• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python datasets.load_mni152_template函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nilearn.datasets.load_mni152_template函数的典型用法代码示例。如果您正苦于以下问题:Python load_mni152_template函数的具体用法?Python load_mni152_template怎么用?Python load_mni152_template使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了load_mni152_template函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_fail_fetch_atlas_harvard_oxford

def test_fail_fetch_atlas_harvard_oxford():
    # specify non-existing atlas item
    assert_raises_regex(ValueError, 'Invalid atlas name',
                        datasets.fetch_atlas_harvard_oxford, 'not_inside')

    # specify existing atlas item
    target_atlas = 'cort-maxprob-thr0-1mm'
    target_atlas_fname = 'HarvardOxford-' + target_atlas + '.nii.gz'

    HO_dir = os.path.join(tmpdir, 'fsl', 'data', 'atlases')
    os.makedirs(HO_dir)
    nifti_dir = os.path.join(HO_dir, 'HarvardOxford')
    os.makedirs(nifti_dir)

    target_atlas_nii = os.path.join(nifti_dir, target_atlas_fname)
    datasets.load_mni152_template().to_filename(target_atlas_nii)

    dummy = open(os.path.join(HO_dir, 'HarvardOxford-Cortical.xml'), 'w')
    dummy.write("<?xml version='1.0' encoding='us-ascii'?> "
                "<metadata>"
                "</metadata>")
    dummy.close()

    ho = datasets.fetch_atlas_harvard_oxford(target_atlas, data_dir=tmpdir)

    assert_true(isinstance(nibabel.load(ho.maps), nibabel.Nifti1Image))
    assert_true(isinstance(ho.labels, np.ndarray))
    assert_true(len(ho.labels) > 0)
开发者ID:amadeuskanaan,项目名称:nilearn,代码行数:28,代码来源:test_datasets.py


示例2: test_user_given_cmap_with_colorbar

def test_user_given_cmap_with_colorbar():
    img = load_mni152_template()
    oslicer = OrthoSlicer(cut_coords=(0, 0, 0))

    # Test with cmap given as a string
    oslicer.add_overlay(img, cmap='Paired', colorbar=True)
    oslicer.close()
开发者ID:TheChymera,项目名称:nilearn,代码行数:7,代码来源:test_displays.py


示例3: test_view_img

def test_view_img():
    mni = datasets.load_mni152_template()
    with warnings.catch_warnings(record=True) as w:
        # Create a fake functional image by resample the template
        img = image.resample_img(mni, target_affine=3 * np.eye(3))
        html_view = html_stat_map.view_img(img)
        _check_html(html_view)
        html_view = html_stat_map.view_img(img, threshold='95%')
        _check_html(html_view)
        html_view = html_stat_map.view_img(img, bg_img=mni)
        _check_html(html_view)
        html_view = html_stat_map.view_img(img, bg_img=None)
        _check_html(html_view)
        html_view = html_stat_map.view_img(img, threshold=2., vmax=4.)
        _check_html(html_view)
        html_view = html_stat_map.view_img(img, symmetric_cmap=False)
        img_4d = image.new_img_like(img, img.get_data()[:, :, :, np.newaxis])
        assert len(img_4d.shape) == 4
        html_view = html_stat_map.view_img(img_4d, threshold=2., vmax=4.)
        _check_html(html_view)

    # Check that all warnings were expected
    warnings_set = set(warning_.category for warning_ in w)
    expected_set = set([FutureWarning, UserWarning,
                       DeprecationWarning])
    assert warnings_set.issubset(expected_set), (
        "the following warnings were not expected: {}").format(
        warnings_set.difference(expected_set))
开发者ID:jeromedockes,项目名称:nilearn,代码行数:28,代码来源:test_html_stat_map.py


示例4: test_vol_to_surf

def test_vol_to_surf():
    # test 3d niimg to cortical surface projection and invariance to a change
    # of affine
    mni = datasets.load_mni152_template()
    mesh = generate_surf()
    _check_vol_to_surf_results(mni, mesh)
    fsaverage = datasets.fetch_surf_fsaverage().pial_left
    _check_vol_to_surf_results(mni, fsaverage)
开发者ID:mrahim,项目名称:nilearn,代码行数:8,代码来源:test_surface.py


示例5: test_demo_ortho_projector

def test_demo_ortho_projector():
    # This is only a smoke test
    img = load_mni152_template()
    oprojector = OrthoProjector.init_with_figure(img=img)
    oprojector.add_overlay(img, cmap=plt.cm.gray)
    with tempfile.TemporaryFile() as fp:
        oprojector.savefig(fp)
    oprojector.close()
开发者ID:carlosf,项目名称:nilearn,代码行数:8,代码来源:test_displays.py


示例6: test_stacked_slicer

def test_stacked_slicer():
    # Test stacked slicers, like the XSlicer
    img = load_mni152_template()
    slicer = XSlicer.init_with_figure(img=img, cut_coords=3)
    slicer.add_overlay(img, cmap=plt.cm.gray)
    # Forcing a layout here, to test the locator code
    with tempfile.TemporaryFile() as fp:
        slicer.savefig(fp)
    slicer.close()
开发者ID:carlosf,项目名称:nilearn,代码行数:9,代码来源:test_displays.py


示例7: test_demo_ortho_slicer

def test_demo_ortho_slicer():
    # This is only a smoke test
    mp.use('template', warn=False)
    import matplotlib.pyplot as plt
    plt.switch_backend('template')
    plt.clf()
    oslicer = OrthoSlicer(cut_coords=(0, 0, 0))
    img = load_mni152_template()
    oslicer.add_overlay(img, cmap=plt.cm.gray)
    oslicer.close()
开发者ID:fabianp,项目名称:nilearn,代码行数:10,代码来源:test_displays.py


示例8: test_plotting_functions_with_cmaps

def test_plotting_functions_with_cmaps():
    img = load_mni152_template()
    cmaps = ['Paired', 'Set1', 'Set2', 'Set3']
    for cmap in cmaps:
        plot_roi(img, cmap=cmap, colorbar=True)
        plot_stat_map(img, cmap=cmap, colorbar=True)
        plot_glass_brain(img, cmap=cmap, colorbar=True)

    if LooseVersion(matplotlib.__version__) >= LooseVersion('2.0.0'):
        plot_stat_map(img, cmap='viridis', colorbar=True)

    plt.close()
开发者ID:jeromedockes,项目名称:nilearn,代码行数:12,代码来源:test_img_plotting.py


示例9: test_demo_ortho_projector

def test_demo_ortho_projector():
    # This is only a smoke test
    mp.use('template', warn=False)
    import matplotlib.pyplot as plt
    plt.switch_backend('template')
    plt.clf()
    img = load_mni152_template()
    oprojector = OrthoProjector.init_with_figure(img=img)
    oprojector.add_overlay(img, cmap=plt.cm.gray)
    with tempfile.TemporaryFile() as fp:
        oprojector.savefig(fp)
    oprojector.close()
开发者ID:fabianp,项目名称:nilearn,代码行数:12,代码来源:test_displays.py


示例10: test_view_stat_map

def test_view_stat_map():
    mni = datasets.load_mni152_template()
    # Create a fake functional image by resample the template
    img = image.resample_img(mni, target_affine=3*np.eye(3))
    html = html_stat_map.view_stat_map(img)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, threshold='95%')
    _check_html(html)
    html = html_stat_map.view_stat_map(img, bg_img=mni)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, threshold=2., vmax=4.)
    _check_html(html)
开发者ID:bthirion,项目名称:nilearn,代码行数:12,代码来源:test_html_stat_map.py


示例11: test_contour_fillings_levels_in_add_contours

def test_contour_fillings_levels_in_add_contours():
    oslicer = OrthoSlicer(cut_coords=(0, 0, 0))
    img = load_mni152_template()
    # levels should be atleast 2
    # If single levels are passed then we force upper level to be inf
    oslicer.add_contours(img, filled=True, colors='r',
                         alpha=0.2, levels=[0.])

    # If two levels are passed, it should be increasing from zero index
    # In this case, we simply omit appending inf
    oslicer.add_contours(img, filled=True, colors='b',
                         alpha=0.1, levels=[0., 0.2])
开发者ID:CandyPythonFlow,项目名称:nilearn,代码行数:12,代码来源:test_displays.py


示例12: test_stacked_slicer

def test_stacked_slicer():
    # Test stacked slicers, like the XSlicer
    mp.use('template', warn=False)
    import matplotlib.pyplot as plt
    plt.switch_backend('template')
    plt.clf()
    img = load_mni152_template()
    slicer = XSlicer.init_with_figure(img=img, cut_coords=3)
    slicer.add_overlay(img, cmap=plt.cm.gray)
    # Forcing a layout here, to test the locator code
    with tempfile.TemporaryFile() as fp:
        slicer.savefig(fp)
    slicer.close()
开发者ID:fabianp,项目名称:nilearn,代码行数:13,代码来源:test_displays.py


示例13: test_encode_nii

def test_encode_nii():
    mni = datasets.load_mni152_template()
    encoded = html_stat_map._encode_nii(mni)
    decoded = html_stat_map._decode_nii(encoded)
    assert np.allclose(mni.get_data(), decoded.get_data())

    mni = image.new_img_like(mni, np.asarray(mni.get_data(), dtype='>f8'))
    encoded = html_stat_map._encode_nii(mni)
    decoded = html_stat_map._decode_nii(encoded)
    assert np.allclose(mni.get_data(), decoded.get_data())

    mni = image.new_img_like(mni, np.asarray(mni.get_data(), dtype='<i4'))
    encoded = html_stat_map._encode_nii(mni)
    decoded = html_stat_map._decode_nii(encoded)
    assert np.allclose(mni.get_data(), decoded.get_data())
开发者ID:bthirion,项目名称:nilearn,代码行数:15,代码来源:test_html_stat_map.py


示例14: test_view_stat_map

def test_view_stat_map():
    mni = datasets.load_mni152_template()
    # Create a fake functional image by resample the template
    img = image.resample_img(mni, target_affine=3 * np.eye(3))
    html = html_stat_map.view_stat_map(img)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, threshold='95%')
    _check_html(html)
    html = html_stat_map.view_stat_map(img, bg_img=mni)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, bg_img=None)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, threshold=2., vmax=4.)
    _check_html(html)
    html = html_stat_map.view_stat_map(img, symmetric_cmap=False)
    img_4d = image.new_img_like(img, img.get_data()[:, :, :, np.newaxis])
    assert len(img_4d.shape) == 4
    html = html_stat_map.view_stat_map(img_4d, threshold=2., vmax=4.)
    _check_html(html)
开发者ID:mjboos,项目名称:nilearn,代码行数:19,代码来源:test_html_stat_map.py


示例15: __init__

    def __init__(
        self,
        sessions=None,
        smoothing_fwhm=None,
        standardize=False,
        detrend=False,
        low_pass=None,
        high_pass=None,
        t_r=None,
        target_affine=None,
        target_shape=None,
        mask_strategy="background",
        mask_args=None,
        sample_mask=None,
        memory_level=1,
        memory=Memory(cachedir=None),
        verbose=0,
    ):

        # Create grey matter mask from mni template
        target_img = datasets.load_mni152_template()
        grey_voxels = (target_img.get_data() > 0).astype(int)
        mask_img = new_img_like(target_img, grey_voxels, copy_header=True)

        super(MniNiftiMasker, self).__init__(
            mask_img=mask_img,
            target_affine=mask_img.affine,
            target_shape=mask_img.shape,
            sessions=sessions,
            smoothing_fwhm=smoothing_fwhm,
            standardize=standardize,
            detrend=detrend,
            low_pass=low_pass,
            high_pass=high_pass,
            t_r=t_r,
            mask_strategy=mask_strategy,
            mask_args=mask_args,
            sample_mask=sample_mask,
            memory_level=memory_level,
            memory=memory,
            verbose=verbose,
        )
开发者ID:atsuch,项目名称:lateralized-components,代码行数:42,代码来源:masking.py


示例16: plot_components

def plot_components(ica_image, hemi='', out_dir=None,
                    bg_img=datasets.load_mni152_template()):
    print("Plotting %s components..." % hemi)

    # Determine threshoold and vmax for all the plots
    # get nonzero part of the image for proper thresholding of
    # r- or l- only component
    nonzero_img = ica_image.get_data()[np.nonzero(ica_image.get_data())]
    thr = stats.scoreatpercentile(np.abs(nonzero_img), 90)
    vmax = stats.scoreatpercentile(np.abs(nonzero_img), 99.99)
    for ci, ic_img in enumerate(iter_img(ica_image)):

        title = _title_from_terms(terms=ica_image.terms, ic_idx=ci, label=hemi)
        fh = plt.figure(figsize=(14, 6))
        plot_stat_map(ic_img, axes=fh.gca(), threshold=thr, vmax=vmax,
                      colorbar=True, title=title, black_bg=True, bg_img=bg_img)

        # Save images instead of displaying
        if out_dir is not None:
            save_and_close(out_path=op.join(
                out_dir, '%s_component_%i.png' % (hemi, ci)))
开发者ID:atsuch,项目名称:lateralized-components,代码行数:21,代码来源:plotting.py


示例17: test_contour_fillings_levels_in_add_contours

def test_contour_fillings_levels_in_add_contours():
    oslicer = OrthoSlicer(cut_coords=(0, 0, 0))
    img = load_mni152_template()
    # levels should be atleast 2
    # If single levels are passed then we force upper level to be inf
    oslicer.add_contours(img, filled=True, colors='r',
                         alpha=0.2, levels=[0.])

    # If two levels are passed, it should be increasing from zero index
    # In this case, we simply omit appending inf
    oslicer.add_contours(img, filled=True, colors='b',
                         alpha=0.1, levels=[0., 0.2])

    # without passing colors and alpha. In this case, default values are
    # chosen from matplotlib
    oslicer.add_contours(img, filled=True, levels=[0., 0.2])

    # levels with only one value
    oslicer.add_contours(img, filled=True, levels=[0.])

    # without passing levels, should work with default levels from
    # matplotlib
    oslicer.add_contours(img, filled=True)
开发者ID:TheChymera,项目名称:nilearn,代码行数:23,代码来源:test_displays.py


示例18: test_outlier_cut_coords

def test_outlier_cut_coords():
    """ Test to plot a subset of a large set of cuts found for a small area."""
    bg_img = load_mni152_template()

    data = np.zeros((79, 95, 79))
    affine = np.array([[  -2.,    0.,    0.,   78.],
                       [   0.,    2.,    0., -112.],
                       [   0.,    0.,    2.,  -70.],
                       [   0.,    0.,    0.,    1.]])

    # Color a cube around a corner area:
    x, y, z = 20, 22, 60
    x_map, y_map, z_map = coord_transform(x, y, z,
                                          np.linalg.inv(affine))

    data[int(x_map) - 1:int(x_map) + 1,
         int(y_map) - 1:int(y_map) + 1,
         int(z_map) - 1:int(z_map) + 1] = 1
    img = nibabel.Nifti1Image(data, affine)
    cuts = find_cut_slices(img, n_cuts=20, direction='z')

    p = plot_stat_map(img, display_mode='z', cut_coords=cuts[-4:],
                      bg_img=bg_img)
开发者ID:AlexandreAbraham,项目名称:nilearn,代码行数:23,代码来源:test_img_plotting.py


示例19: plot_components_summary

def plot_components_summary(ica_image, hemi='', out_dir=None,
                            bg_img=datasets.load_mni152_template()):
    print("Plotting %s components summary..." % hemi)

    n_components = ica_image.get_data().shape[3]

    # Determine threshoold and vmax for all the plots
    # get nonzero part of the image for proper thresholding of
    # r- or l- only component
    nonzero_img = ica_image.get_data()[np.nonzero(ica_image.get_data())]
    thr = stats.scoreatpercentile(np.abs(nonzero_img), 90)
    vmax = stats.scoreatpercentile(np.abs(nonzero_img), 99.99)
    for ii, ic_img in enumerate(iter_img(ica_image)):

        ri = ii % 5  # row i
        ci = (ii / 5) % 5  # column i
        pi = ii % 25 + 1  # plot i
        fi = ii / 25  # figure i

        if ri == 0 and ci == 0:
            fh = plt.figure(figsize=(30, 20))
            print('Plot %03d of %d' % (fi + 1, np.ceil(n_components / 25.)))
        ax = fh.add_subplot(5, 5, pi)

        title = _title_from_terms(terms=ica_image.terms, ic_idx=ii, label=hemi)

        colorbar = ci == 4

        plot_stat_map(
            ic_img, axes=ax, threshold=thr, vmax=vmax, colorbar=colorbar,
            title=title, black_bg=True, bg_img=bg_img)

        if (ri == 4 and ci == 4) or ii == n_components - 1:
            out_path = op.join(
                out_dir, '%s_components_summary%02d.png' % (hemi, fi + 1))
            save_and_close(out_path)
开发者ID:atsuch,项目名称:lateralized-components,代码行数:36,代码来源:plotting.py


示例20: generate_components

def generate_components(
    images,
    hemi,
    term_scores=None,
    n_components=20,
    random_state=42,
    out_dir=None,
    memory=Memory(cachedir="nilearn_cache"),
):
    """
        images: list
            Can be nibabel images, can be file paths.
    """
    # Create grey matter mask from mni template
    target_img = datasets.load_mni152_template()

    # Reshape & mask images
    print("%s: Reshaping and masking images; may take time." % hemi)
    if hemi == "wb":
        masker = GreyMatterNiftiMasker(target_affine=target_img.affine, target_shape=target_img.shape, memory=memory)

    else:  # R and L maskers
        masker = HemisphereMasker(
            target_affine=target_img.affine, target_shape=target_img.shape, memory=memory, hemisphere=hemi
        )
    masker = masker.fit()

    # Images may fail to be transformed, and are of different shapes,
    # so we need to trasnform one-by-one and keep track of failures.
    X = []  # noqa
    xformable_idx = np.ones((len(images),), dtype=bool)
    for ii, im in enumerate(images):
        img = cast_img(im, dtype=np.float32)
        img = clean_img(img)
        try:
            X.append(masker.transform(img))
        except Exception as e:
            print("Failed to mask/reshape image %d/%s: %s" % (im.get("collection_id", 0), op.basename(im), e))
            xformable_idx[ii] = False

    # Now reshape list into 2D matrix
    X = np.vstack(X)  # noqa

    # Run ICA and map components to terms
    print("%s: Running ICA; may take time..." % hemi)
    fast_ica = FastICA(n_components=n_components, random_state=random_state)
    fast_ica = memory.cache(fast_ica.fit)(X.T)
    ica_maps = memory.cache(fast_ica.transform)(X.T).T

    # Tomoki's suggestion to normalize components_
    # X ~ ica_maps * fast_ica.components_
    #   = (ica_maps * f) * (fast_ica.components_ / f)
    #   = new_ica_map * new_components_
    C = fast_ica.components_
    factor = np.sqrt(np.multiply(C, C).sum(axis=1, keepdims=True))  # (n_components x 1)
    ica_maps = np.multiply(ica_maps, factor)
    fast_ica.components_ = np.multiply(C, 1.0 / (factor + 1e-12))

    if term_scores is not None:
        terms = term_scores.keys()
        term_matrix = np.asarray(term_scores.values())
        term_matrix[term_matrix < 0] = 0
        term_matrix = term_matrix[:, xformable_idx]  # terms x images
        # Don't use the transform method as it centers the data
        ica_terms = np.dot(term_matrix, fast_ica.components_.T).T

    # 2015/12/26 - sign matters for comparison, so don't do this!
    # 2016/02/01 - sign flipping is ok for R-L comparison, but RL concat
    #              may break this.
    # Pretty up the results
    for idx, ic in enumerate(ica_maps):
        if -ic.min() > ic.max():
            # Flip the map's sign for prettiness
            ica_maps[idx] = -ic
            if term_scores:
                ica_terms[idx] = -ica_terms[idx]

    # Create image from maps, save terms to the image directly
    ica_image = NiftiImageWithTerms.from_image(masker.inverse_transform(ica_maps))
    if term_scores:
        ica_image.terms = dict(zip(terms, ica_terms.T))

    # Write to disk
    if out_dir is not None:
        out_path = op.join(out_dir, "%s_ica_components.nii.gz" % hemi)
        if not op.exists(op.dirname(out_path)):
            os.makedirs(op.dirname(out_path))
        ica_image.to_filename(out_path)
    return ica_image
开发者ID:atsuch,项目名称:lateralized-components,代码行数:89,代码来源:decomposition.py



注:本文中的nilearn.datasets.load_mni152_template函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python image.index_img函数代码示例发布时间:2022-05-27
下一篇:
Python datasets.fetch_haxby_simple函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap