• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python networkx.powerlaw_cluster_graph函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.powerlaw_cluster_graph函数的典型用法代码示例。如果您正苦于以下问题:Python powerlaw_cluster_graph函数的具体用法?Python powerlaw_cluster_graph怎么用?Python powerlaw_cluster_graph使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了powerlaw_cluster_graph函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: initialize

def initialize():
    global g
    global wr
    global f
    global initialConditions
    initialConditions=0
    # Inicialite file for saving data
    cola= dt.datetime.now().strftime('%H%M')
    outputfilename = 'competicion_01_{}.csv'.format( cola)
    fileOut = open(outputfilename, 'w')
    wr = csv.writer(fileOut,quoting = csv.QUOTE_NONE)
    wr.writerow(['Tipo 1','Tipo 2','Tipo 3','Patogeno'])
    f = open( 'competicion_01_{}.ini'.format( cola), "w")
    
 #   g = nx.karate_club_graph()
    g=nx.powerlaw_cluster_graph(100,3,0.3)
    g.pos = nx.spring_layout(g)

    for i in g.nodes_iter():
        if random() < .33:
            g.node[i]['tipo'] = 0
        elif random() < .33:
            g.node[i]['tipo'] = 1
        elif random() < .33:
            g.node[i]['tipo'] = 2
        elif random() < .33:
            g.node[i]['tipo'] = 3
        else:
            g.node[i]['tipo'] = 4
开发者ID:falevian,项目名称:Bacterias-PrimerosPasos,代码行数:29,代码来源:00+Un+bacteria+contra+tres.py


示例2: get_graph

def get_graph(objects, properties):
    graph_type = properties['graph_type']
    n = len(objects)-1
    if 'num_nodes_to_attach' in properties.keys():
        k = properties['num_nodes_to_attach']
    else:
        k = 3
    r = properties['connection_probability']

    tries = 0
    while(True):
        if graph_type == 'random':
            x = nx.fast_gnp_random_graph(n,r)
        elif graph_type == 'erdos_renyi_graph':
            x = nx.erdos_renyi_graph(n,r)
        elif graph_type == 'watts_strogatz_graph':
            x = nx.watts_strogatz_graph(n, k, r)
        elif graph_type == 'newman_watts_strogatz_graph':
            x = nx.newman_watts_strogatz_graph(n, k, r)
        elif graph_type == 'barabasi_albert_graph':
            x = nx.barabasi_albert_graph(n, k, r)
        elif graph_type == 'powerlaw_cluster_graph':
            x = nx.powerlaw_cluster_graph(n, k, r)
        elif graph_type == 'cycle_graph':
            x = nx.cycle_graph(n)
        else: ##Star by default
            x = nx.star_graph(len(objects)-1)
        tries += 1
        cc_conn = nx.connected_components(x)
        if len(cc_conn) == 1 or tries > 5: 
            ##best effort to create a connected graph!
            break
    return x, cc_conn
开发者ID:BenjaminDHorne,项目名称:agentsimulation,代码行数:33,代码来源:GraphGen.py


示例3: fromPowerLaw

    def fromPowerLaw(cls, specs):
        '''
        :param specs: a tupple containing (n, m, p, seed, bw, delay, cpu)
        :return: a substrate
        '''
        n, m, p, seed, bw, delay, cpu = specs
        n = int(n)
        m = int(m)
        p = float(p)
        seed = int(seed)
        g = nx.powerlaw_cluster_graph(n, m, p, seed)
        session = Session()
        nodes = [Node(name=str(n), cpu_capacity=cpu) for n in g.nodes()]

        session.add_all(nodes)
        session.flush()

        edges = [Edge
                 (node_1=session.query(Node).filter(Node.name == str(e[0])).one(),
                  node_2=session.query(Node).filter(Node.name == str(e[1])).one(),
                  bandwidth=bw,
                  delay=delay
                  )
                 for e in g.edges()

                 ]
        session.add_all(edges)
        session.flush()

        return cls(edges, nodes
                   )
开发者ID:nherbaut,项目名称:vCDN,代码行数:31,代码来源:substrate.py


示例4: __update_structure

	def __update_structure(self):
		self.structure = nx.powerlaw_cluster_graph(
			self.num_nodes,
			self.node_degree,
			self.prob_triad,
			self.seed
		)

		if nx.is_connected(self.structure):
			return

		components = nx.connected_components(self.structure)

		biggest_comp = []
		comp_index = -1
		for i, component in enumerate(components):
			if len(component) > len(biggest_comp):
				biggest_comp = component
				comp_index = i

		if self.seed:
			random.seed(self.seed)

		del components[comp_index]
		for component in components:
			for left_node in component:
				right_node = random.choice(biggest_comp)
				self.structure.add_edge(left_node, right_node)
开发者ID:jim-pansn,项目名称:sybil_detection,代码行数:28,代码来源:graphs.py


示例5: add_edges_to_groups

def add_edges_to_groups(output_graph, groups_list, edges_to_add, prob, level):
    global template_created
    total_groups = len(groups_list)
    edges_per_node = max((3 - level), 1)
    triangle_prob = 0.1*level
    if False:
        random_graph = nx.random_regular_graph(int(total_groups/3), total_groups)
    else:
        random_graph = nx.powerlaw_cluster_graph(total_groups, edges_per_node, triangle_prob, random.random()*10)

    if template_created:
        template_created = False
        plt.axis('off')
        position = nx.graphviz_layout(random_graph, prog='sfdp')
        nx.draw_networkx_nodes(random_graph, position, node_size=30, node_color='r') #output_graph.degree().values())
        nx.draw_networkx_edges(random_graph, position, alpha=0.3)
        plt.savefig(dataset_name2 +"/"+ "template_" + image_name, bbox_inches='tight', dpi=500)
        print "plot saved as ", image_name
    
    random_edges = random_graph.edges()
    
    for edge in random_edges:
        e0 = edge[0]
        e1 = edge[1]
        if random.random() > 0.3:
            e0, e1 = e1, e0
        print("adding level{} edges between group{} and group{}".format(level, e0, e1))
        add_edges_to_two_groups(output_graph, groups_list[e0], groups_list[e1], edges_to_add, prob)
开发者ID:vijkp,项目名称:graph-bench,代码行数:28,代码来源:igen_data.py


示例6: test_pagerank

 def test_pagerank(self):
     size = 1000
     g = nx.DiGraph(nx.powerlaw_cluster_graph(size, 3, 0.001))
     N = len(g.nodes())
     tmp_file = tempfile.NamedTemporaryFile(delete=False)
     for node in g.nodes():
         outlinks = g.out_edges(nbunch=[node])
         outlinks = map(str, [n2 for n1, n2 in outlinks])
         if not outlinks:
             value = 'pr_results,%s,%s' % (1.0/N, N)
             tmp_file.write('%s\t%s\n' % (node, value))
         else:
             outlinks_str = ','.join(outlinks)
             value = 'pr_results,%s,%s,' % (1.0/N, N)
             value += outlinks_str
             tmp_file.write('%s\t%s\n' % (node, value))
     tmp_file.flush()
     input_path = tmp_file.name
     job_id = 'unittest'
     sorted_ids = pagerank(job_id, self.iter_count, input_path, self.top_n)
     fs = HadoopFS()
     fs.rmr('%s/hat_results' % job_id)
     if self.top_n <= size: 
         self.assertEqual(len(sorted_ids), self.top_n, 'some ids is missing')
     id_ranges = range(0, 1000)
     for _id in sorted_ids:
         self.assertIn(int(_id), id_ranges, 'node should in graph')
开发者ID:huxiaoqian,项目名称:project,代码行数:27,代码来源:area_identify_test.py


示例7: createGraphsAndCommunities

def createGraphsAndCommunities():
	g = nx.scale_free_graph(500, alpha=0.40, beta=0.40, gamma=0.20)
	g1 = nx.powerlaw_cluster_graph(500, 10, 0.2)
	g2 = nx.barabasi_albert_graph(500, 10)
	g3 = nx.newman_watts_strogatz_graph(500, 10, 0.2)
	nx.write_graphml (g, direc+"sfg.graphml")
	nx.write_graphml(g1, direc+"pcg.graphml")
	nx.write_graphml(g2, direc+"bag.graphml")
	nx.write_graphml(g3, direc+"nwsg.graphml")

	graphs = {}
	graphs["sfg"] = graph_tool.load_graph(direc+"sfg.graphml")
	graphs["pcg"] = graph_tool.load_graph(direc+"pcg.graphml")
	graphs["bag"] = graph_tool.load_graph(direc+"bag.graphml")
	graphs["nwsg"] = graph_tool.load_graph(direc+"nwsg.graphml")
	graphs["price"] = graph_tool.generation.price_network(1000)
	
	for i,h in graphs.iteritems():
		s = graph_tool.community.minimize_blockmodel_dl(h)
		b = s.b
		graph_tool.draw.graph_draw(h, vertex_fill_color=b, vertex_shape=b, output=direc+"block"+str(i)+".pdf")
		
		com = graph_tool.community.community_structure(h, 10000, 20)
		graph_tool.draw.graph_draw(h, vertex_fill_color=com, vertex_shape=com, output=direc+"community"+str(i)+".pdf")

		state = graph_tool.community.minimize_nested_blockmodel_dl(h)
		graph_tool.draw.draw_hierarchy(state, output=direc+"nestedblock"+str(i)+".pdf")

		pagerank = graph_tool.centrality.pagerank(h)
		graph_tool.draw.graph_draw(h, vertex_fill_color=pagerank, vertex_size = graph_tool.draw.prop_to_size(pagerank, mi=5, ma=15), vorder=pagerank, output=direc+"pagerank"+str(i)+".pdf")
		h.set_reversed(is_reversed=True)
		pagerank = graph_tool.centrality.pagerank(h)
		graph_tool.draw.graph_draw(h, vertex_fill_color=pagerank, vertex_size = graph_tool.draw.prop_to_size(pagerank, mi=5, ma=15), vorder=pagerank, output=direc+"reversed_pagerank"+str(i)+".pdf")
开发者ID:stonepierre,项目名称:reseauSocial,代码行数:33,代码来源:graphtoolMethods.py


示例8: RandomHolmeKim

def RandomHolmeKim(n, m, p, seed=None):
    """
    Returns a random graph generated by the Holme and Kim algorithm for
    graphs with power law degree distribution and approximate average
    clustering.

    INPUT:


    -  ``n`` - number of vertices.

    -  ``m`` - number of random edges to add for each new
       node.

    -  ``p`` - probability of adding a triangle after
       adding a random edge.

    -  ``seed`` - for the random number generator.


    From the NetworkX documentation: The average clustering has a hard
    time getting above a certain cutoff that depends on m. This cutoff
    is often quite low. Note that the transitivity (fraction of
    triangles to possible triangles) seems to go down with network
    size. It is essentially the Barabasi-Albert growth model with an
    extra step that each random edge is followed by a chance of making
    an edge to one of its neighbors too (and thus a triangle). This
    algorithm improves on B-A in the sense that it enables a higher
    average clustering to be attained if desired. It seems possible to
    have a disconnected graph with this algorithm since the initial m
    nodes may not be all linked to a new node on the first iteration
    like the BA model.

    EXAMPLE: We show the edge list of a random graph on 8 nodes with 2
    random edges per node and a probability `p = 0.5` of
    forming triangles.

    ::

        sage: graphs.RandomHolmeKim(8, 2, 0.5).edges(labels=False)
        [(0, 2), (0, 5), (1, 2), (1, 3), (2, 3), (2, 4), (2, 6), (2, 7),
         (3, 4), (3, 6), (3, 7), (4, 5)]

    ::

        sage: G = graphs.RandomHolmeKim(12, 3, .3)
        sage: G.show()  # long time

    REFERENCE:

    - [1] Holme, P. and Kim, B.J. Growing scale-free networks with
      tunable clustering, Phys. Rev. E (2002). vol 65, no 2,
      026107.
    """
    if seed is None:
        seed = current_randstate().long_seed()
    import networkx

    return graph.Graph(networkx.powerlaw_cluster_graph(n, m, p, seed=seed))
开发者ID:CETHop,项目名称:sage,代码行数:59,代码来源:random.py


示例9: generate_topo

def generate_topo(n):
    topo = nx.powerlaw_cluster_graph(n,2,0.08)
    # topo = fnss.waxman_1_topology(n=50,alpha=0.6,beta=0.3)
    # topo = fnss.fat_tree_topology(n)
    fnss.set_weights_constant(topo,1)
    fnss.set_delays_constant(topo, 1, 'ms')
    fnss.set_capacities_edge_betweenness(topo,[100,500,1000],'Mbps')
    fnss.write_topology(topo,'topo_pl_50.xml')
开发者ID:chenhuan0,项目名称:ryu,代码行数:8,代码来源:topo_random.py


示例10: generate_graph

def generate_graph():
    # Try these included graphs! Play around with the constants!
    # Feel free to define your own graph for testing.

    #return nx.random_regular_graph(5, GRAPH_SIZE, seed=GRAPH_SEED)
    #return nx.barabasi_albert_graph(GRAPH_SIZE, 5)
    #return grid_graph()
    return nx.powerlaw_cluster_graph(GRAPH_SIZE, 5, 0.7)
开发者ID:jamesjwu,项目名称:awap-2015,代码行数:8,代码来源:graphs.py


示例11: graph_space_iter

def graph_space_iter():
    i = 20
    n = 0
    while n < 1000000:
        G = nx.powerlaw_cluster_graph(i, 10, 0.1)
        G = nx.convert_node_labels_to_integers(G)
        n = G.number_of_edges()
        i *= 2
        yield G.number_of_nodes(), G
开发者ID:jorants,项目名称:MV-Matching-V2,代码行数:9,代码来源:test.py


示例12: pl_cluster_new

def pl_cluster_new(n, m, p, random_seed=None):
	Gw=nx.powerlaw_cluster_graph(n, m, p, seed=random_seed)
	
	Gs=nx.Graph()
	Gs.add_nodes_from(Gw.nodes(),state=1.0)
	Gs.add_edges_from(Gw.edges(),weight=1.0)
	##remove self-edges
	Gs.remove_edges_from(Gs.selfloop_edges())
	
	return Gs
开发者ID:sideshownick,项目名称:NetWorks,代码行数:10,代码来源:my_networks.py


示例13: create_scale_free_graph

def create_scale_free_graph(N_nodes,p_edge,n_infected):
    #scale free and small world
    #Growing Scale-Free Networks with Tunable Clustering
    n = N_nodes
    m = int(0.5*p_edge*N_nodes)
    p = 1.0
    #Random graph
    #p_coop is the fraction of cooperators
    G = nx.powerlaw_cluster_graph(n,m,p)
    return set_graph_strategies(G, n_infected)
开发者ID:jnkh,项目名称:epidemics,代码行数:10,代码来源:graph_epidemic.py


示例14: topo_pl

def topo_pl(nodes):
    bws = [1,2,3,4,5,6,7,8,9]
    network = nx.powerlaw_cluster_graph(nodes,2,0.13)
    g = nx.Graph()
    g.add_nodes_from(network.nodes())
    for link in network.edges():
        bw = random.choice(bws)
        g.add_edge(link[0],link[1],{'weight':bw})
        g.add_edge(link[1],link[0],{'weight':bw})
    return g
开发者ID:chenhuan0,项目名称:ryu,代码行数:10,代码来源:rerouter.py


示例15: initialize

def initialize():
    global g
 #   g = nx.karate_club_graph()
    g=nx.powerlaw_cluster_graph(100,3,0.3)
    g.pos = nx.spring_layout(g)
    for i in g.nodes_iter():
        if random() < .3:
            g.node[i]['state'] = 1
        elif random() < .3:
            g.node[i]['state'] = 2
        elif random() < .3:
            g.node[i]['state'] = 3
        else:
            g.node[i]['state'] = 0
开发者ID:falevian,项目名称:Bacterias-PrimerosPasos,代码行数:14,代码来源:00+Adaptativo_Matricial.py


示例16: main

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--input', help="Input file path", default=None)
    parser.add_argument(
        '-o', '--output', help="Output file path",
        default=None)
    parser.add_argument(
        '--page-rank',
        help="Adds page rank to the output network",
        action='store_const', default=False, const=True)
    parser.add_argument(
        '--eigenvector',
        help="Adds eigenvector centrality to the output network",
        action='store_const', default=False, const=True)
    parser.add_argument(
        '--betweenness',
        help="Adds betweenness centrality to the output network",
        action='store_const', default=False, const=True)

    namespace = parser.parse_args()

    if namespace.input is None:
        graph = nx.powerlaw_cluster_graph(100, 8, 0.1)
    else:
        graph = read_network(namespace.input)

    if namespace.page_rank:
        page_rank_dictionary = nx.pagerank(graph)
        for node, rank in page_rank_dictionary.iteritems():
            graph.add_node(node, pagerank=rank)

    if namespace.eigenvector:
        eig_dictionary = nx.eigenvector_centrality(graph)
        for node, rank in eig_dictionary.iteritems():
            graph.add_node(node, eigenvector_centrality=rank)

    if namespace.betweenness:
        betw_dictionary = nx.betweenness_centrality(graph)
        for node, rank in betw_dictionary.iteritems():
            graph.add_node(node, betweenness=rank)

    graph_dict = convert_network(graph)

    if namespace.output is None:
        out = sys.stdout
    else:
        out = file(namespace.output, 'w')

    json.dump(graph_dict, out)
开发者ID:rik0,项目名称:PyD3Formatter,代码行数:49,代码来源:Py3DFormatter.py


示例17: __init__

    def __init__(self, vertices, m, c, seed = int(time.time())):
        """
        Construct a Powerlaw Clustered network. The vertices argument contains 
        objects of type Vertex representing the vertices of the network. The 
        m argument specifies the number of attachments made from the 
        new vertex to the existing vertices during the network construction 
        process. The c argument specifies the desired level of clustering. 
        The seed argument is the seed for the random number generator used to 
        build the network.

        Note that the desired level of clustering may not always be achievable.
        """

        self.vertices = vertices
        self.m = m
        self.c = c
        self.seed = seed
        p = 0.0
        g = networkx.powerlaw_cluster_graph(len(vertices), m, p, seed = seed)
        while p < 1 and networkx.average_clustering(g) < c:
            g = networkx.powerlaw_cluster_graph(len(vertices), m, p)
            p += 0.01
        self.g = g
        self.__adj_list_map__ = {}
开发者ID:swamiiyer,项目名称:network,代码行数:24,代码来源:network.py


示例18: emulate

def emulate(tmp_file, size=1000):
    g = nx.DiGraph(nx.powerlaw_cluster_graph(size, 3, 0.001))
    N = len(g.nodes())
    for node in g.nodes():
        outlinks = g.out_edges(nbunch=[node])
        outlinks = map(str, [n2 for n1, n2 in outlinks])
        if not outlinks:
            value = 'pr_results,%s,%s' % (1.0/N, N)
            tmp_file.write('%s\t%s\n' % (node, value))
        else:
            outlinks_str = ','.join(outlinks)
            value = 'pr_results,%s,%s,' % (1.0/N, N)
            value += outlinks_str
            tmp_file.write('%s\t%s\n' % (node, value))
    return tmp_file
开发者ID:huxiaoqian,项目名称:project,代码行数:15,代码来源:pagerank_test.py


示例19: __init__

    def __init__(self, vertices, m, p, seed = int(time.time())):
        """
        Construct a Powerlaw Clustered network. The vertices argument contains 
        objects of type Vertex representing the vertices of the network. The 
        m argument specifies the number of attachments made from the 
        new vertex to the existing vertices during the network construction 
        process. The p argument specifies the probability of adding a triangle 
        after adding a random edge. The seed argument is the seed for 
        the random number generator used to build the network.
        """

        self.vertices = vertices
        self.m = m
        self.p = p
        self.seed = seed
        self.g = networkx.powerlaw_cluster_graph(len(vertices), m, p, seed = seed)
        self.__adj_list_map__ = {}
开发者ID:swamiiyer,项目名称:edcn,代码行数:17,代码来源:network.py


示例20: add_edges_to_groups

def add_edges_to_groups(output_graph, groups_list, edges_to_add, prob, level):
    total_groups = len(groups_list)
    edges_per_node = max((3 - level), 1)
    triangle_prob = 0.1*level
    if False:
        random_graph = nx.random_regular_graph(int(total_groups/3), total_groups)
    else:
        random_graph = nx.powerlaw_cluster_graph(total_groups, edges_per_node, triangle_prob, random.random()*10)
    random_edges = random_graph.edges()
    
    for edge in random_edges:
        e0 = edge[0]
        e1 = edge[1]
        if random.random() > 0.3:
            e0, e1 = e1, e0
        print("adding level{} edges between group{} and group{}".format(level, e0, e1))
        add_edges_to_two_groups(output_graph, groups_list[e0], groups_list[e1], edges_to_add, prob)
开发者ID:vijkp,项目名称:graph-bench,代码行数:17,代码来源:gen_data.py



注:本文中的networkx.powerlaw_cluster_graph函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.predecessor函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.petersen_graph函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap