• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python networkx.cartesian_product函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.cartesian_product函数的典型用法代码示例。如果您正苦于以下问题:Python cartesian_product函数的具体用法?Python cartesian_product怎么用?Python cartesian_product使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了cartesian_product函数的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_cartesian_product_classic

def test_cartesian_product_classic():
    # test some classic product graphs
    P2 = nx.path_graph(2)
    P3 = nx.path_graph(3)
    # cube = 2-path X 2-path
    G=cartesian_product(P2,P2)
    G=cartesian_product(P2,G)
    assert_true(nx.is_isomorphic(G,nx.cubical_graph()))

    # 3x3 grid
    G=cartesian_product(P3,P3)
    assert_true(nx.is_isomorphic(G,nx.grid_2d_graph(3,3)))
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:12,代码来源:test_product.py


示例2: test_cartesian_product_size

def test_cartesian_product_size():
    # order(GXH)=order(G)*order(H)
    K5=nx.complete_graph(5)
    P5=nx.path_graph(5)
    K3=nx.complete_graph(3)
    G=cartesian_product(P5,K3)
    assert_equal(nx.number_of_nodes(G),5*3)
    assert_equal(nx.number_of_edges(G),
                 nx.number_of_edges(P5)*nx.number_of_nodes(K3)+
                 nx.number_of_edges(K3)*nx.number_of_nodes(P5))
    G=cartesian_product(K3,K5)
    assert_equal(nx.number_of_nodes(G),3*5)
    assert_equal(nx.number_of_edges(G),
                 nx.number_of_edges(K5)*nx.number_of_nodes(K3)+
                 nx.number_of_edges(K3)*nx.number_of_nodes(K5))
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:15,代码来源:test_product.py


示例3: __test_cartesian_try_01__

def __test_cartesian_try_01__():

   # You'll also find a product-type fcn. in networkx.

   dir_graph, node_first, node_final = __test_get_graph_01__()

   graphed = networkx.cartesian_product(dir_graph, dir_graph)
   log.debug('test_cartesian:  once: cnt. graphed.nodes: %d' % (len(graphed),))

   graphed = networkx.cartesian_product(dir_graph, graphed)
   log.debug('test_cartesian: twice: cnt. graphed.nodes: %d' % (len(graphed),))

   graphed = networkx.cartesian_product(dir_graph, graphed)
   log.debug('test_cartesian: thrice: cnt graphed.nodes: %d' % (len(graphed),))

   graphed = networkx.cartesian_product(dir_graph, graphed)
   log.debug('test_cartesian: fource: cnt graphed.nodes: %d' % (len(graphed),))
开发者ID:landonb,项目名称:Cyclopath,代码行数:17,代码来源:alleyoop.py


示例4: __init__

	def __init__(self,L):
		#compute vertices, edges and faces
		torus = nx.cartesian_product(nx.generators.classic.cycle_graph(L), nx.generators.classic.cycle_graph(L))
		rlabels = dict(enumerate(torus.nodes()))
		labels = dict(zip(rlabels.values(),rlabels.keys()))
		torus = nx.relabel_nodes(torus,labels)
		faces = [ [[labels[v,u], labels[(v+1)%L,u]], [labels[v,u], labels[v,(u+1)%L]], [labels[(v+1)%L,u], labels[(v+1)%L,(u+1)%L]], [labels[v,(u+1)%L], labels[(v+1)%L,(u+1)%L]]] for v in range(L) for u in range(L) ]
		#initialize TwoComplex
		super(ToricLattice,self).__init__(torus.nodes(),torus.edges(),faces,L)
开发者ID:wlyu2001,项目名称:Renormalization-Group-Decoder,代码行数:9,代码来源:toriclattice.py


示例5: test_cartesian_product_random

def test_cartesian_product_random():
    G = nx.erdos_renyi_graph(10,2/10.)
    H = nx.erdos_renyi_graph(10,2/10.)
    GH = cartesian_product(G,H)

    for (u_G,u_H) in GH.nodes_iter():
        for (v_G,v_H) in GH.nodes_iter():
            if (u_G==v_G and H.has_edge(u_H,v_H)) or \
               (u_H==v_H and G.has_edge(u_G,v_G)):
                assert_true(GH.has_edge((u_G,u_H),(v_G,v_H)))
            else:
                assert_true(not GH.has_edge((u_G,u_H),(v_G,v_H)))
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:12,代码来源:test_product.py


示例6: test_cartesian_product_multigraph

def test_cartesian_product_multigraph():
    G=nx.MultiGraph()
    G.add_edge(1,2,key=0)
    G.add_edge(1,2,key=1)
    H=nx.MultiGraph()
    H.add_edge(3,4,key=0)
    H.add_edge(3,4,key=1)
    GH=cartesian_product(G,H)
    assert_equal( set(GH) , set([(1, 3), (2, 3), (2, 4), (1, 4)]))
    assert_equal( set(GH.edges(keys=True)) ,
                  set([((1, 3), (2, 3), 0), ((1, 3), (2, 3), 1), 
                       ((1, 3), (1, 4), 0), ((1, 3), (1, 4), 1), 
                       ((2, 3), (2, 4), 0), ((2, 3), (2, 4), 1), 
                       ((2, 4), (1, 4), 0), ((2, 4), (1, 4), 1)]))    
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:14,代码来源:test_product.py


示例7: test_cartesian_product_multigraph

def test_cartesian_product_multigraph():
    G = nx.MultiGraph()
    G.add_edge(1, 2, key=0)
    G.add_edge(1, 2, key=1)
    H = nx.MultiGraph()
    H.add_edge(3, 4, key=0)
    H.add_edge(3, 4, key=1)
    GH = cartesian_product(G, H)
    assert_equal(set(GH), {(1, 3), (2, 3), (2, 4), (1, 4)})
    assert_equal({(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)},
                 {(frozenset([u, v]), k) for u, v, k in
                  [((1, 3), (2, 3), 0), ((1, 3), (2, 3), 1),
                   ((1, 3), (1, 4), 0), ((1, 3), (1, 4), 1),
                   ((2, 3), (2, 4), 0), ((2, 3), (2, 4), 1),
                   ((2, 4), (1, 4), 0), ((2, 4), (1, 4), 1)]})
开发者ID:4c656554,项目名称:networkx,代码行数:15,代码来源:test_product.py


示例8: random_walk_kernel

def random_walk_kernel(g1, g2, parameter_lambda, node_attribute="label"):
    """ Compute the random walk kernel of two graphs as described by Neuhaus
        and Bunke in the chapter 5.9 of "Bridging the Gap Between Graph Edit
        Distance and Kernel Machines (2007)"
    """
    p = nx.cartesian_product(g1, g2)
    M = nx.attr_sparse_matrix(p, node_attr=node_attribute)
    A = M[0]
    L = A.shape[0]
    k = 0
    A_exp = A
    for n in xrange(L):
        k += (parameter_lambda ** n) * long(A_exp.sum())
        if n < L:
            A_exp = A_exp * A

    return k
开发者ID:hidd3ncod3s,项目名称:adagio,代码行数:17,代码来源:ml.py


示例9: grid_graph

def grid_graph(dim, periodic=False, create_using=None):
    """ Return the n-dimensional grid graph.

    The dimension is the length of the list 'dim' and the
    size in each dimension is the value of the list element.

    E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

    If periodic=True then join grid edges with periodic boundary conditions.

    """
    from networkx.utils import is_list_of_ints

    if create_using is not None and create_using.is_directed():
        raise nx.NetworkXError("Directed Graph not supported")
    dlabel = "%s" % dim
    if dim == []:
        G = empty_graph(0, create_using)
        G.name = "grid_graph(%s)" % dim
        return G
    if not is_list_of_ints(dim):
        raise nx.NetworkXError("dim is not a list of integers")
    if min(dim) <= 0:
        raise nx.NetworkXError("dim is not a list of strictly positive integers")
    if periodic:
        func = cycle_graph
    else:
        func = path_graph

    current_dim = dim.pop()
    G = func(current_dim, create_using)
    while len(dim) > 0:
        current_dim = dim.pop()
        # order matters: copy before it is cleared during the creation of Gnew
        Gold = G.copy()
        Gnew = func(current_dim, create_using)
        # explicit: create_using=None
        # This is so that we get a new graph of Gnew's class.
        G = nx.cartesian_product(Gnew, Gold, create_using=None)
    # graph G is done but has labels of the form (1,(2,(3,1)))
    # so relabel
    H = nx.relabel_nodes(G, utils.flatten)
    H.name = "grid_graph(%s)" % dlabel
    return H
开发者ID:mhawthorne,项目名称:antonym,代码行数:44,代码来源:classic.py


示例10: generate_product_graph

def generate_product_graph():
    """Generates k cuts for cartesian product of a path and a double tree"""
    k = int(input("k for product of tree & path:"))
    trials = int(input("number of trials:"))
    prodfname = input("output file:")
    prodfname = "hard_instances/" + prodfname
    prodfile = open(prodfname, "wb", 0)
    h = int(input("height of the tree: "))
    H1 = nx.balanced_tree(2, h)
    H2 = nx.balanced_tree(2, h)
    H = nx.disjoint_union(H1, H2)
    n = H.number_of_nodes()
    p = math.pow(2, h + 1) - 1
    H.add_edge(0, p)
    n = 4 * math.sqrt(n)
    n = math.floor(n)
    print("Length of path graph: " + str(n))
    G = nx.path_graph(n)
    tmpL = nx.normalized_laplacian_matrix(G).toarray()
    T = nx.cartesian_product(G, H)
    A = nx.adjacency_matrix(T).toarray()
    L = nx.normalized_laplacian_matrix(T).toarray()
    (tmpw, tmpv) = la.eigh(L)
    tmp = 2 * math.sqrt(tmpw[1])
    print("cheeger upperbound:" + str(tmp))
    (w, v) = spectral_projection(L, k)
    lambda_k = w[k - 1]
    tmp_str = "Cartesian product of balanced tree of height " + str(h)
    tmp_str += " and path of length " + str(n - 1) + "\n"
    tmp_str += "k = " + str(k) + ", "
    tmp_str += "trials = " + str(trials) + "\n\n\n"
    tmp_str = tmp_str.encode("utf-8")
    prodfile.write(tmp_str)
    k_cuts_list = lrtv(A, v, k, lambda_k, trials, prodfile)
    plotname = prodfname + "plot"
    plot(k_cuts_list, plotname)
    for i in range(len(k_cuts_list)):
        k_cuts = k_cuts_list[i]
        tmp_str = list(map(str, k_cuts))
        tmp_str = " ".join(tmp_str)
        tmp_str += "\n\n"
        tmp_str = tmp_str.encode("utf-8")
        prodfile.write(tmp_str)
开发者ID:ionux,项目名称:k-sparse-cuts,代码行数:43,代码来源:lrtv.py


示例11: grid_graph

def grid_graph(dim, periodic=False):
    """ Return the n-dimensional grid graph.

    'dim' is a list with the size in each dimension or an
    iterable of nodes for each dimension. The dimension of
    the grid_graph is the length of the list 'dim'.

    E.g. G=grid_graph(dim=[2, 3]) produces a 2x3 grid graph.

    E.g. G=grid_graph(dim=[range(7, 9), range(3, 6)]) produces a 2x3 grid graph.

    If periodic=True then join grid edges with periodic boundary conditions.

    """
    dlabel = "%s" % dim
    if dim == []:
        G = empty_graph(0)
        G.name = "grid_graph(%s)" % dim
        return G
    if periodic:
        func = cycle_graph
    else:
        func = path_graph

    dim = list(dim)
    current_dim = dim.pop()
    G = func(current_dim)
    while len(dim) > 0:
        current_dim = dim.pop()
        # order matters: copy before it is cleared during the creation of Gnew
        Gold = G.copy()
        Gnew = func(current_dim)
        # explicit: create_using=None
        # This is so that we get a new graph of Gnew's class.
        G = nx.cartesian_product(Gnew, Gold)
    # graph G is done but has labels of the form (1, (2, (3, 1)))
    # so relabel
    H = nx.relabel_nodes(G, flatten)
    H.name = "grid_graph(%s)" % dlabel
    return H
开发者ID:AthinaSpanou,项目名称:networkx,代码行数:40,代码来源:classic.py


示例12: test_cartesian_product_null

def test_cartesian_product_null():
    null=nx.null_graph()
    empty10=nx.empty_graph(10)
    K3=nx.complete_graph(3)
    K10=nx.complete_graph(10)
    P3=nx.path_graph(3)
    P10=nx.path_graph(10)
    # null graph
    G=cartesian_product(null,null)
    assert_true(nx.is_isomorphic(G,null))
    # null_graph X anything = null_graph and v.v.
    G=cartesian_product(null,empty10)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(null,K3)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(null,K10)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(null,P3)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(null,P10)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(empty10,null)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(K3,null)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(K10,null)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(P3,null)
    assert_true(nx.is_isomorphic(G,null))
    G=cartesian_product(P10,null)
    assert_true(nx.is_isomorphic(G,null))
开发者ID:Bludge0n,项目名称:AREsoft,代码行数:31,代码来源:test_product.py


示例13: test_cartesian_product_raises

def test_cartesian_product_raises():
    P = cartesian_product(nx.DiGraph(), nx.Graph())
开发者ID:4c656554,项目名称:networkx,代码行数:2,代码来源:test_product.py


示例14:

""" Union disjointe de graphes """
#Change les labels en entiers
GH1=nx.disjoint_union(G,H)
GH1.nodes()
GH1.edges()

""" Composition de graphes """
GH2=nx.compose(G,H)
GH2.nodes()
#['a', 1, 'c', 'b', 4, 'd', 2, 3]
GH2.edges()
#[('a', 'b'), (1, 2), ('c', 'b'), ('c', 'd'), (4, 3), (2, 3)]

""" Produit cartesien """
GH3=nx.cartesian_product(G,H)
GH3.nodes()
#[(1, 'c'), (3, 'c'), (1, 'b'), (3, 'b'), (2, 'a'), (3, 'a'), (4, 'd'), (1, 'd'), (2, 'b'), (4, 'b'), (2, 'c'), (4, 'c'), (1, 'a'), (4, 'a'), (2, 'd'), (3, 'd')]
GH3.edges()
#[((1, 'c'), (1, 'd')), ((1, 'c'), (1, 'b')), ((1, 'c'), (2, 'c')), ((3, 'c'), (4, 'c')), ((3, 'c'), (2, 'c')), ((3, 'c'), (3, 'b')), ((3, 'c'), (3, 'd')), ((1,'b'), (1, 'a')), ((1, 'b'), (2, 'b')), ((3, 'b'), (3, 'a')), ((3, 'b'), (2, 'b')), ((3, 'b'), (4, 'b')), ((2, 'a'), (3, 'a')), ((2, 'a'), (1, 'a')), ((2, 'a'),(2, 'b')), ((3, 'a'), (4, 'a')), ((4, 'd'), (4, 'c')), ((4, 'd'), (3, 'd')), ((1, 'd'), (2, 'd')), ((2, 'b'), (2, 'c')), ((4, 'b'), (4, 'c')), ((4, 'b'), (4, 'a')), ((2, 'c'), (2, 'd')), ((2, 'd'), (3, 'd'))]

""" Complement """
#Graphe complementaire
G1=nx.complement(G)
G1.nodes()
G1.edges()

""" Intersection de graphes """
# Les noeuds de H et G doivent etre les memes
H.clear()
H.add_nodes_from([1,2,3,4])
开发者ID:AnthonyTschirhard,项目名称:AlgoGen,代码行数:30,代码来源:GraphGenerator-tutorial.py


示例15: product

'''
Theorem 3 of

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision
processes. Journal of Machine Learning Research, 8

states that the eigenvalues of the Laplacian of graph G that is the cartesian
product of two graphs G1 and G2, are the sums of all the combination of the
eigenvalues of G1 and G2.

This program illustrates this by generating a grid as the cartesian product of
two paths.
'''

from itertools import product
import networkx as nx

n = 5
P = nx.path_graph(n)
G = nx.cartesian_product(P, P)

ev_P = nx.laplacian_spectrum(P)
ev_G = nx.laplacian_spectrum(G).real

ev = []
for i,j in product(range(n), repeat=2):
    ev.append(ev_P[i] + ev_P[j])


开发者ID:aweinstein,项目名称:scrapcode,代码行数:28,代码来源:cartesian.py


示例16: kovalev_code

    return kovalev_code(G, G)

if __name__ == "__main__":
    pl.close("all")
    d = 7

    # gridded torus
    pl.figure()
    pl.title("%i-by-%i regular paving of the torus" % (d, d))
    nx.draw_graphviz(tanner_graph(tanner_cartesian_power(tanner_cycle(d), 2)),
                     node_size=30, with_labels=False)

    # Tillich-Zemor hypergraph-product constructions
    s1 = s2 = tanner_cycle(d)
    s = tanner_cartesian_product(s1, s2, split=True)
    t = nx.cartesian_product(tanner_graph(s1), tanner_graph(s2))
    pl.figure()
    pl.suptitle("Sum decomposition of Tanner graph products")
    for j, support in enumerate([s1, s2]):
        ax = pl.subplot("32%i" % (j + 1))
        ax.set_title("t%i = tanner(%s)" % (j + 1, support))
        tj = tanner_graph(support)
        nx.draw_graphviz(tj, with_labels=0, node_size=30)
    ax = pl.subplot("312")
    ax.set_title("t1 x t2 =: t =: t1' + t2'")
    nx.draw_graphviz(t, with_labels=0, node_size=30)
    for j, sj in enumerate(s):
        ax = pl.subplot("32%i" % (4 + j + 1))
        ax.set_title("t%i'" % (j + 1))
        tj = tanner_graph(sj)
        nx.draw_graphviz(tj, with_labels=0, node_size=30)
开发者ID:dohmatob,项目名称:calculability,代码行数:31,代码来源:codes.py



注:本文中的networkx.cartesian_product函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.circular_layout函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.capacity_scaling函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap