• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python networkx.minimum_spanning_edges函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.minimum_spanning_edges函数的典型用法代码示例。如果您正苦于以下问题:Python minimum_spanning_edges函数的具体用法?Python minimum_spanning_edges怎么用?Python minimum_spanning_edges使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了minimum_spanning_edges函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_multigraph_keys

    def test_multigraph_keys(self):
        """Tests that the minimum spanning edges of a multigraph
        preserves edge keys.

        """
        G = nx.MultiGraph()
        G.add_edge(0, 1, key="a", weight=2)
        G.add_edge(0, 1, key="b", weight=1)
        mst_edges = nx.minimum_spanning_edges(G, algorithm="kruskal", data=False)
        assert_equal([(0, 1, "b")], list(mst_edges))
        mst_edges = nx.minimum_spanning_edges(G, algorithm="prim", data=False)
        assert_equal([(0, 1, "b")], list(mst_edges))
开发者ID:wangxiong2015,项目名称:networkx,代码行数:12,代码来源:test_mst.py


示例2: graph_mst

def graph_mst(dist, labels, limit):
    """Обёртка над алгоритмом MST"""

    from collections import deque;
    
    S = nx.Graph(); #исходный граф
    S.add_nodes_from(labels);
    R = S.copy(); #результат кластеризации
    C = nx.Graph(); #читаемый результат

    dq = deque(dist);        
    len_x = len(labels);
    for x in range( len_x-1 ):
        for y in range(x + 1, len_x):
            S.add_edge( labels[x], labels[y], weight=dq.popleft() );

    mst = deque(nx.minimum_spanning_edges(S, data=True));
    del S;

    R.add_edges_from( [edge for edge in mst if( edge[2]['weight'] <= limit)] );

    for num, clust in enumerate(nx.connected_components(R)):
        C.add_node(num, {
                   'size':len(clust),
                   'members': clust
                   });
    del R;

    return C;
开发者ID:esemi,项目名称:dseyenew,代码行数:29,代码来源:main.py


示例3: plotGraph

def plotGraph(g,filename):
    """
    Creates a plot of the graph passed in after transforming
    the full graph into a minimum spanning tree. The MST of a graph
    like this has some significance (but also some locally strange paths)
    and is nice to look add due to the reduced edge density.
    """

    plt.figure(figsize=(15, 10))
    np.random.seed(5)
    mst = nx.minimum_spanning_tree(g, weight='difference')
    pos = nx.spring_layout(mst, iterations=900, k=.008, weight='difference')

    mst_edges = list(nx.minimum_spanning_edges(g, weight='difference'))
    degs = mst.degree()
    nodesize = [degs[v]*80 for v in mst]

    nl = mst.nodes()

    nx.draw_networkx_edges(g, pos, edgelist=mst_edges, alpha=.2)
    nx.draw_networkx_nodes(g, pos, nodelist = nl, node_size=nodesize, node_color=nodesize)

        
    nx.draw_networkx_labels(g, pos, font_color='k', font_size=7)

    plt.title("Artist Network", fontsize=18)
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename)
开发者ID:nkarnik,项目名称:RapNetwork,代码行数:29,代码来源:artistGraph.py


示例4: get_DT

def get_DT(MI_subset):
    #we use networkx package
    #create a Graph object
    G = nx.Graph()
    G.add_nodes_from(range(len(MI_subset)))
    edge_list = []
    for i in range(len(MI_subset)):
        for j in range(i+1,len(MI_subset)):
            #we negate MI, turning into a MST problem
            edge_list.extend([(i,j,-MI_subset[i][j]),(j,i,-MI_subset[j][i])])
    G.add_weighted_edges_from(edge_list)
    
    min_span_tree = sorted(list(nx.minimum_spanning_edges(G)))
    #rearrange the mst s.t. all 1st axis is parents of 2nd axis
    N = len(min_span_tree)
    #indicates which nodes are added, hence they are not children
    indicator = np.zeros((N+1,1)) #add 1 to compensate for N edges and N+1 nodes
    temp1,temp2,_ = min_span_tree.pop(0)
    rearranged = [[temp1,temp2]]
    indicator[[rearranged[0][0],rearranged[0][1]]] = 1 #default parents
    while min_span_tree:
        for ins in range(len(min_span_tree)):
            if indicator[min_span_tree[ins][0]]==1:
                temp1,temp2,_ = min_span_tree.pop(ins)
                rearranged.append([temp1,temp2])
                indicator[temp2] = 1
                break
            elif indicator[min_span_tree[ins][1]]==1:
                temp1,temp2,_ = min_span_tree.pop(ins)
                rearranged.append([temp2,temp1])
                indicator[temp1] = 1
                break
    return rearranged
开发者ID:zhicongqiu,项目名称:GAD_MLSP2015,代码行数:33,代码来源:GAD_module.py


示例5: test_nan_weights

 def test_nan_weights(self):
     # Edge weights NaN never appear in the spanning tree. see #2164
     G = self.G
     G.add_edge(0, 12, weight=float('nan'))
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                       data=False, ignore_nan=True)
     actual = sorted((min(u, v), max(u, v)) for u, v in edges)
     expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
     assert_edges_equal(actual, expected)
     # Now test for raising exception
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                       data=False, ignore_nan=False)
     assert_raises(ValueError, list, edges)
     # test default for ignore_nan as False
     edges = nx.minimum_spanning_edges(G, algorithm=self.algo, data=False)
     assert_raises(ValueError, list, edges)
开发者ID:networkx,项目名称:networkx,代码行数:16,代码来源:test_mst.py


示例6: iterativeAlgorithm

 def iterativeAlgorithm(self):
     T = nx.Graph()
     for n in T:
         T.node[n]=self.node[n].copy()
     T.graph=self.graph.copy()
     for u, v, d in nx.minimum_spanning_edges(self, data=True):
         T.add_edge(u,v,d)
         yield T
开发者ID:michalkielak,项目名称:GIS,代码行数:8,代码来源:model.py


示例7: test_without_data

 def test_without_data(self):
     edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo,
                                       data=False)
     # Edges from the spanning edges functions don't come in sorted
     # orientation, so we need to sort each edge individually.
     actual = sorted((min(u, v), max(u, v)) for u, v in edges)
     expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
     assert_edges_equal(actual, expected)
开发者ID:networkx,项目名称:networkx,代码行数:8,代码来源:test_mst.py


示例8: test_unicode_name

    def test_unicode_name(self):
        """Tests that using a Unicode string can correctly indicate
        Borůvka's algorithm.

        """
        edges = nx.minimum_spanning_edges(self.G, algorithm=u'borůvka')
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
        assert_edges_equal(actual, self.minimum_spanning_edgelist)
开发者ID:networkx,项目名称:networkx,代码行数:10,代码来源:test_mst.py


示例9: euclidean_minimum_spanning_tree

def euclidean_minimum_spanning_tree(nodes,**kwargs):
    """
    :param nodes: list of (x,y) nodes positions
    :return: :class:`GeoGraph` with minimum spanning tree between nodes

    see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
    """
    g=GeoGraph(None,**kwargs)
    d=delauney_triangulation(nodes,**kwargs)
    g.add_edges_from(nx.minimum_spanning_edges(d, weight='length'))
    return g
开发者ID:goulu,项目名称:Goulib,代码行数:11,代码来源:graph.py


示例10: create_islands

def create_islands(graph):
    # create minimum spanning tree from undirected edges
    mst_edges = sorted(list(nx.minimum_spanning_edges(graph, data=True)))
    islands = nx.Graph()
    for e0, e1, w in mst_edges:
        ring0 = graph.node[e0]["ring"]
        ring1 = graph.node[e1]["ring"]
        local0, local1 = graph.node[e0]["local"], graph.node[e1]["local"]
        if ring0 != ring1:
            islands.add_edge(ring0, ring1, weight=w, connection=[e0, e1, local0, local1])
    return islands
开发者ID:asher-pembroke,项目名称:bokeh-tools,代码行数:11,代码来源:filled_contours.py


示例11: euclidean_minimum_spanning_tree

def euclidean_minimum_spanning_tree(nodes, **kwargs):
    """
    :param nodes: list of (x,y) nodes positions
    :return: geograph with minimum spanning tree between  nodes
    see https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
    """
    g = GeoGraph(None, **kwargs)
    d = delauney_triangulation(nodes, **kwargs)
    for edge in nx.minimum_spanning_edges(d, weight="length"):
        g.add_edge(*edge)
    return g
开发者ID:JustinTArthur,项目名称:Goulib,代码行数:11,代码来源:graph.py


示例12: main

def main():
	# build up a graph
	filename = '../../florentine_families_graph.gpickle'
	G = nx.read_gpickle(filename)

	# Spanning tree
	mst = nx.minimum_spanning_tree(G) 
	out_file = 'florentine_families_graph_minimum_spanning_tree.png'
	PlotGraph.plot_graph(G, filename=out_file, colored_edges=mst.edges())

	edges = nx.minimum_spanning_edges(G, weight='weight', data=True)
	list_edges = list(edges)
	print(list_edges)
开发者ID:sparkandshine,项目名称:complex_network,代码行数:13,代码来源:spanning_tree.py


示例13: mst_pairs

def mst_pairs(pairs):
    """Given all pairwise distances, determine the minimal spanning subset.

    Convert pairwise distances to an undirected graph, determine the
    minumum spanning tree, and emit the minimal list of edges to connect all
    nodes.

    Input: iterable of (SeqRecord, SeqRecord, distance)
    Output: iterable of (SeqRecord, SeqRecord)
    """
    G = networkx.Graph()
    for left, right, score in pairs:
        G.add_edge(left, right, weight=1.0/score)
    mst = networkx.minimum_spanning_edges(G, data=False)
    return list(mst)
开发者ID:Tsingke,项目名称:fammer,代码行数:15,代码来源:tmalign.py


示例14: minimum_spanning_tree

def minimum_spanning_tree(G, weight="weight"):
    """Return a minimum spanning tree or forest of an undirected 
    weighted graph.

    A minimum spanning tree is a subgraph of the graph (a tree) with
    the minimum sum of edge weights.

    If the graph is not connected a spanning forest is constructed.  A
    spanning forest is a union of the spanning trees for each
    connected component of the graph.

    Parameters
    ----------
    G : NetworkX Graph
    
    weight : string
       Edge data key to use for weight (default 'weight').

    Returns
    -------
    G : NetworkX Graph
       A minimum spanning tree or forest. 
    
    Examples
    --------
    >>> G=nx.cycle_graph(4)
    >>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
    >>> T=nx.minimum_spanning_tree(G)
    >>> print(sorted(T.edges(data=True)))
    [(0, 1, {}), (1, 2, {}), (2, 3, {})]

    Notes
    -----
    Uses Kruskal's algorithm.

    If the graph edges do not have a weight attribute a default weight of 1
    will be used.
    """
    T = nx.Graph(nx.minimum_spanning_edges(G, weight=weight, data=True))
    # Add isolated nodes
    if len(T) != len(G):
        T.add_nodes_from([n for n, d in G.degree().items() if d == 0])
    # Add node and graph attributes as shallow copy
    for n in T:
        T.node[n] = G.node[n].copy()
    T.graph = G.graph.copy()
    return T
开发者ID:ciarancourtney,项目名称:cloudify-trial,代码行数:47,代码来源:mst.py


示例15: get_sparsified_MPST_remove_leaves

def get_sparsified_MPST_remove_leaves(G, K, directed=False):
    '''
    Sparsify graph using most probable spanning tree.
    If |MPST| < K, then add most probable edges that are not included.
    If |MPST| > K, then remove edges that are adjacent to leaves
    '''
    G_edges = G.edges(data=True)
    if directed:
        # MPST_edges = branchings.minimum_spanning_arborescence(G, attr='weight').edges(data=True)
        pass
    else:
        MPST_edges = list(nx.minimum_spanning_edges(G,weight='weight',data=True))
    edges = [e for e in G_edges if e not in MPST_edges]
    mp_edges = sorted(edges,
                    key = lambda (u,v,d): exp(1)**(-d["weight"]),
                    reverse = True)
    if len(MPST_edges) <= K:
        MPST_edges.extend(mp_edges[:(K - len(MPST_edges))])
    else:
        # remove edges that are adjacent to leaves (keeping connectivity)
        # if ties remove with lowest probability (keeping probability)
        #TODO check why in case of directed MPST it doesn't work
        MPST = nx.Graph(MPST_edges)
        degrees = dict()
        leaves = set()
        for u in MPST:
            degrees[u] = len(MPST[u])
            if degrees[u] == 1:
                v, d = MPST[u].items()[0]
                leaves.add((u,v,d["weight"]))
        for _ in range(len(MPST_edges) - K):
            u,v,d = min(leaves, key = lambda (u,v,d): exp(1)**(-d))
            MPST.remove_edge(u,v)
            leaves.remove((u,v,d))
            v_edges = MPST[v].items()
            if len(v_edges) == 1:
                w, t = v_edges[0]
                leaves.add((v,w,t["weight"]))
            elif len(v_edges) == 0:
                leaves.remove((v,u,d))
        print len(MPST.edges()), K
        MPST_edges = MPST.edges(data=True)
    return MPST_edges
开发者ID:nd7141,项目名称:GraphSparsification,代码行数:43,代码来源:MPST.py


示例16: steiner_tree

def steiner_tree(G, terminal_nodes, weight='weight'):
    """ Return an approximation to the minimum Steiner tree of a graph.

    Parameters
    ----------
    G : NetworkX graph

    terminal_nodes : list
         A list of terminal nodes for which minimum steiner tree is
         to be found.

    Returns
    -------
    NetworkX graph
        Approximation to the minimum steiner tree of `G` induced by
        `terminal_nodes` .

    Notes
    -----
    Steiner tree can be approximated by computing the minimum spanning
    tree of the subgraph of the metric closure of the graph induced by the
    terminal nodes, where the metric closure of *G* is the complete graph in
    which each edge is weighted by the shortest path distance between the
    nodes in *G* .
    This algorithm produces a tree whose weight is within a (2 - (2 / t))
    factor of the weight of the optimal Steiner tree where *t* is number of
    terminal nodes.

    """
    # M is the subgraph of the metric closure induced by the terminal nodes of
    # G.
    M = metric_closure(G, weight=weight)
    # Use the 'distance' attribute of each edge provided by the metric closure
    # graph.
    H = M.subgraph(terminal_nodes)
    mst_edges = nx.minimum_spanning_edges(H, weight='distance', data=True)
    # Create an iterator over each edge in each shortest path; repeats are okay
    edges = chain.from_iterable(pairwise(d['path']) for u, v, d in mst_edges)
    T = G.edge_subgraph(edges)
    return T
开发者ID:ProgVal,项目名称:networkx,代码行数:40,代码来源:steinertree.py


示例17: plotGraph

def plotGraph(g,filename):
    plt.figure(figsize=(15, 10))
    np.random.seed(5)
    mst = nx.minimum_spanning_tree(g, weight='difference')
    pos = nx.spring_layout(mst, iterations=900, k=.008, weight='difference')

    mst_edges = list(nx.minimum_spanning_edges(g, weight='difference'))
    degs = mst.degree()
    nodesize = [degs[v]*80 for v in mst]

    nl = mst.nodes()

    nx.draw_networkx_edges(g, pos, edgelist=mst_edges, alpha=.2)
    nx.draw_networkx_nodes(g, pos, nodelist = nl, node_size=nodesize, node_color=nodesize)

        
    nx.draw_networkx_labels(g, pos, font_color='k', font_size=7)

    plt.title("Artist Network", fontsize=18)
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename)
开发者ID:bowlofstew,项目名称:RapNetwork,代码行数:22,代码来源:artistGraph.py


示例18: _min_cycle_basis

def _min_cycle_basis(comp, weight):
    cb = []
    # We  extract the edges not in this spanning tree
    spanning_tree_edges = list(
        nx.minimum_spanning_edges(comp, weight=None, data=False))
    edges_excl = [
        frozenset(e) for e in comp.edges() if e not in spanning_tree_edges]
    N = len(edges_excl)

    # We maintain a set of vectors orthogonal to sofar found cycles
    set_orth = [set([edge]) for edge in edges_excl]
    for k in xrange(N):
        # kth cycle is "parallel" to kth vector in set_orth
        new_cycle = _min_cycle(comp, set_orth[k], weight=weight)
        cb.append(list(set().union(*new_cycle)))
        # now update set_orth so that k+1,k+2... th elements are
        # orthogonal to the newly found cycle, as per [p. 336, 1]
        base = set_orth[k]
        set_orth[k + 1:] = [orth ^ base if len(orth & new_cycle) % 2\
                            else orth for orth in set_orth[k + 1:]]

    return cb
开发者ID:debsankha,项目名称:generalized-cycle,代码行数:22,代码来源:minimum_cycles.py


示例19:

for e in weighted_edges:
    f = e[0]
    t = e[1]
    w = e[2]
    if w > 20:
        G2.add_edge(f, t, weight=w)

nx.write_graphml(G2, 'topic_graph.graphml')

# minimum spanning tree
T = nx.algorithms.minimum_spanning_tree(G2, weight='weight')
nx.write_graphml(T, "spanning_tree.graphml")

# spanning edges
E = nx.minimum_spanning_edges(G2, weight='weight')
nx.write_graphml(T, "spanning_edges.graphml")

# code -> topic
code_topic = {'0' : 'EU roma külpolitika',
              '1' : 'Roma önkormányzat',
              '2' : 'Magyar Gárda, stb.',
              '3' : 'Lopással kapcsolatos hírek',
              '4' : 'Roma-nem roma társadalmi prolémák, stb.',
              '5' : 'Politikai pártok, politikusok',
              '6' : 'Ingatlanüggyel, lakhatással kapcsolatos problémák, bűntények',
              '7' : 'Máshonnan átvett tartalmak',
              '8' : 'Vidéki települések roma-többségi konfliktusai',
              '9' : 'Egészségügy',
              '10' : 'Közbiztonság, önvédelem, polgárőrség',
              '11' : 'Olvasói történetek',
开发者ID:zolizoli,项目名称:graph_hierarchy,代码行数:30,代码来源:generate_bigraph.py


示例20: minimum_spanning_tree

def minimum_spanning_tree(G,weight='weight'):
    T=nx.Graph(nx.minimum_spanning_edges(G,weight=weight,data=True))
    return T
开发者ID:nd7141,项目名称:GraphSparsification,代码行数:3,代码来源:MPST.py



注:本文中的networkx.minimum_spanning_edges函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.minimum_spanning_tree函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.minimum_node_cut函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap