module_s1(nfm) if stride == 1 else self.module_s2(nfm)
            layers.append(res_module)
        layers.append(BatchNorm())
        layers.append(Activation(Rectlin()))
        layers.append(Pooling('all', op='avg'))
        layers.append(Affine(10, init=Kaiming(local=False),
                             batch_norm=True, activation=Softmax()))
        self.layers = layers
        model = Model(layers=layers)
        cost = GeneralizedCost(costfunc=CrossEntropyMulti())
        model.initialize(train, cost=cost)
        self.model = model
开发者ID:Jokeren,项目名称:neon,代码行数:26,代码来源:test_global_deltas.py


示例3: test_model_get_outputs_rnn

def test_model_get_outputs_rnn(backend_default, data):

    dataset = PTB(50, path=data)
    dataiter = dataset.train_iter

    # weight initialization
    init = Constant(0.08)

    # model initialization
    layers = [
        Recurrent(150, init, activation=Logistic()),
        Affine(len(dataiter.vocab), init, bias=init, activation=Rectlin())
    ]

    model = Model(layers=layers)
    output = model.get_outputs(dataiter)

    assert output.shape == (dataiter.ndata, dataiter.seq_length, dataiter.nclass)

    # since the init are all constant and model is un-trained:
    # along the feature dim, the values should be all the same
    assert allclose_with_out(output[0, 0], output[0, 0, 0], rtol=0, atol=1e-4)
    assert allclose_with_out(output[0, 1], output[0, 1, 0], rtol=0, atol=1e-4)

    # along the time dim, the values should be increasing:
    assert np.alltrue(output[0, 2] > output[0, 1])
    assert np.alltrue(output[0, 1] > output[0, 0])
开发者ID:StevenLOL,项目名称:neon,代码行数:27,代码来源:test_model.py


示例4: train_eval

def train_eval(
        train_set,
        valid_set,
        args,
        hidden_size = 100,
        clip_gradients = True,
        gradient_limit = 5):

    # weight initialization
    init = Uniform(low=-0.08, high=0.08)

    # model initialization
    layers = [
        LSTM(hidden_size, init, Logistic(), Tanh()),
        LSTM(hidden_size, init, Logistic(), Tanh()),
        Affine(2, init, bias=init, activation=Softmax())
    ]

    cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))
    model = Model(layers=layers)
    optimizer = RMSProp(clip_gradients=clip_gradients, gradient_limit=gradient_limit, stochastic_round=args.rounding)

    # configure callbacks
    callbacks = Callbacks(model, train_set, progress_bar=args.progress_bar)

    # train model
    model.fit(train_set,
              optimizer=optimizer,
              num_epochs=args.epochs,
              cost=cost,
              callbacks=callbacks)

    pred = model.get_outputs(valid_set)
    pred_neg_rate = model.eval(valid_set, metric=Misclassification())
    return (pred[:,1], pred_neg_rate)
开发者ID:wjiangcmu,项目名称:Driver_telematics,代码行数:35,代码来源:lstm.py


示例5: __init__

    def __init__(self, env, args, rng, name = "DQNNeon"):
        """ Initializes a network based on the Neon framework.

        Args:
            env (AtariEnv): The envirnoment in which the agent actuates.
            args (argparse.Namespace): All settings either with a default value or set via command line arguments.
            rng (mtrand.RandomState): initialized Mersenne Twister pseudo-random number generator.
            name (str): The name of the network object.

        Note:
            This function should always call the base class first to initialize
            the common values for the networks.
        """
        _logger.info("Initializing new object of type " + str(type(self).__name__))
        super(DQNNeon, self).__init__(env, args, rng, name)
        self.input_shape = (self.sequence_length,) + self.frame_dims + (self.batch_size,)
        self.dummy_batch = np.zeros((self.batch_size, self.sequence_length) + self.frame_dims, dtype=np.uint8)
        self.batch_norm = args.batch_norm

        self.be = gen_backend(
                backend = args.backend,
                batch_size = args.batch_size,
                rng_seed = args.random_seed,
                device_id = args.device_id,
                datatype = np.dtype(args.datatype).type,
                stochastic_round = args.stochastic_round)

        # prepare tensors once and reuse them
        self.input = self.be.empty(self.input_shape)
        self.input.lshape = self.input_shape # HACK: needed for convolutional networks
        self.targets = self.be.empty((self.output_shape, self.batch_size))

        # create model
        layers = self._create_layer()
        self.model = Model(layers = layers)
        self.cost_func = GeneralizedCost(costfunc = SumSquared())
        # Bug fix
        for l in self.model.layers.layers:
            l.parallelism = 'Disabled'
        self.model.initialize(self.input_shape[:-1], self.cost_func)

        self._set_optimizer()

        if not self.args.load_weights == None:
            self.load_weights(self.args.load_weights)

        # create target model
        if self.target_update_frequency:
            layers = self._create_layer()
            self.target_model = Model(layers)
            # Bug fix
            for l in self.target_model.layers.layers:
                l.parallelism = 'Disabled'
            self.target_model.initialize(self.input_shape[:-1])
        else:
            self.target_model = self.model

        self.callback = None
        _logger.debug("%s" % self)
开发者ID:maurolopes,项目名称:deepatari,代码行数:59,代码来源:dqnneon.py


示例6: main

def main():
    parser = get_parser()
    args = parser.parse_args()
    print('Args:', args)

    loggingLevel = logging.DEBUG if args.verbose else logging.INFO
    logging.basicConfig(level=loggingLevel, format='')

    ext = extension_from_parameters(args)

    loader = p1b3.DataLoader(feature_subsample=args.feature_subsample,
                             scaling=args.scaling,
                             drug_features=args.drug_features,
                             scramble=args.scramble,
                             min_logconc=args.min_logconc,
                             max_logconc=args.max_logconc,
                             subsample=args.subsample,
                             category_cutoffs=args.category_cutoffs)

    # initializer = Gaussian(loc=0.0, scale=0.01)
    initializer = GlorotUniform()
    activation = get_function(args.activation)()

    layers = []
    reshape = None

    if args.convolution and args.convolution[0]:
        reshape = (1, loader.input_dim, 1)
        layer_list = list(range(0, len(args.convolution), 3))
        for l, i in enumerate(layer_list):
            nb_filter = args.convolution[i]
            filter_len = args.convolution[i+1]
            stride = args.convolution[i+2]
            # print(nb_filter, filter_len, stride)
            # fshape: (height, width, num_filters).
            layers.append(Conv((1, filter_len, nb_filter), strides={'str_h':1, 'str_w':stride}, init=initializer, activation=activation))
            if args.pool:
                layers.append(Pooling((1, args.pool)))

    for layer in args.dense:
        if layer:
            layers.append(Affine(nout=layer, init=initializer, activation=activation))
        if args.drop:
            layers.append(Dropout(keep=(1-args.drop)))
    layers.append(Affine(nout=1, init=initializer, activation=neon.transforms.Identity()))

    model = Model(layers=layers)

    train_iter = ConcatDataIter(loader, ndata=args.train_samples, lshape=reshape, datatype=args.datatype)
    val_iter = ConcatDataIter(loader, partition='val', ndata=args.val_samples, lshape=reshape, datatype=args.datatype)

    cost = GeneralizedCost(get_function(args.loss)())
    optimizer = get_function(args.optimizer)()
    callbacks = Callbacks(model, eval_set=val_iter, **args.callback_args)

    model.fit(train_iter, optimizer=optimizer, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
开发者ID:carrondt,项目名称:Benchmarks,代码行数:56,代码来源:p1b3_baseline_neon.py


示例7: __init__

  def __init__(self, state_size, num_steers, num_speeds, args):
    # remember parameters
    self.state_size = state_size
    self.num_steers = num_steers
    self.num_speeds = num_speeds
    self.num_actions = num_steers + num_speeds
    self.num_layers = args.hidden_layers
    self.hidden_nodes = args.hidden_nodes
    self.batch_size = args.batch_size
    self.discount_rate = args.discount_rate
    self.clip_error = args.clip_error

    # create Neon backend
    self.be = gen_backend(backend = args.backend,
                 batch_size = args.batch_size,
                 rng_seed = args.random_seed,
                 device_id = args.device_id,
                 datatype = np.dtype(args.datatype).type,
                 stochastic_round = args.stochastic_round)

    # prepare tensors once and reuse them
    self.input_shape = (self.state_size, self.batch_size)
    self.input = self.be.empty(self.input_shape)
    self.targets = self.be.empty((self.num_actions, self.batch_size))

    # create model
    self.model = Model(layers = self._createLayers())
    self.cost = GeneralizedCost(costfunc = SumSquared())
    self.model.initialize(self.input_shape[:-1], self.cost)
    if args.optimizer == 'rmsprop':
      self.optimizer = RMSProp(learning_rate = args.learning_rate, 
          decay_rate = args.decay_rate, 
          stochastic_round = args.stochastic_round)
    elif args.optimizer == 'adam':
      self.optimizer = Adam(learning_rate = args.learning_rate, 
          stochastic_round = args.stochastic_round)
    elif args.optimizer == 'adadelta':
      self.optimizer = Adadelta(decay = args.decay_rate, 
          stochastic_round = args.stochastic_round)
    else:
      assert false, "Unknown optimizer"

    # create target model
    self.target_steps = args.target_steps
    self.train_iterations = 0
    if self.target_steps:
      self.target_model = Model(layers = self._createLayers())
      self.target_model.initialize(self.input_shape[:-1])
      self.save_weights_prefix = args.save_weights_prefix
    else:
      self.target_model = self.model
开发者ID:tambetm,项目名称:botmobile,代码行数:51,代码来源:deepqnetwork.py


示例8: test_model_N_S_setter

def test_model_N_S_setter(backend_default):

    # weight initialization
    init = Constant(0.08)

    # model initialization
    layers = [
        Recurrent(150, init, activation=Logistic()),
        Affine(100, init, bias=init, activation=Rectlin())
    ]

    model = Model(layers=layers)
    model.set_batch_size(20)
    model.set_seq_len(10)
开发者ID:StevenLOL,项目名称:neon,代码行数:14,代码来源:test_model.py


示例9: build

    def build(self):
        # setup model layers
        layers = [Affine(nout=100, init=self.init, bias=self.init, activation=Rectlin()),
                  Affine(nout=2, init=self.init, bias=self.init, activation=Softmax())]

        # initialize model object
        self.model = Model(layers=layers)
开发者ID:cdj0311,项目名称:nlp-architect,代码行数:7,代码来源:most_common_word_sense.py


示例10: load

    def load(self, model_path):
        """
        Load pre-trained model's .prm file to NpSemanticSegClassifier object

        Args:
            model_path(str): local path for loading the model
        """
        self.model = Model(model_path)
开发者ID:cdj0311,项目名称:nlp-architect,代码行数:8,代码来源:np_semantic_segmentation.py


示例11: run

def run(args, train, test):
    init_uni = Uniform(low=-0.1, high=0.1)
    opt_gdm = GradientDescentMomentum(learning_rate=0.01,
                                      momentum_coef=0.9,
                                      stochastic_round=args.rounding)
    layers = [Conv((5, 5, 16), init=init_uni, activation=Rectlin(), batch_norm=True),
              Pooling((2, 2)),
              Conv((5, 5, 32), init=init_uni, activation=Rectlin(), batch_norm=True),
              Pooling((2, 2)),
              Affine(nout=500, init=init_uni, activation=Rectlin(), batch_norm=True),
              Affine(nout=10, init=init_uni, activation=Softmax())]
    cost = GeneralizedCost(costfunc=CrossEntropyMulti())
    mlp = Model(layers=layers)
    callbacks = Callbacks(mlp, train, eval_set=test, **args.callback_args)
    mlp.fit(train, optimizer=opt_gdm, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
    err = mlp.eval(test, metric=Misclassification())*100
    print('Misclassification error = %.2f%%' % err)
    return err
开发者ID:ferenckulcsar,项目名称:neon,代码行数:18,代码来源:compare.py


示例12: test_model_get_outputs

def test_model_get_outputs(backend):
    (X_train, y_train), (X_test, y_test), nclass = load_mnist()
    train_set = DataIterator(X_train[:backend.bsz * 3])

    init_norm = Gaussian(loc=0.0, scale=0.1)

    layers = [Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()),
              Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))]
    mlp = Model(layers=layers)
    out_list = []
    for x, t in train_set:
        x = mlp.fprop(x)
        out_list.append(x.get().T.copy())
    ref_output = np.vstack(out_list)

    train_set.reset()
    output = mlp.get_outputs(train_set)
    assert np.allclose(output, ref_output)
开发者ID:sunclx,项目名称:neon,代码行数:18,代码来源:test_model.py


示例13: __init__

    def __init__(self, args,  max_action_no, batch_dimension):
        self.args = args
        self.train_batch_size = args.train_batch_size
        self.discount_factor = args.discount_factor
        self.use_gpu_replay_mem = args.use_gpu_replay_mem
        
        self.be = gen_backend(backend='gpu',             
                         batch_size=self.train_batch_size)

        self.input_shape = (batch_dimension[1], batch_dimension[2], batch_dimension[3], batch_dimension[0])
        self.input = self.be.empty(self.input_shape)
        self.input.lshape = self.input_shape # HACK: needed for convolutional networks
        self.targets = self.be.empty((max_action_no, self.train_batch_size))

        if self.use_gpu_replay_mem:
            self.history_buffer = self.be.zeros(batch_dimension, dtype=np.uint8)
            self.input_uint8 = self.be.empty(self.input_shape, dtype=np.uint8)
        else:
            self.history_buffer = np.zeros(batch_dimension, dtype=np.float32)

        self.train_net = Model(self.create_layers(max_action_no))
        self.cost = GeneralizedCost(costfunc=SumSquared())
        # Bug fix
        for l in self.train_net.layers.layers:
            l.parallelism = 'Disabled'
        self.train_net.initialize(self.input_shape[:-1], self.cost)
        
        self.target_net = Model(self.create_layers(max_action_no))
        # Bug fix
        for l in self.target_net.layers.layers:
            l.parallelism = 'Disabled'
        self.target_net.initialize(self.input_shape[:-1])

        if self.args.optimizer == 'Adam':        # Adam
            self.optimizer = Adam(beta_1=args.rms_decay,
                                            beta_2=args.rms_decay,
                                            learning_rate=args.learning_rate)
        else:		# Neon RMSProp
            self.optimizer = RMSProp(decay_rate=args.rms_decay,
                                            learning_rate=args.learning_rate)

        self.max_action_no = max_action_no
        self.running = True
开发者ID:only4hj,项目名称:DeepRL,代码行数:43,代码来源:model_neon.py


示例14: test_model_predict_rnn

def test_model_predict_rnn(backend):

    data_path = load_text('ptb-valid')

    data_set = Text(time_steps=50, path=data_path)

    # weight initialization
    init = Constant(0.08)

    # model initialization
    layers = [
        Recurrent(150, init, Logistic()),
        Affine(len(data_set.vocab), init, bias=init, activation=Rectlin())
    ]

    model = Model(layers=layers)
    output = model.predict(data_set)

    assert output.shape == (data_set.ndata, data_set.nclass)
开发者ID:huhoo,项目名称:neon,代码行数:19,代码来源:test_model.py


示例15: TreeModel

class TreeModel(object):
    """
    Container for Tree style test model"
    """
    def __init__(self):
        self.in_shape = (1, 32, 32)

        init_norm = Gaussian(loc=0.0, scale=0.01)

        normrelu = dict(init=init_norm, activation=Rectlin())
        normsigm = dict(init=init_norm, activation=Logistic(shortcut=True))
        normsoft = dict(init=init_norm, activation=Softmax())

        # setup model layers
        b1 = BranchNode(name="b1")
        b2 = BranchNode(name="b2")

        p1 = [Affine(nout=100, name="main1", **normrelu),
              b1,
              Affine(nout=32, name="main2", **normrelu),
              Affine(nout=160, name="main3", **normrelu),
              b2,
              Affine(nout=32, name="main2", **normrelu),
              # make next layer big to check sizing
              Affine(nout=320, name="main2", **normrelu),
              Affine(nout=10, name="main4", **normsoft)]

        p2 = [b1,
              Affine(nout=16, name="branch1_1", **normrelu),
              Affine(nout=10, name="branch1_2", **normsigm)]

        p3 = [b2,
              Affine(nout=16, name="branch2_1", **normrelu),
              Affine(nout=10, name="branch2_2", **normsigm)]

        self.cost = Multicost(costs=[GeneralizedCost(costfunc=CrossEntropyMulti()),
                              GeneralizedCost(costfunc=CrossEntropyBinary()),
                              GeneralizedCost(costfunc=CrossEntropyBinary())],
                              weights=[1, 0., 0.])

        self.layers = SingleOutputTree([p1, p2, p3], alphas=[1, .2, .2])
        self.model = Model(layers=self.layers)
        self.model.initialize(self.in_shape, cost=self.cost)
开发者ID:Jokeren,项目名称:neon,代码行数:43,代码来源:test_global_deltas.py


示例16: run_once

def run_once(web_input):
    """
    Run forward pass for a single input. Receives input vector from the web form.
    """

    parser = NeonArgparser(__doc__)
    
    args = parser.parse_args()
    
    num_feat = 4
    
    npzfile = np.load('./model/homeapp_preproc.npz')
    mean = npzfile['mean']
    std = npzfile['std']
    mean = np.reshape(mean, (1,mean.shape[0]))
    std = np.reshape(std, (1,std.shape[0]))
    
    # Reloading saved model
    mlp=Model("./model/homeapp_model.prm")
    
    # Horrible terrible hack that should never be needed :-(
    NervanaObject.be.bsz = 1
    
    # Actual: 275,000 Predicted: 362,177 
    #web_input = np.array([51.2246169879,-1.48577399748,223.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 185,000 Predicted: 244,526
    #web_input = np.array([51.4395375168,-1.07174234072,5.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0])
    # Actual 231,500 Predicted 281,053
    web_input = np.array([52.2010084131,-2.18181259148,218.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0])
    web_input = np.reshape(web_input, (1,web_input.shape[0]))
    
    web_input[:,:num_feat-1] -= mean[:,1:num_feat]
    web_input[:,:num_feat-1] /= std[:,1:num_feat]
    
    web_test_set = ArrayIterator(X=web_input, make_onehot=False)
    
    web_output = mlp.get_outputs(web_test_set)
    
    #Rescale the output
    web_output *= std[:,0]
    web_output += mean[:,0]
    
    return web_output[0]
开发者ID:ankitvb,项目名称:homeprice,代码行数:43,代码来源:run_mlp.py


示例17: __init__

  def __init__(self, num_actions, args):
    # remember parameters
    self.num_actions = num_actions
    self.batch_size = args.batch_size
    self.discount_rate = args.discount_rate
    self.history_length = args.history_length
    self.screen_dim = (args.screen_height, args.screen_width)
    self.clip_error = args.clip_error

    # create Neon backend
    self.be = gen_backend(backend = args.backend,
                 batch_size = args.batch_size,
                 rng_seed = args.random_seed,
                 device_id = args.device_id,
                 default_dtype = np.dtype(args.datatype).type,
                 stochastic_round = args.stochastic_round)

    # prepare tensors once and reuse them
    self.input_shape = (self.history_length,) + self.screen_dim + (self.batch_size,)
    self.tensor = self.be.empty(self.input_shape)
    self.tensor.lshape = self.input_shape # needed for convolutional networks
    self.targets = self.be.empty((self.num_actions, self.batch_size))

    # create model
    layers = self.createLayers(num_actions)
    self.model = Model(layers = layers)
    self.cost = GeneralizedCost(costfunc = SumSquared())
    self.model.initialize(self.tensor.shape[:-1], self.cost)
    self.optimizer = RMSProp(learning_rate = args.learning_rate, 
        decay_rate = args.rmsprop_decay_rate, 
        stochastic_round = args.stochastic_round)

    # create target model
    self.target_steps = args.target_steps
    self.train_iterations = 0
    if self.target_steps:
      self.target_model = Model(layers = self.createLayers(num_actions))
      self.target_model.initialize(self.tensor.shape[:-1])
      self.save_weights_path = args.save_weights_path
    else:
      self.target_model = self.model

    self.callback = None
开发者ID:nervanasys,项目名称:simple_dqn,代码行数:43,代码来源:deepqnetwork.py


示例18: run

def run(train, test):
    init = Gaussian(scale=0.01)
    layers = [Conv((3, 3, 128), init=init, activation=Rectlin(),
                   strides=dict(str_h=1, str_w=2)),
              Conv((3, 3, 256), init=init, batch_norm=True, activation=Rectlin()),
              Pooling(2, strides=2),
              Conv((2, 2, 512), init=init, batch_norm=True, activation=Rectlin()),
              DeepBiRNN(256, init=init, activation=Rectlin(), reset_cells=True, depth=3),
              RecurrentLast(),
              Affine(32, init=init, batch_norm=True, activation=Rectlin()),
              Affine(nout=common['nclasses'], init=init, activation=Softmax())]

    model = Model(layers=layers)
    opt = Adadelta()
    metric = Misclassification()
    callbacks = Callbacks(model, eval_set=test, metric=metric, **args.callback_args)
    cost = GeneralizedCost(costfunc=CrossEntropyBinary())

    model.fit(train, optimizer=opt, num_epochs=args.epochs, cost=cost, callbacks=callbacks)
    return model
开发者ID:JediKoder,项目名称:neon,代码行数:20,代码来源:whale_calls.py


示例19: DeepCascadeLearning

def DeepCascadeLearning(modelLayers,X_train,Y_train,callbacks,init_uni=Uniform(low=-0.1, high=0.1),
                        testIterator=None,epochs=2,
                        cost=GeneralizedCost(costfunc=CrossEntropyMulti()),
                        opt_gdm=GradientDescentMomentum(learning_rate=0.01,momentum_coef=0.9)):
  importantLayersIndexes = list()
  i = 0
  outputLayer = Affine(nout=10, init=init_uni, activation=Softmax())
  modelToPredict = None
  for currentLayer in modelLayers:
    if(np.shape(currentLayer)):
      currentLayer = currentLayer[0]
    if((currentLayer.classnm == 'Convolution') or (currentLayer.classnm == 'Affine')):
      importantLayersIndexes.append(i)
    i += 1
  for i in importantLayersIndexes:
    modelToTrain = list()
    for currentLayer in modelLayers[i:importantLayersIndexes[i+1]]:
      modelToTrain.append(currentLayer)
    modelToTrain.append(outputLayer)
    modelToTrain = Model(modelToTrain)
    if(modelToPredict == None):
      trainIterator = ArrayIterator(X_train, Y_train, nclass=10, lshape=(3,32,32)) 
      x = trainIterator.__iter__()
      callbacks = Callbacks(modelToTrain)
      modelToTrain.fit(trainIterator, optimizer=opt_gdm, num_epochs=epochs, cost=GeneralizedCost(costfunc=CrossEntropyMulti()), callbacks=callbacks)
    else:
      tmpIterator = ArrayIterator(X_train,lshape=(3,32,32))
      tmpTrain = modelToPredict.get_outputs(tmpIterator)
      tmpIterator = ArrayIterator(tmpTrain[0:20],Y_train[0:20],nclass=10,lshape=(32,30,30))
      modelToTrain.fit(tmpIterator, optimizer=opt_gdm, num_epochs=epochs, cost=cost)
    if modelToPredict == None:
        modelToPredict = list()
    else:
        modelToPredict = modelToPredict.layers.layers
    for currentLayer in modelToTrain.layers.layers[0:-2]:
      modelToPredict.append(currentLayer)
    modelToPredict = Model(modelToPredict)

  return modelToPredict
开发者ID:EnriqueSMarquez,项目名称:CNNs_RelatedProjects,代码行数:39,代码来源:testingVsKerasCIFAR.py


示例20: MultistreamModel

class MultistreamModel(object):
    """
    Container for a multistream test model
    """
    def __init__(self):
        self.in_shape = [1024, (2538, 38)]

        init = Constant(0)
        image_path = Sequential([Affine(20, init, bias=init),
                                 Affine(10, init, bias=init)])
        sent_path = Sequential([Affine(30, init, bias=init),
                                Affine(10, init)])

        layers = [MergeMultistream(layers=[image_path, sent_path], merge="recurrent"),
                  Dropout(keep=0.5),
                  LSTM(4, init, activation=Logistic(), gate_activation=Tanh(), reset_cells=True),
                  Affine(20, init, bias=init, activation=Softmax())]
        self.layers = layers
        self.cost = GeneralizedCostMask(CrossEntropyMulti())

        self.model = Model(layers=layers)
        self.model.initialize(self.in_shape, cost=self.cost)
开发者ID:Jokeren,项目名称:neon,代码行数:22,代码来源:test_global_deltas.py



注:本文中的neon.models.Model类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python argparser.extract_valid_args函数代码示例发布时间:2022-05-27
下一篇:
Python logger.display函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap