• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python networkx.radius函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中networkx.radius函数的典型用法代码示例。如果您正苦于以下问题:Python radius函数的具体用法?Python radius怎么用?Python radius使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了radius函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: NetStats

def NetStats(G):
    return { 'radius': nx.radius(G),
             'diameter': nx.diameter(G),
             'connected_components': nx.number_connected_components(G),
             'density' : nx.density(G),
             'shortest_path_length': nx.shortest_path_length(G),
             'clustering': nx.clustering(G)}
开发者ID:CSB-IG,项目名称:NinNX,代码行数:7,代码来源:__init__.py


示例2: strongly_connected_components

def strongly_connected_components():
    conn = sqlite3.connect("zhihu.db")     
    #following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 50000) and user_url in (select user_url from User where agree_num > 50000)', conn)        
    following_data = pd.read_sql('select user_url, followee_url from Following where followee_url in (select user_url from User where agree_num > 10000) and user_url in (select user_url from User where agree_num > 10000)', conn)        
    conn.close()
    
    G = nx.DiGraph()
    cnt = 0
    for d in following_data.iterrows():
        G.add_edge(d[1][0],d[1][1])
        cnt += 1
    print 'links number:', cnt

    scompgraphs = nx.strongly_connected_component_subgraphs(G)
    scomponents = sorted(nx.strongly_connected_components(G), key=len, reverse=True)
    print 'components nodes distribution:', [len(c) for c in scomponents]
    
    #plot graph of component, calculate saverage_shortest_path_length of components who has over 1 nodes
    index = 0
    print 'average_shortest_path_length of components who has over 1 nodes:'
    for tempg in scompgraphs:
        index += 1
        if len(tempg.nodes()) != 1:
            print nx.average_shortest_path_length(tempg)
            print 'diameter', nx.diameter(tempg)
            print 'radius', nx.radius(tempg)
        pylab.figure(index)
        nx.draw_networkx(tempg)
        pylab.show()

    # Components-as-nodes Graph
    cG = nx.condensation(G)
    pylab.figure('Components-as-nodes Graph')
    nx.draw_networkx(cG)
    pylab.show()    
开发者ID:TSOTDeng,项目名称:zhihu-analysis-python,代码行数:35,代码来源:zhihu_analysis.py


示例3: print_graph_info

def print_graph_info(graph):
  e = nx.eccentricity(graph)
  print 'graph with %u nodes, %u edges' % (len(graph.nodes()), len(graph.edges()))
  print 'radius: %s' %  nx.radius(graph, e) # min e
  print 'diameter: %s' % nx.diameter(graph, e) # max e
  print 'len(center): %s' % len(nx.center(graph, e)) # e == radius
  print 'len(periphery): %s' % len(nx.periphery(graph, e)) # e == diameter
开发者ID:steinz,项目名称:550project,代码行数:7,代码来源:latency_sim.py


示例4: calculate

def calculate(network):
    try:
        n = nx.radius(network)
    except:
        return 0
 
    return round(n, 7) 
开发者ID:bt3gl,项目名称:NetAna-Complex-Network-Analysis,代码行数:7,代码来源:radius.py


示例5: netstats_simple

def netstats_simple(graph):
    G = graph
    if nx.is_connected(G): 
        d = nx.diameter(G)
        r = nx.radius(G)
    else: 
        d = 'NA - graph is not connected' #should be calculatable on unconnected graph - see example code for hack
        r = 'NA - graph is not connected'
   
#using dictionary to pack values and variablesdot, eps, ps, pdf break equally
    result = {#"""single value measures"""  
              'nn': G.number_of_nodes(),
              'ne': G.number_of_edges(),
              'd': d,
              'r': r,
              'conn': nx.number_connected_components(G),
              'asp': nx.average_shortest_path_length(G), 
#              """number of the largest clique"""
              'cn': nx.graph_clique_number(G),
#              """number of maximal cliques"""
              'mcn': nx.graph_number_of_cliques(G),
#              """transitivity - """
              'tr': nx.transitivity(G),
              #cc = nx.clustering(G) """clustering coefficient"""
              'avgcc': nx.average_clustering(G) } 
#    result['d'] = nx.diameter(G)
    print result
    return result
开发者ID:freyley,项目名称:nets,代码行数:28,代码来源:views.py


示例6: NetStats

def NetStats(G,name):
    
    s=0
    d = nx.degree(G)    
    for i in d.values():
        s = s + i
    
    n = len(G.nodes())
    m = len(G.edges())
    k = float(s)/float(n)
    #k = nx.average_node_connectivity(G)
        
    C = nx.average_clustering(G)
    l = nx.average_shortest_path_length(G)
    Cc = nx.closeness_centrality(G)
    d = nx.diameter(G) #The diameter is the maximum eccentricity.
    r = nx.radius(G) #The radius is the minimum eccentricity.


    
    output = "ESTADISITICOS_"+name
    SALIDA = open(output,"w")
    
    SALIDA.write(("Numero de nodos n = %s \n") %  n)
    SALIDA.write(("Numero de aristas m = %s \n") %  m)
    SALIDA.write(("Grado promedio <k> = %s \n") %  k)
        
    SALIDA.write(("Clustering Coeficient = %s \n") %  C)
    SALIDA.write(("Shortest Path Length = %s \n") %  l)
    #SALIDA.write(("Closeness = %s \n") %  Cc)
    SALIDA.write(("Diameter (maximum eccentricity) = %d \n") %  d)
    SALIDA.write(("Radius (minimum eccentricity) = %d \n") %  r)
开发者ID:saac,项目名称:ComplexNetworks-ToolBox,代码行数:32,代码来源:NetAnalyser.py


示例7: get_tree_symmetries_for_traitset

def get_tree_symmetries_for_traitset(model, simconfig, cultureid, traitset, culture_count_map):
    radii = []

    symstats = stats.BalancedTreeAutomorphismStatistics(simconfig)
    subgraph_set = model.trait_universe.get_trait_graph_components(traitset)
    trait_subgraph = model.trait_universe.get_trait_forest_from_traits(traitset)
    results = symstats.calculate_graph_symmetries(trait_subgraph)

    for subgraph in subgraph_set:
        radii.append( nx.radius(subgraph))

    mean_radii = np.mean(np.asarray(radii))
    sd_radii = np.sqrt(np.var(np.asarray(radii)))
    degrees = nx.degree(trait_subgraph).values()
    mean_degree = np.mean(np.asarray(degrees))
    sd_degree = np.sqrt(np.var(np.asarray(degrees)))
    mean_orbit_mult = np.mean(np.asarray(results['orbitcounts']))
    sd_orbit_mult = np.sqrt(np.var(np.asarray(results['orbitcounts'])))
    max_orbit_mult = np.nanmax(np.asarray(results['orbitcounts']))

    r = dict(cultureid=str(cultureid), culture_count=culture_count_map[cultureid],
             orbit_multiplicities=results['orbitcounts'],
             orbit_number=results['orbits'],
             autgroupsize=results['groupsize'],
             remaining_density=results['remainingdensity'],
             mean_radii=mean_radii,
             sd_radii=sd_radii,
             mean_degree=mean_degree,
             sd_degree=sd_degree,
             mean_orbit_multiplicity=mean_orbit_mult,
             sd_orbit_multiplicity=sd_orbit_mult,
             max_orbit_multiplicity=max_orbit_mult
             )
    #log.debug("groupstats: %s", r)
    return r
开发者ID:mmadsen,项目名称:axelrod-ct,代码行数:35,代码来源:sampling.py


示例8: updateGraphStats

    def updateGraphStats(self, graph):

        origgraph = graph
        if nx.is_connected(graph):
            random = 0
        else:
            connectedcomp = nx.connected_component_subgraphs(graph)
            graph = max(connectedcomp)

        if len(graph) > 1:
            pathlength = nx.average_shortest_path_length(graph)
        else:
            pathlength = 0

        # print graph.nodes(), len(graph), nx.is_connected(graph)

        stats = {
            "radius": nx.radius(graph),
            "density": nx.density(graph),
            "nodecount": len(graph.nodes()),
            "center": nx.center(graph),
            "avgcluscoeff": nx.average_clustering(graph),
            "nodeconnectivity": nx.node_connectivity(graph),
            "components": nx.number_connected_components(graph),
            "avgpathlength": pathlength
        }

        # print "updated graph stats", stats
        return stats
开发者ID:hopeatina,项目名称:flask_heroku,代码行数:29,代码来源:simulator.py


示例9: graph_radius

def graph_radius(graph):
    sp = nx.shortest_path_length(graph,weight='weight')
    ecc = nx.eccentricity(graph,sp=sp)
    if ecc:
        rad = nx.radius(graph,e=ecc)
    else:
        rad = 0
    return rad
开发者ID:MuscClarkProjects,项目名称:casl_fluency_novel_scores,代码行数:8,代码来源:metrix.py


示例10: test_radius

def test_radius(testgraph):
    """
    Testing radius function for graphs.
    """

    a, b = testgraph
    nx_rad = nx.radius(a)
    sg_rad = sg.digraph_distance_measures.radius(b, b.order())
    assert nx_rad == sg_rad
开发者ID:Arpan91,项目名称:staticgraph,代码行数:9,代码来源:test_digraph_distance_measures.py


示例11: get_path_lengths

    def get_path_lengths(self):
        if not hasattr(self,"shortest_path_lenghts") or self.shortest_path_lenghts is None:
            self.shortest_paths_lengths = nx.all_pairs_shortest_path_length(self.G)
            self.avg_shortest_path = sum([ length for sp in self.shortest_paths_lengths.values() for length in sp.values() ])/float(self.N*(self.N-1))
            self.eccentricity = nx.eccentricity(self.G,sp=self.shortest_paths_lengths)
            self.diameter = nx.diameter(self.G,e=self.eccentricity)
            self.radius = nx.radius(self.G,e=self.eccentricity)

        return self.shortest_paths_lengths
开发者ID:benmaier,项目名称:network-properties,代码行数:9,代码来源:networkproperties.py


示例12: get_graph_info

def get_graph_info(graph):
    nodes = networkx.number_of_nodes(graph)
    edges = networkx.number_of_edges(graph)
    radius = networkx.radius(graph)
    diameter = networkx.diameter(graph)
    density = networkx.density(graph)
    average_clustering = networkx.average_clustering(graph)
    average_degree = sum(graph.degree().values()) / nodes
    return nodes, edges, radius, diameter, density, average_clustering, average_degree
开发者ID:zaktan8,项目名称:GCP,代码行数:9,代码来源:util.py


示例13: connectivity

 def connectivity(self):
     components = list(nx.connected_component_subgraphs(self.G))
     print('Connected components number: ')
     print(len(components))
     giant = components.pop(0)
     print('Giant component radius: ')
     print(nx.radius(giant))
     print('Giant component diameter: ')
     print(nx.diameter(giant))
     center = nx.center(giant)
     print('Giant component center: ')
     for i in xrange(len(center)):
         print(self.singer_dict[int(center[i])].split('|')[0])
     inf = self.get_graph_info(giant)
     for i in xrange(len(inf)):
         print(inf[i])
开发者ID:vslovik,项目名称:ARS,代码行数:16,代码来源:analyzer.py


示例14: write_graph

def write_graph(graph_name, g):
    radius = nx.radius(g)
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.distance_measures.radius.html

    diameter = nx.diameter(g)
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.distance_measures.diameter.html

    closeness = float(sum(nx.algorithms.centrality.closeness_centrality(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.closeness_centrality.html#networkx.algorithms.centrality.closeness_centrality

    betweenness = float(sum(nx.algorithms.centrality.betweenness_centrality(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html#networkx.algorithms.centrality.betweenness_centrality

    clustering = float(sum(nx.algorithms.clustering(g).values()))/size
    # https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.cluster.clustering.html#networkx.algorithms.cluster.clustering

    print "%s\t%s\t%s\t%s\t%s\t%s" % (graph_name, radius, diameter, closeness, betweenness, clustering)
开发者ID:CogSys,项目名称:cog-abm,代码行数:17,代码来源:graph_statistics.py


示例15: PrintGraphStat

    def PrintGraphStat(self):
        logging.debug("From SVNFileNetwork.PrintGraphStat")
        print "%s" % '-' * 40
        print "Graph Radius : %f" % NX.radius(self)
        print "Graph Diameter : %f" % NX.diameter(self)

        weighted = True
        closenessdict = NX.closeness_centrality(self, distance=weighted)
        print "%s" % '-' * 40
        print "All nodes in graph"

        nodeinfolist = [(node, closeness)
                        for node, closeness in closenessdict.items()]
        # sort the node infolist by closeness number
        nodeinfolist = sorted(
            nodeinfolist, key=operator.itemgetter(1), reverse=True)
        for node, closeness in nodeinfolist:
            print "\t%s : %f" % (node.name(), closeness)
        print "%s" % '-' * 40
开发者ID:arunguru,项目名称:svnplot,代码行数:19,代码来源:svnnetwork.py


示例16: report_components

def report_components(g):
	components = nx.connected_component_subgraphs(g)
	print "Components: %d" % len(components)
	c_data = {}
	for i in range(len(components)):
		c = components[i]
		if len(c.nodes()) > 5: # Avoid reporting on many small components
			c_data["nodes"] = len(c.nodes())
			c_data["edges"] = len(c.edges())
			c_data["avg_clustering"] = nx.average_clustering(c)
			c_data["diameter"] = nx.diameter(c)
			c_data["radius"] = nx.radius(c)
			c_data["center"] = len(nx.center(c))
			c_data["periphery"] = len(nx.periphery(c))

			print "* Component %d:" % i
			for k in c_data:
				print "--- %s: %s" % (k, c_data[k])

	return c_data
开发者ID:RahulRavindren,项目名称:NANOG-analysis,代码行数:20,代码来源:centrality.py


示例17: distance_scores

def distance_scores(season, graph):
    
    # Take largest connected component
    g = graph if nx.is_connected(graph) else max(nx.connected_component_subgraphs(graph), key=len)
    
    # Ratio of largest connected component subgraph
    conn = len(max(nx.connected_component_subgraphs(g), key=len)) / float(nx.number_of_nodes(graph))
    conn = np.round(conn, 3)
    
    # Radius, diameter
    rad = nx.radius(g)
    diam = nx.diameter(g)
    
    # Average eccentricity
    ecc = np.mean(nx.eccentricity(g).values())
    ecc = np.round(ecc, 3)
    
    # Put it all into a dataframe
    df = pd.DataFrame([[season,conn,rad,diam,ecc]], columns=['season', 'conn', 'rad', 'diam', 'ecc'])
    
    return df
开发者ID:bchugit,项目名称:Survivor-Project,代码行数:21,代码来源:network.py


示例18: getMetrics

    def getMetrics(self, layerid=0):
        # get some overall network metrics
        undirectedG = self.layergraphs[layerid].to_undirected()
        metrics = {}

        try:  # must be connected
            metrics['diameter'] = nx.diameter(undirectedG)
            metrics['radius'] = nx.radius(undirectedG)
            metrics['average_clustering'] = round(nx.average_clustering(undirectedG),3)
            metrics['transitivity'] = round(nx.transitivity(undirectedG),3)
            metrics['number_connected_components'] = nx.number_connected_components(undirectedG)

            import operator
            betweenness_centrality = nx.betweenness_centrality(self.layergraphs[layerid])
            metrics['betweenness_centrality'] = sorted(betweenness_centrality.iteritems(),key=operator.itemgetter(1),reverse=True)[0][0] # find node with largest betweenness centrality

            H = nx.connected_component_subgraphs(undirectedG)[0] # largest connected component
            metrics['number_of_nodes'] = len(H.nodes())
        except:
            pass

        return metrics
开发者ID:B-Leslie,项目名称:systemshock,代码行数:22,代码来源:network.py


示例19: __init__

 def __init__(self, graph, feature_list=[]):
     self.no_feature = 39
     self.G = graph
     self.nodes = nx.number_of_nodes(self.G)
     self.edges = nx.number_of_edges(self.G)
     self.Lap = nx.normalized_laplacian_matrix(self.G)
     # ??? how to check whether comparable, addable?
     self.eigvals = numpy.linalg.eigvals(self.Lap.A).tolist()
     try:
         self.radius = nx.radius(self.G)
     except nx.exception.NetworkXError:
         self.radius = "ND"
     try:
         self.ecc_dic = nx.eccentricity(self.G)
     except nx.exception.NetworkXError:
         self.ecc_dic = {}
     self.degree_dic = nx.average_neighbor_degree(self.G)
     self.pagerank = nx.pagerank(self.G).values()
     if feature_list == []:
         self.feature_list = list(range(1, self.no_feature + 1))
     else:
         self.feature_list = feature_list
     self.feature_vector = []
     self.feature_time = []
开发者ID:jieaozhu,项目名称:alignment_free_network_comparison,代码行数:24,代码来源:generate_feature.py


示例20: extended_stats

def extended_stats(G, connectivity=False, anc=False, ecc=False, bc=False, cc=False):
    """
    Calculate extended topological stats and metrics for a graph.

    Many of these algorithms have an inherently high time complexity. Global
    topological analysis of large complex networks is extremely time consuming
    and may exhaust computer memory. Consider using function arguments to not
    run metrics that require computation of a full matrix of paths if they
    will not be needed.

    Parameters
    ----------
    G : networkx multidigraph
    connectivity : bool
        if True, calculate node and edge connectivity
    anc : bool
        if True, calculate average node connectivity
    ecc : bool
        if True, calculate shortest paths, eccentricity, and topological metrics
        that use eccentricity
    bc : bool
        if True, calculate node betweenness centrality
    cc : bool
        if True, calculate node closeness centrality

    Returns
    -------
    stats : dict
        dictionary of network measures containing the following elements (some
        only calculated/returned optionally, based on passed parameters):

          - avg_neighbor_degree
          - avg_neighbor_degree_avg
          - avg_weighted_neighbor_degree
          - avg_weighted_neighbor_degree_avg
          - degree_centrality
          - degree_centrality_avg
          - clustering_coefficient
          - clustering_coefficient_avg
          - clustering_coefficient_weighted
          - clustering_coefficient_weighted_avg
          - pagerank
          - pagerank_max_node
          - pagerank_max
          - pagerank_min_node
          - pagerank_min
          - node_connectivity
          - node_connectivity_avg
          - edge_connectivity
          - eccentricity
          - diameter
          - radius
          - center
          - periphery
          - closeness_centrality
          - closeness_centrality_avg
          - betweenness_centrality
          - betweenness_centrality_avg

    """

    stats = {}
    full_start_time = time.time()

    # create a DiGraph from the MultiDiGraph, for those metrics that require it
    G_dir = nx.DiGraph(G)

    # create an undirected Graph from the MultiDiGraph, for those metrics that
    # require it
    G_undir = nx.Graph(G)

    # get the largest strongly connected component, for those metrics that
    # require strongly connected graphs
    G_strong = get_largest_component(G, strongly=True)

    # average degree of the neighborhood of each node, and average for the graph
    avg_neighbor_degree = nx.average_neighbor_degree(G)
    stats['avg_neighbor_degree'] = avg_neighbor_degree
    stats['avg_neighbor_degree_avg'] = sum(avg_neighbor_degree.values())/len(avg_neighbor_degree)

    # average weighted degree of the neighborhood of each node, and average for
    # the graph
    avg_weighted_neighbor_degree = nx.average_neighbor_degree(G, weight='length')
    stats['avg_weighted_neighbor_degree'] = avg_weighted_neighbor_degree
    stats['avg_weighted_neighbor_degree_avg'] = sum(avg_weighted_neighbor_degree.values())/len(avg_weighted_neighbor_degree)

    # degree centrality for a node is the fraction of nodes it is connected to
    degree_centrality = nx.degree_centrality(G)
    stats['degree_centrality'] = degree_centrality
    stats['degree_centrality_avg'] = sum(degree_centrality.values())/len(degree_centrality)

    # calculate clustering coefficient for the nodes
    stats['clustering_coefficient'] = nx.clustering(G_undir)

    # average clustering coefficient for the graph
    stats['clustering_coefficient_avg'] = nx.average_clustering(G_undir)

    # calculate weighted clustering coefficient for the nodes
    stats['clustering_coefficient_weighted'] = nx.clustering(G_undir, weight='length')

#.........这里部分代码省略.........
开发者ID:gboeing,项目名称:osmnx,代码行数:101,代码来源:stats.py



注:本文中的networkx.radius函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkx.random_geometric_graph函数代码示例发布时间:2022-05-27
下一篇:
Python networkx.quotient_graph函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap