• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python networkx.load_centrality函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.load_centrality函数的典型用法代码示例。如果您正苦于以下问题:Python load_centrality函数的具体用法?Python load_centrality怎么用?Python load_centrality使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了load_centrality函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: load_component

def load_component(seed_num, graph_json_filename=None, graph_json_str=None):
  if graph_json_filename is None and graph_json_str is None:
    return []

  G = None
  if graph_json_str is None:
    G = util.load_graph(graph_json_filename=graph_json_filename)
  else:
    G = util.load_graph(graph_json_str=graph_json_str)

  components = list(nx.connected_components(G))
  components = filter(lambda x: len(x) > 0.1 * len(G), components)
  total_size = sum(map(lambda x: len(x), components))
  total_nodes = 0
  rtn = []
  for comp in components[1:]:
    num_nodes = int(float(len(comp)) / total_size * seed_num)
    component = G.subgraph(list(comp))
    clse_cent = nx.load_centrality(component)
    collector = collections.Counter(clse_cent)
    clse_cent = collector.most_common(num_nodes)
    rtn += map(lambda (x, y): x, clse_cent)
    total_nodes += num_nodes

  num_nodes = seed_num - total_nodes
  component = G.subgraph(list(components[0]))
  clse_cent = nx.load_centrality(component)
  collector = collections.Counter(clse_cent)
  clse_cent = collector.most_common(num_nodes)
  rtn += map(lambda (x, y): x, clse_cent)
  return rtn
开发者ID:shimmy1996,项目名称:Pandemaniac,代码行数:31,代码来源:load_component.py


示例2: test_not_strongly_connected

 def test_not_strongly_connected(self):
     b = nx.load_centrality(self.D)
     result = {0: 5./12,
               1: 1./4,
               2: 1./12,
               3: 1./4,
               4: 0.000}
     for n in sorted(self.D):
         assert_almost_equal(result[n], b[n], places=3)
         assert_almost_equal(result[n], nx.load_centrality(self.D, n), places=3)
开发者ID:AllenDowney,项目名称:networkx,代码行数:10,代码来源:test_load_centrality.py


示例3: test_p3_load

 def test_p3_load(self):
     G=self.P3
     c=nx.load_centrality(G)
     d={0: 0.000,
        1: 1.000,
        2: 0.000}
     for n in sorted(G):
         assert_almost_equal(c[n],d[n],places=3)
     c=nx.load_centrality(G,v=1)
     assert_almost_equal(c,1.0)
     c=nx.load_centrality(G,v=1,normalized=True)
     assert_almost_equal(c,1.0)
开发者ID:AllenDowney,项目名称:networkx,代码行数:12,代码来源:test_load_centrality.py


示例4: load_centrality_month_airports

        def load_centrality_month_airports(data):    
            df = data.copy()
            df['DateOfDeparture'] = pd.to_datetime(df['DateOfDeparture'])
            df['month'] = df['DateOfDeparture'].dt.week.astype(str)
            df['year'] = df['DateOfDeparture'].dt.year.astype(str)
            df['year_month'] = df[['month','year']].apply(lambda x: '-'.join(x),axis=1)
            df['year_month_dep'] = df[['Departure','month','year']].apply(lambda x: '-'.join(x),axis=1)
            df['year_month_arr'] = df[['Arrival','month','year']].apply(lambda x: '-'.join(x),axis=1)
            year_month = pd.unique(df['year_month'])
            G = nx.Graph()
            load_centrality = {}

            for i, item in enumerate(year_month):
                sub_df = df[df['year_month'] == item][['Departure','Arrival']]
                list_dep_arr = zip(sub_df['Departure'], sub_df['Arrival'])
                G.add_edges_from(list_dep_arr)
                #G.number_of_nodes()
                #G.number_of_edges()
                centrality_month = nx.load_centrality(G)
                centrality_month = pd.DataFrame(centrality_month.items())
                centrality_month['year_month'] = [item] * centrality_month.shape[0]
                centrality_month['airport_year_month'] = centrality_month[centrality_month.columns[[0,2]]].apply(lambda x: '-'.join(x),axis=1)
                centrality_month =dict(zip(centrality_month['airport_year_month'], centrality_month[1]))

                z = load_centrality.copy()
                z.update(centrality_month)
                load_centrality = z
            df['load_centrality_month_dep'] = df['year_month_dep'].map(load_centrality)
            df['load_centrality_month_arr'] = df['year_month_arr'].map(load_centrality)
            return df
开发者ID:GuillaumeCarbajal,项目名称:Air-passengers,代码行数:30,代码来源:feature_extractor.py


示例5: node_load_centrality

def node_load_centrality(X):
    """
    based on networkx function: load_centrality
    """
    XX = np.zeros((X.shape[0], np.sqrt(X.shape[1])))
    for i, value in enumerate(X):
        adj_mat = value.reshape((np.sqrt(len(value)),-1))
        adj_mat = (adj_mat - np.min(adj_mat)) / (np.max(adj_mat) - np.min(adj_mat))
        adj_mat = 1 - adj_mat

#        th = np.mean(adj_mat) - 0.05
#        adj_mat = np.where(adj_mat < th, adj_mat, 0.)

        percent, th, adj_mat, triu = percentage_removed(adj_mat, 0.86)
        print("percent = {0}, threshold position = {1}, threshold = {2}\n".format(percent, th, triu[th]))

        g = nx.from_numpy_matrix(adj_mat)
        print "Graph Nodes = {0}, Graph Edges = {1} ".format(g.number_of_nodes(), g.number_of_edges())
        print "\nEdge kept ratio, {0}".format(float(g.number_of_edges())/((g.number_of_nodes()*(g.number_of_nodes()-1))/2))

        deg_cent = nx.load_centrality(g, weight = 'weight')
        node_cent = np.zeros(g.number_of_nodes())

        for k in deg_cent:
            node_cent[k] = deg_cent[k]
        XX[i] = node_cent
        print "graph {0} => mean {1}, min {2}, max {3}".format(i, np.mean(XX[i]), np.min(XX[i]), np.max(XX[i]))
#    XX = XX*100
    ss = StandardScaler()
    XX = ss.fit_transform(XX.T).T

    return XX
开发者ID:kirk86,项目名称:Task-1,代码行数:32,代码来源:code.py


示例6: most_central

 def most_central(self,F=1,cent_type='betweenness'):
     if cent_type == 'betweenness':
         ranking = nx.betweenness_centrality(self.G).items()
     elif cent_type == 'closeness':
         ranking = nx.closeness_centrality(self.G).items()
     elif cent_type == 'eigenvector':
         ranking = nx.eigenvector_centrality(self.G).items()
     elif cent_type == 'harmonic':
         ranking = nx.harmonic_centrality(self.G).items()
     elif cent_type == 'katz':
         ranking = nx.katz_centrality(self.G).items()
     elif cent_type == 'load':
         ranking = nx.load_centrality(self.G).items()
     elif cent_type == 'degree':
         ranking = nx.degree_centrality(self.G).items()
     ranks = [r for n,r in ranking]
     cent_dict = dict([(self.lab[n],r) for n,r in ranking])
     m_centrality = sum(ranks)
     if len(ranks) > 0:
         m_centrality = m_centrality/len(ranks)
     #Create a graph with the nodes above the cutoff centrality- remove the low centrality nodes
     thresh = F*m_centrality
     lab = {}
     for k in self.lab:
         lab[k] = self.lab[k]
     g = Graph(self.adj.copy(),self.char_list)
     for n,r in ranking:
         if r < thresh:
             g.G.remove_node(n)
             del g.lab[n]
     return (cent_dict,thresh,g)
开发者ID:PCJohn,项目名称:Script-Analyzer,代码行数:31,代码来源:graph.py


示例7: load_neighbors

def load_neighbors(seed_num, graph=None, graph_json_filename=None, graph_json_str=None):
  if graph_json_filename is None and graph_json_str is None and graph is None:
    return []

  G = None
  if graph is not None:
    G = graph
  elif graph_json_str is None:
    G = util.load_graph(graph_json_filename=graph_json_filename)
  else:
    G = util.load_graph(graph_json_str=graph_json_str)

  clse_cent = nx.get_node_attributes(G, "centrality")
  if len(clse_cent) == 0:
    clse_cent = nx.load_centrality(G)
    nx.set_node_attributes(G, "centrality", clse_cent)
    print "hi load neighbors"
  
  collector = collections.Counter(clse_cent)
  clse_cent = collector.most_common(SURROUND_TOP)
  nodes = map(lambda (x, y): x, clse_cent)

  current_seed = 0
  rtn = []
  while current_seed < seed_num:
    current_node = nodes[current_seed % len(nodes)]
    current_neighbors = G.neighbors(current_node)
    rtn += random.sample(set(current_neighbors) - set(rtn) - set(nodes), 1)
    current_seed += 1

  return rtn
开发者ID:shimmy1996,项目名称:Pandemaniac,代码行数:31,代码来源:load_neighbors.py


示例8: augmentNodes

def augmentNodes(g):
    r1 = nx.eigenvector_centrality_numpy(g)
    r2 = nx.degree_centrality(g) # DP MY
    r3 = nx.betweenness_centrality(g)
    r5 = nx.load_centrality(g,weight='weight') # DY, WY-writename # Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
    r6 = nx.pagerank(g, alpha=0.85, personalization=None, max_iter=100, tol=1e-08, nstart=None, weight='weight')
    
    if nx.is_directed(g) == True:
        r8 = nx.in_degree_centrality(g)
        r9 = nx.out_degree_centrality(g)
#        r10 = nx.hits(g, max_iter=100, tol=1e-08, nstart=None)
    else:
        r4 = nx.communicability_centrality(g)
        r7 = nx.clustering(g, weight='weight')
        
    for x in g.nodes():
        g.node[x]['eigenvector_centrality_numpy'] = r1[x]
        g.node[x]['degree_centrality'] = r2[x]  
        g.node[x]['betweenness_centrality'] = r3[x]
        g.node[x]['load_centrality'] = r5[x]  
        g.node[x]['pagerank'] = r6[x]

        if nx.is_directed(g) == True:
            g.node[x]['in_degree_centrality'] = r8[x]
            g.node[x]['out_degree_centrality'] = r9[x]
#            g.node[x]['hits'] = r10[x]
        else:
            g.node[x]['communicability_centrality'] = r4[x]
            g.node[x]['clustering'] = r7[x]
    return g        
开发者ID:aidiss,项目名称:Lithuanian-Academic-Circles-and-Their-Networks,代码行数:30,代码来源:Graph.py


示例9: centrality

def centrality(net):
    values ={}
    close = nx.closeness_centrality(net, normalized= True)
    eigen = nx.eigenvector_centrality_numpy(net)
    page = nx.pagerank(net)
    bet = nx.betweenness_centrality(net,normalized= True)
    flow_c = nx.current_flow_closeness_centrality(net,normalized= True)
    flow_b = nx.current_flow_betweenness_centrality(net,normalized= True)
    load = nx.load_centrality(net, normalized = True)
    com_c = nx.communicability_centrality(net)
    com_b = nx.communicability_betweenness_centrality(net, normalized= True)
    degree = net.degree()
    
    file3 = open("bl.csv",'w')
    for xt in [bet,load,degree,page,flow_b,com_c,com_b,eigen,close,flow_c]:#[impo,bet,flow_b,load,com_c,com_b] :
        for yt in [bet,load,degree,page,flow_b,com_c,com_b,eigen,close,flow_c]:#[impo,bet,flow_b,load,com_c,com_b] :
            corr(xt.values(),yt.values(),file3)
        print
        file3.write("\n")
    file3.close()
    #plt.plot(x,y, 'o')
    #plt.plot(x, m*x + c, 'r', label='Fitted line')
    #plt.show()
    #for key,item in close.iteritems() :
        #values[key] = [impo.get(key),bet.get(key),flow_b.get(key), load.get(key),com_c.get(key),com_b.get(key)]
        
    return values
开发者ID:FourquetDavid,项目名称:morphogenesis_network,代码行数:27,代码来源:test_complex_networks.py


示例10: analyze_graph

def analyze_graph(G):    
    #centralities and node metrics
    out_degrees = G.out_degree()
    in_degrees = G.in_degree()
    betweenness = nx.betweenness_centrality(G)
    eigenvector = nx.eigenvector_centrality_numpy(G)
    closeness = nx.closeness_centrality(G)
    pagerank = nx.pagerank(G)
    avg_neighbour_degree = nx.average_neighbor_degree(G)
    redundancy = bipartite.node_redundancy(G)
    load = nx.load_centrality(G)
    hits = nx.hits(G)
    vitality = nx.closeness_vitality(G)
    
    for name in G.nodes():
        G.node[name]['out_degree'] = out_degrees[name]
        G.node[name]['in_degree'] = in_degrees[name]
        G.node[name]['betweenness'] = betweenness[name]
        G.node[name]['eigenvector'] = eigenvector[name]
        G.node[name]['closeness'] = closeness[name]
        G.node[name]['pagerank'] = pagerank[name]
        G.node[name]['avg-neigh-degree'] = avg_neighbour_degree[name]
        G.node[name]['redundancy'] = redundancy[name]
        G.node[name]['load'] = load[name]
        G.node[name]['hits'] = hits[name]
        G.node[name]['vitality'] = vitality[name]
        
    #communities
    partitions = community.best_partition(G)
    for member, c in partitions.items():
        G.node[member]['community'] = c   
    
    return G
开发者ID:aitoralmeida,项目名称:intellidata,代码行数:33,代码来源:RelationAnalizer.py


示例11: test_p2_load

 def test_p2_load(self):
     G=nx.path_graph(2)
     c=nx.load_centrality(G)
     d={0: 0.000,
        1: 0.000}
     for n in sorted(G):
         assert_almost_equal(c[n],d[n],places=3)
开发者ID:AllenDowney,项目名称:networkx,代码行数:7,代码来源:test_load_centrality.py


示例12: f36

 def f36(self):
     start = 0
     s = nx.load_centrality(self.G).values()
     res = sum(s)
     stop = 0
     # self.feature_time.append(stop - start)
     return res
开发者ID:jieaozhu,项目名称:alignment_free_network_comparison,代码行数:7,代码来源:generate_feature.py


示例13: test_unnormalized_p3_load

 def test_unnormalized_p3_load(self):
     G=self.P3
     c=nx.load_centrality(G,normalized=False)
     d={0: 0.000,
        1: 2.000,
        2: 0.000}
     for n in sorted(G):
         assert_almost_equal(c[n],d[n],places=3)
开发者ID:AhmedPho,项目名称:NetworkX_fork,代码行数:8,代码来源:test_load_centrality.py


示例14: test_p3_load

 def test_p3_load(self):
     G=self.P3
     c=nx.load_centrality(G)
     d={0: 0.000,
        1: 1.000,
        2: 0.000}
     for n in sorted(G):
         assert_almost_equal(c[n],d[n],places=3)
开发者ID:AhmedPho,项目名称:NetworkX_fork,代码行数:8,代码来源:test_load_centrality.py


示例15: forUndirected

    def forUndirected(G):

        myList = [nx.eigenvector_centrality_numpy(G), 
                  nx.degree_centrality(G),
                  nx.betweenness_centrality(G),
                  nx.communicability_centrality(G), 
                  nx.load_centrality(G),   
                  nx.pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-08, nstart=None, weight='weight'),
                  nx.clustering(G, weight='weight')]
        return myList
开发者ID:aidiss,项目名称:Lithuanian-Academic-Circles-and-Their-Networks,代码行数:10,代码来源:Stats.py


示例16: calcAndPickleLoadCentrality

 def calcAndPickleLoadCentrality(self):
     """
     Calculates the load centrality for all nodes in the network and
     saves the resulting dictionary to the hard drive.
     Note: very similar to betweenness centrality
     """
     # Convert the DiGraph to normal graph
     G = self.G.to_undirected()
     t = time.time()
     print '\nCalculating load centrality...'
     self.loadCentrality = nx.load_centrality(G)
     print 'Load centrality calculation time: ' + str(int(time.time() - t)) + ' seconds'
     pickle.dump(self.loadCentrality, open(self.dirName + '/load_centrality.pickle', 'w'))
开发者ID:b8vrede,项目名称:wetten.nl,代码行数:13,代码来源:QueryNetwork.py


示例17: test_krackhardt_load

 def test_krackhardt_load(self):
     G=self.K
     c=nx.load_centrality(G)
     d={0: 0.023,
        1: 0.023,
        2: 0.000,
        3: 0.102,
        4: 0.000,
        5: 0.231,
        6: 0.231,
        7: 0.389,
        8: 0.222,
        9: 0.000}
     for n in sorted(G):
         assert_almost_equal(c[n],d[n],places=3)
开发者ID:AhmedPho,项目名称:NetworkX_fork,代码行数:15,代码来源:test_load_centrality.py


示例18: calculate_centrality

def calculate_centrality(G):
	# dc_dumps = json.dumps(nx.degree_centrality(G).items(),sort_keys=True,indent=4)
	# dc_loads = json.loads(dc_dumps)
	dc_sorted = sorted(nx.degree_centrality(G).items(), key=itemgetter(0), reverse=True)
	bc_sorted = sorted(nx.betweenness_centrality(G).items(), key=itemgetter(0), reverse=True)
	clc_sorted = sorted(nx.closeness_centrality(G).items(), key=itemgetter(0), reverse=True)
	coc_sorted = sorted(nx.communicability_centrality(G).items(), key=itemgetter(0), reverse=True)
	lc_sorted = sorted(nx.load_centrality(G).items(), key=itemgetter(0), reverse=True)
	cfbc_sorted = sorted(nx.current_flow_betweenness_centrality(G).items(), key=itemgetter(0), reverse=True)
	cfcc_sorted = sorted(nx.current_flow_closeness_centrality(G).items(), key=itemgetter(0), reverse=True)
	# print ec_sorted[0]
	
	developer_centrality = []

	developer_file = file("public/wordpress/developer.json")
	developers = json.load(developer_file)
	for developer in developers:
		degree = 0
		betweenness = 0
		closeness = 0
		communicability = 0
		load = 0
		current_flow_betweenness = 0
		current_flow_closeness = 0
		for i in range (0, len(dc_sorted)):
			# if ( not dc_sorted[i][0] == bc_sorted[i][0] == clc_sorted[i][0] == coc_sorted[i][0] == lc_sorted[i][0] == cfbc_sorted[i][0]):
			# 	print 'false'
			if( developer['developer'] == dc_sorted[i][0]):
				degree = dc_sorted[i][1]
				betweenness = bc_sorted[i][1]
				closeness = clc_sorted[i][1]
				communicability = coc_sorted[i][1]
				load = lc_sorted[i][1]
				current_flow_betweenness = cfbc_sorted[i][1]
				current_flow_closeness = cfcc_sorted[i][1]

		developer_centrality.append({
			'name': developer['developer'],
		 	'degree': degree,
			'betweenness': betweenness,
			'closeness': closeness,
			'communicability': communicability,
			'load': load,
			'current_flow_betweenness': current_flow_betweenness,
			'current_flow_closeness':current_flow_closeness,
		 })

	return developer_centrality
开发者ID:bluekite,项目名称:seniorproject,代码行数:48,代码来源:wordpress_centrality_calculate.py


示例19: test_unnormalized_krackhardt_load

    def test_unnormalized_krackhardt_load(self):
        G=self.K
        c=nx.load_centrality(G,normalized=False)
        d={0: 1.667,
           1: 1.667,
           2: 0.000,
           3: 7.333,
           4: 0.000,
           5: 16.667,
           6: 16.667,
           7: 28.000,
           8: 16.000,
           9: 0.000}

        for n in sorted(G):
            assert_almost_equal(c[n],d[n],places=3)
开发者ID:AhmedPho,项目名称:NetworkX_fork,代码行数:16,代码来源:test_load_centrality.py


示例20: getHugeStats

def getHugeStats(g):
    
    if nx.is_directed(g) == True:
        P1 = pd.DataFrame({'load_centrality': nx.load_centrality(g, weight='weight'),
                           'betweenness_centrality': nx.betweenness_centrality(g, weight='weight'),
                           
                           'pagerank': pd.Series(nx.pagerank(g, alpha=0.85, personalization=None, max_iter=100, tol=1e-08, nstart=None, weight='weight')),
                           'eigenvector_centrality': nx.eigenvector_centrality_numpy(g),
                           'degree_centrality': pd.Series(nx.degree_centrality(g)),
                           'in_degree_centrality': pd.Series(nx.in_degree_centrality(g)),
                           'out_degree_centrality': pd.Series(nx.out_degree_centrality(g))})
                           
    else:
        P1 = pd.Panel({'spl': pd.DataFrame(nx.shortest_path_length(g)),
                          'apdp': pd.DataFrame(nx.all_pairs_dijkstra_path(g)), 
                          'apdl': pd.DataFrame(nx.all_pairs_dijkstra_path_length(g)),
                          'c_exp': pd.DataFrame(nx.communicability_exp(g))})    
    return P1
开发者ID:aidiss,项目名称:Lithuanian-Academic-Circles-and-Their-Networks,代码行数:18,代码来源:Stats.py



注:本文中的networkx.load_centrality函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.max_weight_matching函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.laplacian_matrix函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap