• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python image.iter_img函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nilearn.image.iter_img函数的典型用法代码示例。如果您正苦于以下问题:Python iter_img函数的具体用法?Python iter_img怎么用?Python iter_img使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了iter_img函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_component_sign

def test_component_sign():
    # We should have a heuristic that flips the sign of components in
    # CanICA to have more positive values than negative values, for
    # instance by making sure that the largest value is positive.

    # make data (SVD)
    rng = np.random.RandomState(0)
    shape = (20, 10, 1)
    affine = np.eye(4)
    components = _make_canica_components(shape)

    # make +ve
    for mp in components:
        mp[rng.randn(*mp.shape) > .8] *= -5.
        assert_less_equal(mp.max(), -mp.min())  # goal met ?

    # synthesize data with given components
    data = _make_data_from_components(components, affine, shape, rng=rng,
                                      n_subjects=2)
    mask_img = nibabel.Nifti1Image(np.ones(shape, dtype=np.int8), affine)

    # run CanICA many times (this is known to produce different results)
    canica = CanICA(n_components=4, random_state=rng, mask=mask_img)
    for _ in range(3):
        canica.fit(data)
        for mp in iter_img(canica.masker_.inverse_transform(
                canica.components_)):
            mp = mp.get_data()
            assert_less_equal(-mp.min(), mp.max())
开发者ID:salma1601,项目名称:nilearn,代码行数:29,代码来源:test_canica.py


示例2: filter_ics

def filter_ics(comps_img, mask, zscore=2., mode='+-'):
    """
    Generator for masking and thresholding each IC spatial map.

    Parameters
    ----------
    comps_img: img-like
        The 'raw' ICC maps image.

    mask: img-like
        If not None. Will apply this masks in the end of the process.

    thr: float
        The threshold value.

    zscore: bool
        If True will calculate the z-score of the ICC before thresholding.

    mode: str
        Choices: '+' for positive threshold,
                 '+-' for positive and negative threshold and
                 '-' for negative threshold.

    Returns
    -------
    icc_filts: list of nibabel.NiftiImage
        Thresholded and masked ICCs.
    """
    # store the average value of the blob in a list
    mask = niimg.load_img(mask)
    for i, icimg in enumerate(iter_img(comps_img)):
        yield filter_icc(icimg, mask=mask, thr=zscore, zscore=True, mode=mode)
开发者ID:Neurita,项目名称:pypes,代码行数:32,代码来源:utils.py


示例3: load_vols

def load_vols(niimgs):
    """Loads a nifti image (or a bail of) into a list qof 3D volumes.

    Parameters
    ----------
    niimgs: 3 or 4D Niimg-like object
        If niimgs is an iterable, checks if data is really 4D. Then,
        considering that it is a list of niimg and load them one by one.
        If niimg is a string, consider it as a path to Nifti image and
        call nibabel.load on it. If it is an object, check if get_data
        and get_affine methods are present, raise an Exception otherwise.

    Returns
    -------
    niimgs_: list of nifti image objects
        The loaded volumes.
    """
    # try loading 4d
    try:
        niimgs = list(check_niimg_4d(niimgs, return_iterator=True))
    except TypeError:
        # probably not 4d
        niimgs = [check_niimg(niimgs)]
    except ValueError:
        # probably inconsisten affines
        pass
    try:
        # try loading volumes one-by-one
        if isinstance(niimgs, _basestring): niimgs = [niimgs]
        return [check_niimg(niimg, ensure_ndim=3) for niimg in niimgs]
    except TypeError:
        pass

    # collect the loaded volumes into a list
    if is_niimg(niimgs):
        # should be 3d, squash 4th dimension otherwise
        if niimgs.shape[-1] == 1:
            return [nibabel.Nifti1Image(niimgs.get_data()[:, :, :, 0],
                                        niimgs.get_affine())]
        else:
            return list(iter_img(niimgs))
    else:
        niimgs = list(niimgs)
        if len(niimgs) == 1: niimgs = niimgs[0]
        return list(iter_img(niimgs))
开发者ID:chrplr,项目名称:pypreprocess,代码行数:45,代码来源:io_utils.py


示例4: _filter_ic_imgs

    def _filter_ic_imgs(self, ic_file):
        if self.zscore > 0:
            do_zscore = True
        else:
            do_zscore = False

        mask = niimg.load_img(self.mask_file)
        return [filter_icc(icimg, mask=mask, thr=self.zscore, zscore=do_zscore, mode=self.mode)
                for icimg in iter_img(ic_file)]
开发者ID:Neurita,项目名称:pypes,代码行数:9,代码来源:plotting.py


示例5: run_mini_pipeline

def run_mini_pipeline():
    atlas = datasets.fetch_atlas_msdl()
    atlas_img = atlas['maps']
    labels = pd.read_csv(atlas['labels'])['name']

    masker = NiftiMapsMasker(maps_img=atlas_img, standardize=True,
                               memory='/tmp/nilearn', verbose=0)

    data = datasets.fetch_adhd(number_subjects)

    figures_folder = '../figures/'
    count=0
    for func_file, confound_file in zip(data.func, data.confounds):
        
        # fit the data to the atlas mask, regress out confounds
        time_series = masker.fit_transform(func_file, confounds=confound_file)

        correlation = np.corrcoef(time_series.T)

        #plotting starts here
        plt.figure(figsize=(10, 10))
        plt.imshow(correlation, interpolation="nearest")
        x_ticks = plt.xticks(range(len(labels)), labels, rotation=90)
        y_ticks = plt.yticks(range(len(labels)), labels)
        corr_file = figures_folder+'subject_number_' + str(count) + '_correlation.pdf'
        plt.savefig(corr_file)

        atlas_region_coords = [plotting.find_xyz_cut_coords(img) for img in image.iter_img(atlas_img)]
        threshold = 0.6
        plotting.plot_connectome(correlation, atlas_region_coords, edge_threshold=threshold)
        connectome_file = figures_folder+'subject_number_' + str(count) + '_connectome.pdf'
        plt.savefig(connectome_file)


        #graph setup

        #binarize correlation matrix
        correlation[correlation<threshold] = 0
        correlation[correlation != 0] = 1

        graph = nx.from_numpy_matrix(correlation)

        partition=louvain.best_partition(graph)

        values = [partition.get(node) for node in graph.nodes()]

        plt.figure()
        nx.draw_spring(graph, cmap = plt.get_cmap('jet'), node_color = values, node_size=30, with_labels=True)
        graph_file = figures_folder+'subject_number_' + str(count) + '_community.pdf'
        plt.savefig(graph_file)

        count += 1

        plt.close('all')
开发者ID:flrgsr,项目名称:Mini-Pipeline-Community,代码行数:54,代码来源:nilearn_pipeline.py


示例6: _process_inputs

    def _process_inputs(self):
        ''' validate and  process inputs into useful form.
        Returns a list of nilearn maskers and the list of corresponding label
        names.'''
        import nilearn.input_data as nl
        import nilearn.image as nli

        label_data = nli.concat_imgs(self.inputs.label_files)
        maskers = []

        # determine form of label files, choose appropriate nilearn masker
        if np.amax(label_data.get_data()) > 1:  # 3d label file
            n_labels = np.amax(label_data.get_data())
            maskers.append(nl.NiftiLabelsMasker(label_data))
        else:  # 4d labels
            n_labels = label_data.get_data().shape[3]
            if self.inputs.incl_shared_variance:  # independent computation
                for img in nli.iter_img(label_data):
                    maskers.append(
                        nl.NiftiMapsMasker(
                            self._4d(img.get_data(), img.affine)))
            else:  # one computation fitting all
                maskers.append(nl.NiftiMapsMasker(label_data))

        # check label list size
        if not np.isclose(int(n_labels), n_labels):
            raise ValueError(
                'The label files {} contain invalid value {}. Check input.'
                .format(self.inputs.label_files, n_labels))

        if len(self.inputs.class_labels) != n_labels:
            raise ValueError('The length of class_labels {} does not '
                             'match the number of regions {} found in '
                             'label_files {}'.format(self.inputs.class_labels,
                                                     n_labels,
                                                     self.inputs.label_files))

        if self.inputs.include_global:
            global_label_data = label_data.get_data().sum(
                axis=3)  # sum across all regions
            global_label_data = np.rint(global_label_data).astype(int).clip(
                0, 1)  # binarize
            global_label_data = self._4d(global_label_data, label_data.affine)
            global_masker = nl.NiftiLabelsMasker(
                global_label_data, detrend=self.inputs.detrend)
            maskers.insert(0, global_masker)
            self.inputs.class_labels.insert(0, 'GlobalSignal')

        for masker in maskers:
            masker.set_params(detrend=self.inputs.detrend)

        return maskers
开发者ID:TheChymera,项目名称:nipype,代码行数:52,代码来源:nilearn.py


示例7: test_threshold_img

def test_threshold_img():
    # to check whether passes with valid threshold inputs
    shape = (10, 20, 30)
    maps, _ = data_gen.generate_maps(shape, n_regions=4)
    affine = np.eye(4)
    mask_img = nibabel.Nifti1Image(np.ones((shape), dtype=np.int8), affine)

    for img in iter_img(maps):
        # when threshold is a float value
        thr_maps_img = threshold_img(img, threshold=0.8)
        # when we provide mask image
        thr_maps_percent = threshold_img(img, threshold=1, mask_img=mask_img)
        # when threshold is a percentile
        thr_maps_percent2 = threshold_img(img, threshold='2%')
开发者ID:jeromedockes,项目名称:nilearn,代码行数:14,代码来源:test_image.py


示例8: plot_ica_components

def plot_ica_components(components_img, **kwargs):
    """ Plot the components IC spatial maps in a grid."""
    import math
    from nilearn.image import iter_img
    from nilearn.plotting import plot_stat_map
    from matplotlib import pyplot as plt
    from matplotlib import gridspec

    n_ics  = len(list(iter_img(components_img)))
    n_rows = math.ceil(n_ics/2)
    fig = plt.figure(figsize=(6, 3*n_rows), facecolor='black')
    gs  = gridspec.GridSpec(n_rows, 2)

    plots = []
    for i, ic_img in enumerate(iter_img(components_img)):
        ax = plt.subplot(gs[i])
        p  = plot_stat_map(ic_img, display_mode="z", title="IC {}".format(i+1),
                           cut_coords=1, colorbar=False, figure=fig, axes=ax, **kwargs)
        plots.append(p)

    for p in plots:
        p.close()

    return fig
开发者ID:Neurita,项目名称:pypes,代码行数:24,代码来源:plot.py


示例9: get_largest_blobs

def get_largest_blobs(ic_maps):
    """ Generator for the largest blobs in each IC spatial map.
    These should be masked and thresholded.

    Parameters
    ----------
    ic_maps: sequence of niimg-like

    Returns
    -------
    blobs: generator of niimg-like
    """
    # store the average value of the blob in a list
    for i, icimg in enumerate(iter_img(ic_maps)):
        yield niimg.new_img_like(icimg, largest_connected_component(icimg.get_data()))
开发者ID:Neurita,项目名称:pypes,代码行数:15,代码来源:utils.py


示例10: test_component_sign

def test_component_sign():
    # We should have a heuristic that flips the sign of components in
    # CanICA to have more positive values than negative values, for
    # instance by making sure that the largest value is positive.

    data, mask_img, components, rng = _make_canica_test_data(n_subjects=2,
                                                             noisy=True)

    # run CanICA many times (this is known to produce different results)
    canica = CanICA(n_components=4, random_state=rng, mask=mask_img)
    for _ in range(3):
        canica.fit(data)
        for mp in iter_img(canica.components_img_):
            mp = mp.get_data()
            assert_less_equal(-mp.min(), mp.max())
开发者ID:bthirion,项目名称:nilearn,代码行数:15,代码来源:test_canica.py


示例11: test_component_sign

def test_component_sign():
    # Regression test
    # We should have a heuristic that flips the sign of components in
    # DictLearning to have more positive values than negative values, for
    # instance by making sure that the largest value is positive.

    data, mask_img, components, rng = _make_canica_test_data(n_subjects=2, noisy=True)
    for mp in components:
        assert_less_equal(-mp.min(), mp.max())

    dict_learning = DictLearning(n_components=4, random_state=rng, mask=mask_img, smoothing_fwhm=0.0, alpha=1)
    dict_learning.fit(data)
    for mp in iter_img(dict_learning.masker_.inverse_transform(dict_learning.components_)):
        mp = mp.get_data()
        assert_less_equal(np.sum(mp[mp <= 0]), np.sum(mp[mp > 0]))
开发者ID:CandyPythonFlow,项目名称:nilearn,代码行数:15,代码来源:test_dict_learning.py


示例12: plot_icmaps

    def plot_icmaps(self, outtype='png', **kwargs):
        """ Plot the thresholded IC spatial maps and store the outputs in the ICA results folder.
        Parameters
        ----------
        outtype: str
            Extension (without the '.') of the output files, will specify which plot image file you want.

        Returns
        -------
        all_icc_plot_f: str

        iccs_plot_f: str

        sliced_ic_plots: list of str
        """
        # specify the file paths
        all_icc_plot_f  = op.join(self.ica_dir, 'all_components_zscore_{}.{}'.format(self.zscore, outtype))
        iccs_plot_f     = op.join(self.ica_dir,  'ic_components_zscore_{}.{}'.format(self.zscore, outtype))
        icc_multi_slice = op.join(self.ica_dir, 'ic_map_{}_zscore_{}.{}')

        # make the plots
        fig1 = plot_ica_components(self._icc_imgs, **kwargs)
        fig1.savefig(iccs_plot_f, facecolor=fig1.get_facecolor(), edgecolor='none')

        fig2 = plot_all_components(self._icc_imgs, **kwargs)
        fig2.savefig(all_icc_plot_f, facecolor=fig2.get_facecolor(), edgecolor='none')

        # make the multi sliced IC plots
        sliced_ic_plots = []
        for i, img in enumerate(iter_img(self._icc_imgs)):
            fig3 = plot_multi_slices(img,
                                     cut_dir="z",
                                     n_cuts=24,
                                     n_cols=4,
                                     title="IC {}\n(z-score {})".format(i+1, self.zscore),
                                     title_fontsize=32,
                                     plot_func=None,
                                     **kwargs)

            # prepare the output file name/path
            out_f = icc_multi_slice.format(i+1, self.zscore, outtype)
            fig3.savefig(out_f, facecolor=fig3.get_facecolor(), edgecolor='none')
            sliced_ic_plots.append(out_f)

        return all_icc_plot_f, iccs_plot_f, sliced_ic_plots
开发者ID:Neurita,项目名称:pypes,代码行数:45,代码来源:plotting.py


示例13: split_bilateral_rois

def split_bilateral_rois(maps_img):
    """Convenience function for splitting bilateral ROIs
    into two unilateral ROIs"""

    new_rois = []

    for map_img in iter_img(maps_img):
        for hemi in ["L", "R"]:
            hemi_mask = HemisphereMasker(hemisphere=hemi)
            hemi_mask.fit(map_img)
            if hemi_mask.mask_img_.get_data().sum() > 0:
                hemi_vectors = hemi_mask.transform(map_img)
                hemi_img = hemi_mask.inverse_transform(hemi_vectors)
                new_rois.append(hemi_img.get_data())

    new_maps_data = np.concatenate(new_rois, axis=3)
    new_maps_img = new_img_like(maps_img, data=new_maps_data, copy_header=True)
    print("Changed from %d ROIs to %d ROIs" % (maps_img.shape[-1], new_maps_img.shape[-1]))
    return new_maps_img
开发者ID:atsuch,项目名称:lateralized-components,代码行数:19,代码来源:masking.py


示例14: test_iterator_generator

def test_iterator_generator():
    # Create a list of random images
    l = [Nifti1Image(np.random.random((10, 10, 10)), np.eye(4)) for i in range(10)]
    cc = _utils.concat_niimgs(l)
    assert_equal(cc.shape[-1], 10)
    assert_array_almost_equal(cc.get_data()[..., 0], l[0].get_data())

    # Same with iteration
    i = image.iter_img(l)
    cc = _utils.concat_niimgs(i)
    assert_equal(cc.shape[-1], 10)
    assert_array_almost_equal(cc.get_data()[..., 0], l[0].get_data())

    # Now, a generator
    b = []
    g = nifti_generator(b)
    cc = _utils.concat_niimgs(g)
    assert_equal(cc.shape[-1], 10)
    assert_equal(len(b), 10)
开发者ID:carlosf,项目名称:nilearn,代码行数:19,代码来源:test_niimg_conversions.py


示例15: plot_components

def plot_components(ica_image, hemi='', out_dir=None,
                    bg_img=datasets.load_mni152_template()):
    print("Plotting %s components..." % hemi)

    # Determine threshoold and vmax for all the plots
    # get nonzero part of the image for proper thresholding of
    # r- or l- only component
    nonzero_img = ica_image.get_data()[np.nonzero(ica_image.get_data())]
    thr = stats.scoreatpercentile(np.abs(nonzero_img), 90)
    vmax = stats.scoreatpercentile(np.abs(nonzero_img), 99.99)
    for ci, ic_img in enumerate(iter_img(ica_image)):

        title = _title_from_terms(terms=ica_image.terms, ic_idx=ci, label=hemi)
        fh = plt.figure(figsize=(14, 6))
        plot_stat_map(ic_img, axes=fh.gca(), threshold=thr, vmax=vmax,
                      colorbar=True, title=title, black_bg=True, bg_img=bg_img)

        # Save images instead of displaying
        if out_dir is not None:
            save_and_close(out_path=op.join(
                out_dir, '%s_component_%i.png' % (hemi, ci)))
开发者ID:atsuch,项目名称:lateralized-components,代码行数:21,代码来源:plotting.py


示例16: plot_components_summary

def plot_components_summary(ica_image, hemi='', out_dir=None,
                            bg_img=datasets.load_mni152_template()):
    print("Plotting %s components summary..." % hemi)

    n_components = ica_image.get_data().shape[3]

    # Determine threshoold and vmax for all the plots
    # get nonzero part of the image for proper thresholding of
    # r- or l- only component
    nonzero_img = ica_image.get_data()[np.nonzero(ica_image.get_data())]
    thr = stats.scoreatpercentile(np.abs(nonzero_img), 90)
    vmax = stats.scoreatpercentile(np.abs(nonzero_img), 99.99)
    for ii, ic_img in enumerate(iter_img(ica_image)):

        ri = ii % 5  # row i
        ci = (ii / 5) % 5  # column i
        pi = ii % 25 + 1  # plot i
        fi = ii / 25  # figure i

        if ri == 0 and ci == 0:
            fh = plt.figure(figsize=(30, 20))
            print('Plot %03d of %d' % (fi + 1, np.ceil(n_components / 25.)))
        ax = fh.add_subplot(5, 5, pi)

        title = _title_from_terms(terms=ica_image.terms, ic_idx=ii, label=hemi)

        colorbar = ci == 4

        plot_stat_map(
            ic_img, axes=ax, threshold=thr, vmax=vmax, colorbar=colorbar,
            title=title, black_bg=True, bg_img=bg_img)

        if (ri == 4 and ci == 4) or ii == n_components - 1:
            out_path = op.join(
                out_dir, '%s_components_summary%02d.png' % (hemi, fi + 1))
            save_and_close(out_path)
开发者ID:atsuch,项目名称:lateralized-components,代码行数:36,代码来源:plotting.py


示例17: len

    rois = labels['name'].T
    n_r = len(rois)
    l=360./n_r#roi label size in figures     
    visu = atlas_filename
    all_ntwks = range(n_r)          
    networks = {'Auditory': [0,1],'striate' : [2],'DMN': [3,4,5,6],'Occ post' :[7],
                'Motor': [8],'Attentional' : [9,10,11,12,14,15,16,17,18],
                'Basal' : [13],'Visual secondary' : [19,20,21], 'Salience':[22,23,24],
                'Temporal(STS)':[25,26],'Langage':[27,28,29,30,31],'Cereb':[32],
                'Dors PCC': [33],'cing ins' :[34,35,36],'Ant IPS': [37,38],'All ROIs':all_ntwks}


coords = [] #chose regions representative coordinates, other wise it s computed with find_xyz_cut_coords
#coords = np.vstack((labels['x'], labels['y'], labels['z'])).T
if not coords:
    coords =[plotting.find_xyz_cut_coords(roi) for roi in image.iter_img(atlas_filename)]                  


root='/neurospin/grip/protocols/MRI/AVCnn_Dhaif_2016/AVCnn/AVCnn_data/' #fichier reg et conca pret pour analyse 
func_type_list = [ 'controlRSc','patientsRSc_LD', 'patientsRSc_LG']#  #name of each group's directory for functional images
reg_dirs = [ root+'rgt']#name of each group's directory for regressors (regressor have to be .txt files)
reg_prefix = 'art_mv_fmv_wm_vent_ext_hv_' #art_mv_fmv_wm_vent_ext_hv_regressor prefix (regressors must have corresponding functional file name after prefix: swars_ab_123456.nii and reg1_reg2_swars_ab_123456.txt)
common = 4 #initial differing character between regressors and functional file names
#choose report directory and name (default location is in root, default name is atlas_naabsolute
main_title ='AVCnn_Cont_LG_LD_'+MC_correction #
save_dir = root + 'reports_test/'
try:
    os.makedirs(save_dir)
except:
    print('Warning could not make dir '+save_dir)
    pass
开发者ID:Dhaif,项目名称:Functional_connectivity_python-,代码行数:31,代码来源:rs_group_comp_test_dhaif.py


示例18: plot_all

 def plot_all(self):
     names = self.network_names
     for idx, rsn in enumerate(niimg.iter_img(self._img)):
         disp = niplot.plot_roi(rsn, title=names.get(idx, None))
开发者ID:Neurita,项目名称:pypes,代码行数:4,代码来源:rsn_atlas.py


示例19: spatclust

def spatclust(img, min_cluster_size, threshold=None, index=None, mask=None):
    """
    Spatially clusters `img`

    Parameters
    ----------
    img : str or img_like
        Image file or object to be clustered
    min_cluster_size : int
        Minimum cluster size (in voxels)
    threshold : float, optional
        Whether to threshold `img` before clustering
    index : array_like, optional
        Whether to extract volumes from `img` for clustering
    mask : (S,) array_like, optional
        Boolean array for masking resultant data array

    Returns
    -------
    clustered : :obj:`numpy.ndarray`
        Boolean array of clustered (and thresholded) `img` data
    """

    # we need a 4D image for `niimg.iter_img`, below
    img = niimg.copy_img(check_niimg(img, atleast_4d=True))

    # temporarily set voxel sizes to 1mm isotropic so that `min_cluster_size`
    # represents the minimum number of voxels we want to be in a cluster,
    # rather than the minimum size of the desired clusters in mm^3
    if not np.all(np.abs(np.diag(img.affine)) == 1):
        img.set_sform(np.sign(img.affine))

    # grab desired volumes from provided image
    if index is not None:
        if not isinstance(index, list):
            index = [index]
        img = niimg.index_img(img, index)

    # threshold image
    if threshold is not None:
        img = niimg.threshold_img(img, float(threshold))

    clout = []
    for subbrick in niimg.iter_img(img):
        # `min_region_size` is not inclusive (as in AFNI's `3dmerge`)
        # subtract one voxel to ensure we aren't hitting this thresholding issue
        try:
            clsts = connected_regions(subbrick,
                                      min_region_size=int(min_cluster_size) - 1,
                                      smoothing_fwhm=None,
                                      extract_type='connected_components')[0]
        # if no clusters are detected we get a TypeError; create a blank 4D
        # image object as a placeholder instead
        except TypeError:
            clsts = niimg.new_img_like(subbrick,
                                       np.zeros(subbrick.shape + (1,)))
        # if multiple clusters detected, collapse into one volume
        clout += [niimg.math_img('np.sum(a, axis=-1)', a=clsts)]

    # convert back to data array and make boolean
    clustered = utils.load_image(niimg.concat_imgs(clout).get_data()) != 0

    # if mask provided, mask output
    if mask is not None:
        clustered = clustered[mask]

    return clustered
开发者ID:TomMaullin,项目名称:tedana,代码行数:67,代码来源:fit.py


示例20: _apply_mask_to_4dimg

 def _apply_mask_to_4dimg(self, imgs, **kwargs):
     masker = NiftiMasker(mask_img=self.load_mask(), **kwargs)
     return (masker.fit_transform(img) for img in iter_img(imgs))
开发者ID:Neurita,项目名称:pypes,代码行数:3,代码来源:plotting.py



注:本文中的nilearn.image.iter_img函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python image.mean_img函数代码示例发布时间:2022-05-27
下一篇:
Python image.index_img函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap