• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python viz.plot_map函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nipy.labs.viz.plot_map函数的典型用法代码示例。如果您正苦于以下问题:Python plot_map函数的具体用法?Python plot_map怎么用?Python plot_map使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了plot_map函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: show_slices

def show_slices(img, coords=None, threshold=0.1, cmap=None, prefix=None,
                show_colorbar=None, formatter='%.2f'):
    if cmap is None:
        cmap = pylab.cm.hot
    data, aff = img.get_data(), img.get_affine()
    anatimg = load('/usr/share/fsl/data/standard/MNI152_T1_1mm_brain.nii.gz')
    anatdata, anataff = anatimg.get_data(), anatimg.get_affine()
    anatdata = anatdata.astype(np.float)
    anatdata[anatdata<10.] = np.nan
    outfile = 'cluster.svg'
    if prefix:
        outfile = '_'.join((prefix, outfile))
    outfile = os.path.join('figures', outfile)
    if coords is None:
        osl = viz.plot_map(np.asarray(data), aff, threshold=threshold, 
                           cmap=cmap, black_bg=False)
        osl.frame_axes.figure.savefig(outfile, transparent=True)
    else:
        for idx,coord in enumerate(coords):
            outfile = 'cluster%02d' % idx
            if prefix:
                outfile = '_'.join((prefix, outfile))
            outfile = os.path.join('figures', outfile)
            osl = viz.plot_map(np.asarray(data), aff, anat=anatdata, anat_affine=anataff,
                               threshold=threshold, cmap=cmap,
                               black_bg=False, cut_coords=coord)
            if show_colorbar:
                cb = colorbar(gca().get_images()[1], cax=axes([0.4, 0.075, 0.2, 0.025]), 
                         orientation='horizontal', format=formatter)
                cb.set_ticks([cb._values.min(), cb._values.max()])
                show()
            osl.frame_axes.figure.savefig(outfile+'.svg', bbox_inches='tight', transparent=True)
            osl.frame_axes.figure.savefig(outfile+'.png', dpi=600, bbox_inches='tight', transparent=True)
开发者ID:satra,项目名称:sad,代码行数:33,代码来源:sad_figures.py


示例2: plot_map

 def plot_map(self, niimg, title):
     data = niimg.get_data().squeeze()
     params = self.plot_map_params.copy()
     fig = pl.figure(facecolor='k', edgecolor='k')
     if 'percentile' in self.plot_map_params:
         threshold = scoreatpercentile(
             data.ravel(), self.plot_map_params['percentile'])
         params.pop('percentile')
         params['threshold'] = threshold
     # vmax = np.abs(data).max()
     vmax = np.percentile(np.abs(data), 99)
     plot_map(data,
              affine=niimg.get_affine(),
              vmin=-vmax,
              vmax=vmax,
              title=title,
              figure=fig,
              **params)
     fname = title.replace(' ', '_').replace('/', '_')
     pl.savefig(os.path.join(
         self.report_dir, '%s.png' % fname), **self.save_params)
     path = os.path.join(self.report_dir, '%s.nii.gz' % fname)
     nb.save(niimg, path)
     pl.close('all')
     return path
开发者ID:GaelVaroquaux,项目名称:nignore,代码行数:25,代码来源:reporting.py


示例3: save_image

def save_image(nifti, anat, cluster_dict, out_path, f, image_threshold=2,
               texcol=1, bgcol=0, iscale=2, text=None, **kwargs):
    '''Saves a single nifti image.

    Args:
        nifti (str or nipy.core.api.image.image.Image): nifti file to visualize.
        anat (nipy.core.api.image.image.Image): anatomical nifti file.
        cluster_dict (dict): dictionary of clusters.
        f (int): index.
        image_threshold (float): treshold for `plot_map`.
        texcol (float): text color.
        bgcol (float): background color.
        iscale (float): image scale.
        text (Optional[str]): text for figure.
        **kwargs: extra keyword arguments

    '''
    if isinstance(nifti, str):
        nifti = load_image(nifti)
        feature = nifti.get_data()
    elif isinstance(nifti, nipy.core.image.image.Image):
        feature = nifti.get_data()
    font = {'size': 8}
    rc('font', **font)

    coords = cluster_dict['top_clust']['coords']
    if coords == None:
        return

    feature /= feature.std()
    imax = np.max(np.absolute(feature))
    imin = -imax
    imshow_args = dict(
        vmax=imax,
        vmin=imin,
        alpha=0.7
    )

    coords = ([-coords[0], -coords[1], coords[2]])

    plt.axis('off')
    plt.text(0.05, 0.8, text, horizontalalignment='center',
             color=(texcol, texcol, texcol))

    try:
        plot_map(feature,
                 xyz_affine(nifti),
                 anat=anat.get_data(),
                 anat_affine=xyz_affine(anat),
                 threshold=image_threshold,
                 cut_coords=coords,
                 annotate=False,
                 cmap=cmap,
                 draw_cross=False,
                 **imshow_args)
    except Exception as e:
        return

    plt.savefig(out_path, transparent=True, facecolor=(bgcol, bgcol, bgcol))
开发者ID:Jeremy-E-Johnson,项目名称:cortex,代码行数:59,代码来源:nifti_viewer.py


示例4: show

 def show(self, label=None, rcmap=None, **options):
     self.P = np.array(self.P)
     if label is None:
         return viz.plot_map(self.P, self.affine, **options)
     else:
         color = rcmap or "black"
         slicer = viz.plot_map(self.P == label, self.affine, **options)
         slicer.contour_map(self.mask, self.affine, levels=[0], colors=(color,))
         return slicer
开发者ID:BenoitDamota,项目名称:regions,代码行数:9,代码来源:roi.py


示例5: save_image

def save_image(nifti, anat, cluster_dict, out_path, f, image_threshold=2,
               texcol=1, bgcol=0, iscale=2, text=None, **kwargs):
    '''
    Saves a single nifti image.
    '''
    if isinstance(nifti, str):
        nifti = load_image(nifti)
        feature = nifti.get_data()
    elif isinstance(nifti, nipy.core.image.image.Image):
        feature = nifti.get_data()
    font = {'size': 8}
    rc('font', **font)

    coords = cluster_dict['top_clust']['coords']
    if coords == None:
        return

    feature /= feature.std()
    imax = np.max(np.absolute(feature))
    imin = -imax
    imshow_args = dict(
        vmax=imax,
        vmin=imin,
        alpha=0.7
    )

    coords = ([-coords[0], -coords[1], coords[2]])

    plt.axis('off')
    plt.text(0.05, 0.8, text, horizontalalignment='center',
             color=(texcol, texcol, texcol))

    try:
        plot_map(feature,
                 xyz_affine(nifti),
                 anat=anat.get_data(),
                 anat_affine=xyz_affine(anat),
                 threshold=image_threshold,
                 cut_coords=coords,
                 annotate=False,
                 cmap=cmap,
                 draw_cross=False,
                 **imshow_args)
    except Exception as e:
        return

    plt.savefig(out_path, transparent=True, facecolor=(bgcol, bgcol, bgcol))
开发者ID:edamaraju,项目名称:cortex,代码行数:47,代码来源:nifti_viewer.py


示例6: save_image

def save_image(nifti, anat, cluster_dict, out_path, f, image_threshold=2,
               texcol=1, bgcol=0, iscale=2, text=None, **kwargs):
    if isinstance(nifti, str):
        nifti = load_image(nifti)
        feature = nifti.get_data()
    elif isinstance(nifti, nipy.core.image.image.Image):
        feature = nifti.get_data()
    font = {"size":8}
    rc("font", **font)

    coords = cluster_dict["top_clust"]["coords"]
    if coords == None:
        logger.warning("No cluster found for %s" % nifti_file)
        return

    feature /= feature.std()
    imax = np.max(np.absolute(feature))
    imin = -imax
    imshow_args = dict(
        vmax=imax,
        vmin=imin,
        alpha=0.7
    )

    coords = ([-coords[0], -coords[1], coords[2]])

    #ax = fig.add_subplot(1, 1, 1)
    plt.axis("off")
    plt.text(0.05, 0.8, text, horizontalalignment="center",
             color=(texcol, texcol, texcol))

    try:
        plot_map(feature,
                 xyz_affine(nifti),
                 anat=anat.get_data(),
                 anat_affine=xyz_affine(anat),
                 threshold=image_threshold,
                 cut_coords=coords,
                 annotate=False,
                 cmap=cmap,
                 draw_cross=False,
                 **imshow_args)
    except Exception as e:
        logger.exception(e)
        return

    plt.savefig(out_path, transparent=True, facecolor=(bgcol, bgcol, bgcol))
开发者ID:ecastrow,项目名称:pl2mind,代码行数:47,代码来源:nifti_viewer.py


示例7: brainplot

def brainplot(brainmat, savepath):
    """
    takes a matrix (e.g. from loading an image file) and plots the activation
    the figure is saved at 'savepath'
    """
    # savepath should end in .png
    plt.figure()
    osl = viz.plot_map(np.asarray(brainmat), imgaff, anat=anat_data, anat_affine=anat_aff, 
                       threshold=0.0001, black_bg=True, draw_cross=False)
    pylab.savefig(savepath)
开发者ID:satra,项目名称:sad,代码行数:10,代码来源:models_skl.py


示例8: plot_brain

def plot_brain(x, affine, template, template_affine, imgfile):
    
    new_brain = x
    img = nb.Nifti1Image(new_brain, affine)
    nb.save(img, imgfile+".nii.gz")
    
    #title = imgfile.split("/")[-1]
    #slicer = plot_map(new_brain, affine, anat=template, anat_affine=template_affine, cmap = plt.cm.jet, title=title)
    slicer = plot_map(new_brain, affine, anat=template, anat_affine=template_affine, cmap=cm.cold_hot, black_bg=True)#.cm.jet
    slicer.contour_map(template, template_affine, cmap=plt.cm.binary, black_bg=True)# plt.cm.Greys
    #plt.show()
    #plt.savefig(imgfile+'.png', format='png')
    plt.savefig(imgfile+'.pdf', format='pdf', facecolot='k', edgecolor='k')
开发者ID:jdnc,项目名称:ml-project,代码行数:13,代码来源:plotting.py


示例9: plot_bg

def plot_bg(cut_coords=None, title=None):
    anat, anat_affine, anat_max = anat_cache._AnatCache.get_anat()
    figure = pl.figure(figsize=(8, 2.6), facecolor='w', edgecolor='w')
    ax = pl.axes([.0, .0, .85, 1], axisbg='w')
    slicer = plot_map(anat,
                      anat_affine,
                      cmap=pl.cm.gray,
                      vmin=.1 * anat_max,
                      vmax=.8 * anat_max,
                      figure=figure,
                      cut_coords=cut_coords,
                      axes=ax, )
    slicer.annotate()
    slicer.draw_cross()
    if title:
        slicer.title(title, x=.05, y=.9)
    return slicer
开发者ID:GaelVaroquaux,项目名称:nignore,代码行数:17,代码来源:viz_utils.py


示例10: show_slices

def show_slices(image_in, anat_file, coordinates,thr):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import pylab as pl
    import numpy as np
    from nibabel import load
    import os
    from nipy.labs import viz
    anat = anat_file
    img = image_in
    coords = coordinates[0]
    threshold=thr
    cmap=pl.cm.jet
    prefix=None,
    show_colorbar=True
    formatter='%.2f'

    img1 = load(img)
    data, aff = img1.get_data(), img1.get_affine()
    anatimg = load(anat) #load('/usr/share/fsl/data/standard/MNI152_T1_1mm_brain.nii.gz')
    anatdata, anataff = anatimg.get_data(), anatimg.get_affine()
    anatdata = anatdata.astype(np.float)
    anatdata[anatdata<10.] = np.nan
    outfile1 = os.path.split(img)[1][0:-7]
    outfiles = []
    for idx,coord in enumerate(coords):
        outfile = outfile1+'cluster%02d' % idx
        osl = viz.plot_map(np.asarray(data), aff, anat=anatdata, anat_affine=anataff,
            threshold=threshold, cmap=cmap,
            black_bg=False, cut_coords=coord)
        if show_colorbar:
            cb = plt.colorbar(plt.gca().get_images()[1], cax=plt.axes([0.4, 0.075, 0.2, 0.025]),
                orientation='horizontal', format=formatter)
            cb.set_ticks([cb._values.min(), cb._values.max()])

        #osl.frame_axes.figure.savefig(outfile+'.svg', bbox_inches='tight', transparent=True)
        osl.frame_axes.figure.savefig(os.path.join(os.getcwd(),outfile+'.png'), dpi=600, bbox_inches='tight', transparent=True)
        #pl.savefig(os.path.join(os.getcwd(),outfile+'.png'), dpi=600, bbox_inches='tight', transparent=True)
        outfiles.append(os.path.join(os.getcwd(),outfile+'.png'))
    return outfiles
开发者ID:INCF,项目名称:BrainImagingPipelines,代码行数:41,代码来源:QA_utils.py


示例11: overlay_new

def overlay_new(stat_image,background_image,threshold):
    import os.path
    import pylab as pl
    from nibabel import load
    from nipy.labs import viz
    from pylab import colorbar, gca, axes
    import numpy as np
    # Second example, with a given anatomical image slicing in the Z
    # direction
    
    fnames = [os.path.abspath('z_view.png'),
             os.path.abspath('x_view.png'),
             os.path.abspath('y_view.png')]
            
    formatter='%.2f'
    img = load(stat_image)
    data, affine = img.get_data(), img.get_affine()
   
    
    anat_img = load(background_image)
    anat = anat_img.get_data()
    anat_affine = anat_img.get_affine()
    anat = np.ones(anat.shape) - anat
    
    viz.plot_map(data, affine, anat=anat, anat_affine=anat_affine,
                 slicer='z', threshold=threshold, cmap=viz.cm._cm.hot)
    cb = colorbar(gca().get_images()[1], cax=axes([0.3, 0.00, 0.4, 0.07]),
                         orientation='horizontal', format=formatter)
    cb.set_ticks([cb._values.min(), cb._values.max()])
    pl.savefig(fnames[0],bbox_inches='tight')

    viz.plot_map(data, affine, anat=anat, anat_affine=anat_affine,
                 slicer='x', threshold=threshold, cmap=viz.cm._cm.hot)
    cb = colorbar(gca().get_images()[1], cax=axes([0.3, -0.06, 0.4, 0.07]), 
                         orientation='horizontal', format=formatter)
    cb.set_ticks([cb._values.min(), cb._values.max()])
    pl.savefig(fnames[1],bbox_inches='tight')

    viz.plot_map(data, affine, anat=anat, anat_affine=anat_affine,
                 slicer='y', threshold=threshold, cmap=viz.cm._cm.hot)
    cb = colorbar(gca().get_images()[1], cax=axes([0.3, -0.08, 0.4, 0.07]), 
                         orientation='horizontal', format=formatter)
    cb.set_ticks([cb._values.min(), cb._values.max()])
    pl.savefig(fnames[2],bbox_inches='tight')
    pl.close()
    return fnames
开发者ID:INCF,项目名称:BrainImagingPipelines,代码行数:46,代码来源:QA_utils.py


示例12: montage

def montage(nifti, anat, roi_dict, thr=2,
            fig=None, out_file=None,
            order=None, stats=dict()):
    '''
    Saves a montage of nifti images.
    '''
    if isinstance(anat, str):
        anat = load_image(anat)
    assert nifti is not None
    assert anat is not None
    assert roi_dict is not None

    texcol = 0
    bgcol = 1
    iscale = 2
    if isinstance(nifti, list):
        weights = np.array([n.get_data() for n in nifti]).astype('float32')
        weights = weights.transpose(1, 2, 3, 0)
        nifti = nifti[0]
    else:
        weights = nifti.get_data(); #weights = weights / weights.std(axis=3)
    features = weights.shape[-1]

    indices = [0]
    y = 8
    x = int(ceil(1.0 * features / y))

    font = {'size': 8}
    rc('font',**font)

    if fig is None:
        fig = plt.figure(figsize=[iscale * y, (1.5 * iscale) * x / 2.5])
    plt.subplots_adjust(left=0.01, right=0.99, bottom=0.05, top=0.99, wspace=0.05, hspace=0.5)

    if order is None:
        order = range(features)

    for i, f in enumerate(order):
        roi = roi_dict.get(f, None)
        if roi is None:
            continue

        if 'top_clust' in roi.keys():
            coords = roi['top_clust']['coords']
        else:
            coords = (0., 0., 0.)
        assert coords is not None

        feat = weights[:, :, :, f]

        feat = feat / feat.std()
        imax = np.max(np.absolute(feat)); imin = -imax
        imshow_args = {'vmax': imax, 'vmin': imin}

        coords = ([-coords[0], -coords[1], coords[2]])

        ax = fig.add_subplot(x, y, i + 1)
        #plt.axis('off')

        try:
            plot_map(feat,
                      xyz_affine(nifti),
                      anat=anat.get_data(),
                      anat_affine=xyz_affine(anat),
                      threshold=thr,
                      figure=fig,
                      axes=ax,
                      cut_coords=coords,
                      annotate=False,
                      cmap=cmap,
                      draw_cross=False,
                      **imshow_args)
        except Exception as e:
            print e
            pass

        plt.text(0.05, 0.8, str(f),
                 transform=ax.transAxes,
                 horizontalalignment='center',
                 color=(texcol, texcol, texcol))
        for j, r in enumerate(roi['top_clust']['rois']):
            plt.text(0.05, -0.15 * (.5 + j), r[:35],
                     transform=ax.transAxes,
                     horizontalalignment='left',
                     color=(0, 0, 0))

        pos = [(0.05, 0.05), (0.4, 0.05), (0.8, 0.05)]
        colors = ['purple', 'blue', 'green']
        for i, (k, vs) in enumerate(stats.iteritems()):
            v = vs[f]
            plt.text(pos[i][0], pos[i][1], '%s=%.2f' % (k, v),
                     transform=ax.transAxes,
                     horizontalalignment='left',
                     color=colors[i])

    if out_file is not None:
        plt.savefig(out_file, transparent=True, facecolor=(bgcol, bgcol, bgcol))
    else:
        plt.draw()
开发者ID:edamaraju,项目名称:cortex,代码行数:99,代码来源:nifti_viewer.py


示例13: get_second_level_dataset

from nipy.labs import viz
from nipy.utils import example_data

# Local import
from get_data_light import get_second_level_dataset

# get the data
data_dir = get_second_level_dataset()

# First example, with a anatomical template
img = load(os.path.join(data_dir, 'spmT_0029.nii.gz'))
data = img.get_data()
affine = img.get_affine()

viz.plot_map(data, affine, cut_coords=(-52, 10, 22),
                        threshold=2.0, cmap=viz.cm.cold_hot)
plt.savefig('ortho_view.png')

# Second example, with a given anatomical image slicing in the Z direction
try:
    anat_img = load(example_data.get_filename('neurospin', 'sulcal2000',
                                              'nobias_anubis.nii.gz'))
    anat = anat_img.get_data()
    anat_affine = anat_img.get_affine()
except OSError as e:
    # File does not exist: the data package is not installed
    print(e)
    anat = None
    anat_affine = None

viz.plot_map(data, affine, anat=anat, anat_affine=anat_affine,
开发者ID:Naereen,项目名称:nipy,代码行数:31,代码来源:viz.py


示例14: FMRILinearModel

########################################
# Perform a GLM analysis on H1
########################################

fmri_glm = FMRILinearModel(fmri_data,
                           design_matrix.matrix, mask='compute')
fmri_glm.fit(do_scaling=True, model='ar1')

# Estimate the contrast
z_map, = fmri_glm.contrast(reading_vs_visual, output_z=True)

# Plot the contrast
vmax = max(-z_map.get_data().min(), z_map.get_data().max())
plot_map(z_map.get_data(), z_map.get_affine(),
            cmap=cm.cold_hot, vmin=-vmax, vmax=vmax,
            slicer='z', black_bg=True, threshold=2.5,
            title='Reading vs visual')

# Count all the clusters for |Z| > 2.5
Z = z_map.get_data()
from scipy import ndimage
cluster_map, n_clusters = ndimage.label(np.abs(Z) > 2.5)
cluster_sizes = np.bincount(cluster_map.ravel())[1:]

print "Cluster sizes:"
print np.sort(cluster_sizes)

mask = fmri_glm.mask

########################################
# Perform GLM analysis on H0 (permuted)
开发者ID:NanoResearch,项目名称:python-cogstats,代码行数:31,代码来源:plot_permutation.py


示例15: print

# GLM fitting
print('Starting fit...')
glms = []
for x, y in zip(X, Y):
    glm = GeneralLinearModel(x)
    data, mean = data_scaling(y.get_data()[mask_array].T)
    glm.fit(data, 'ar1')
    glms.append(glm)

# Compute the required contrast
print('Computing test contrast image...')
nregressors = X[0].shape[1]
## should check that all design matrices have the same
c = np.zeros(nregressors)
c[0:4] = cvect
z_vals = (glms[0].contrast(c) + glms[1].contrast(c)).z_score()

# Show Zmap image
z_map = mask_array.astype(np.float)
z_map[mask_array] = z_vals
mean_map = mask_array.astype(np.float)
mean_map[mask_array] = mean
plot_map(z_map,
         affine,
         anat=mean_map,
         anat_affine=affine,
         cmap=cm.cold_hot,
         threshold=2.5,
         black_bg=True)
plt.show()
开发者ID:baca790,项目名称:nipy,代码行数:30,代码来源:compute_fmri_contrast.py


示例16: plot_cv_tc

def plot_cv_tc(epi_data, session_ids, subject_id,
               do_plot=True,
               write_image=True, mask=True, bg_image=False,
               plot_diff=True,
               _output_dir=None,
               cv_tc_plot_outfile=None):
    """ Compute coefficient of variation of the data and plot it

    Parameters
    ----------
    epi_data: list of strings, input fMRI 4D images
    session_ids: list of strings of the same length as epi_data,
                 session indexes (for figures)
    subject_id: string, id of the subject (for figures)
    do_plot: bool, optional,
             should we plot the resulting time course
    write_image: bool, optional,
                 should we write the cv image
    mask: bool or string, optional,
          (string) path of a mask or (bool)  should we mask the data
    bg_image: bool or string, optional,
              (string) pasth of a background image for display or (bool)
              should we compute such an image as the mean across inputs.
              if no, an MNI template is used (works for normalized data)
    """

    if _output_dir is None:
        if not cv_tc_plot_outfile is None:
            _output_dir = os.path.dirname(cv_tc_plot_outfile)
        else:
            _output_dir = tempfile.mkdtemp()

    cv_tc_ = []
    if isinstance(mask, basestring):
        mask_array = nibabel.load(mask).get_data() > 0
    elif mask == True:
        mask_array = compute_mask_files(epi_data[0])
    else:
        mask_array = None
    for (session_id, fmri_file) in zip(session_ids, epi_data):
        nim = do_3Dto4D_merge(fmri_file, output_dir=_output_dir)
        affine = nim.get_affine()
        if len(nim.shape) == 4:
            # get the data
            data = nim.get_data()
        else:
            raise TypeError("Expecting 4D image!")
            pass

        # compute the CV for the session
        cache_dir = os.path.join(_output_dir, "CV")
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        mem = joblib.Memory(cachedir=cache_dir, verbose=5)
        cv = mem.cache(compute_cv)(data, mask_array=mask_array)

        if write_image:
            # write an image
            nibabel.save(nibabel.Nifti1Image(cv, affine),
                         os.path.join(_output_dir, 'cv_%s.nii' % session_id))
            if bg_image == False:
                try:
                    viz.plot_map(
                        cv, affine, threshold=.01, cmap=viz.cm.cold_hot)
                except IndexError:
                    print traceback.format_exc()
            else:
                if isinstance(bg_image, basestring):
                    _tmp = nibabel.load(bg_image)
                    anat, anat_affine = (
                        _tmp.get_data(),
                        _tmp.get_affine())
                else:
                    anat, anat_affine = data.mean(-1), affine
                try:
                    viz.plot_map(
                        cv, affine, threshold=.01, cmap=viz.cm.cold_hot,
                             anat=anat, anat_affine=anat_affine)
                except IndexError:
                    print traceback.format_exc()
        # compute the time course of cv
        cv_tc_sess = np.median(
            np.sqrt((data[mask_array > 0].T /
                     data[mask_array > 0].mean(-1) - 1) ** 2), 1)

        cv_tc_.append(cv_tc_sess)
    cv_tc = np.concatenate(cv_tc_)

    if do_plot:
        # plot the time course of cv for different subjects
        pl.figure()
        pl.plot(cv_tc, label=subject_id)
        pl.legend()
        pl.xlabel('time(scans)')
        pl.ylabel('Median coefficient of variation')
        pl.axis('tight')

        if not cv_tc_plot_outfile is None:
            pl.savefig(cv_tc_plot_outfile,
                       bbox_inches="tight", dpi=200)
#.........这里部分代码省略.........
开发者ID:jcketz,项目名称:pypreprocess,代码行数:101,代码来源:check_preprocessing.py


示例17: concat_images

# concatenate the individual images
first_level_image = concat_images(betas)

# set the model
design_matrix = np.ones(len(betas))[:, np.newaxis]  # only the intercept
grp_model = FMRILinearModel(first_level_image, design_matrix, grp_mask)

# GLM fitting using ordinary least_squares
grp_model.fit(do_scaling=False, model='ols')

# specify and estimate the contrast
contrast_val = np.array(([[1]]))  # the only possible contrast !
z_map, = grp_model.contrast(contrast_val, con_id='one_sample', output_z=True)

# write the results
save(z_map, path.join(write_dir, 'one_sample_z_map.nii'))

# look at the result
vmax = max(- z_map.get_data().min(), z_map.get_data().max())
vmin = - vmax
plot_map(z_map.get_data(), z_map.get_affine(),
         cmap=cm.cold_hot,
         vmin=vmin,
         vmax=vmax,
         threshold=3.,
         black_bg=True)
plt.savefig(path.join(write_dir, '%s_z_map.png' % 'one_sample'))
plt.show()
print "Wrote all the results in directory %s" % write_dir
开发者ID:satra,项目名称:nipy,代码行数:29,代码来源:one_sample_t_test.py


示例18: generate_ica_report

def generate_ica_report(
    stats_report_filename,
    ica_maps,
    mask=None,
    report_title='ICA Report',
    methods_text='ICA',
    anat=None,
    anat_affine=None,
    threshold=2.,
    cluster_th=0,
    cmap=viz.cm.cold_hot,
    start_time=None,
    user_script_name=None,
    progress_logger=None,
    shutdown_all_reloaders=True,
    **glm_kwargs
    ):
    """Generates a report summarizing the statistical methods and results

    Parameters
    ----------
    stats_report_filename: string:
        html file to which output (generated html) will be written

    contrasts: dict of arrays
        contrasts we are interested in; same number of contrasts as zmaps;
        same keys

    zmaps: dict of image objects or strings (image filenames)
        zmaps for contrasts we are interested in; one per contrast id

    mask: 'nifti image object'
        brain mask for ROI

    design_matrix: list of 'DesignMatrix', `numpy.ndarray` objects or of
    strings (.png, .npz, etc.) for filenames
        design matrices for the experimental conditions

    contrasts: dict of arrays
       dictionary of contrasts of interest; the keys are the contrast ids,
       the values are contrast values (lists)

    z_maps: dict of 3D image objects or strings (image filenames)
       dict with same keys as 'contrasts'; the values are paths of z-maps
       for the respective contrasts

    anat: 3D array (optional)
        brain image to serve bg unto which activation maps will be plotted;
        passed to viz.plot_map API

    anat_affine: 2D array (optional)
        affine data for the anat

    threshold: float (optional)
        threshold to be applied to activation maps voxel-wise

    cluster_th: int (optional)
        minimal voxel count for clusteres declared as 'activated'

    cmap: cmap object (default viz.cm.cold_hot)
        color-map to use in plotting activation maps

    start_time: string (optional)
        start time for the stats analysis (useful for the generated
        report page)

    user_script_name: string (optional, default None)
        existing filename, path to user script used in doing the analysis

    progress_logger: ProgressLogger object (optional)
        handle for logging progress

    shutdown_all_reloaders: bool (optional, default True)
        if True, all pages connected to the stats report page will
        be prevented from reloading after the stats report page
        has been completely generated

    **glm_kwargs:
        kwargs used to specify the control parameters used to specify the
        experimental paradigm and the GLM

    """

    # prepare for stats reporting
    if progress_logger is None:
        progress_logger = base_reporter.ProgressReport()

    output_dir = os.path.dirname(stats_report_filename)

    # copy css and js stuff to output dir
    base_reporter.copy_web_conf_files(output_dir)

    # initialize gallery of activation maps
    activation_thumbs = base_reporter.ResultsGallery(
        loader_filename=os.path.join(output_dir,
                                     "activation.html")
        )

    # get caller module handle from stack-frame
    if user_script_name is None:
#.........这里部分代码省略.........
开发者ID:fabianp,项目名称:pypreprocess,代码行数:101,代码来源:ica_reporter.py


示例19: montage

def montage(nifti, anat, roi_dict, thr=2,
            fig=None, out_file=None, feature_dict=None,
            target_stat=None, target_value=None):
    if isinstance(anat, str):
        anat = load_image(anat)
    assert nifti is not None
    assert anat is not None
    assert roi_dict is not None

    texcol = 1
    bgcol = 0
    iscale = 2
    weights = nifti.get_data(); #weights = weights / weights.std(axis=3)
    features = weights.shape[-1]

    indices = [0]
    y = 8
    x = int(ceil(1.0 * features / y))

    font = {"size":8}
    rc("font",**font)

    if fig is None:
        fig = plt.figure(figsize=[iscale * y, iscale * x / 2.5])
    plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.99, wspace=0.1, hspace=0)

    for f in xrange(features):
        roi = roi_dict.get(f, None)
        if roi is None:
            continue
        coords = roi["top_clust"]["coords"]
        assert coords is not None

        feat = weights[:, :, :, f]
        feat = feat / feat.std()
        imax = np.max(np.absolute(feat)); imin = -imax
        imshow_args = {"vmax": imax, "vmin": imin}

        coords = ([-coords[0], -coords[1], coords[2]])

        ax = fig.add_subplot(x, y, f + 1)
        plt.axis("off")

        try: plot_map(feat,
                      xyz_affine(nifti),
                      anat=anat.get_data(),
                      anat_affine=xyz_affine(anat),
                      threshold=thr,
                      figure=fig,
                      axes=ax,
                      cut_coords=coords,
                      annotate=False,
                      cmap=cmap,
                      draw_cross=False,
                      **imshow_args)
        except Exception as e:
            logger.exception(e)

        plt.text(0.05, 0.8, str(f),
                 transform=ax.transAxes,
                 horizontalalignment="center",
                 color=(texcol,texcol,texcol))
        pos = [(0.05, 0.05), (0.4, 0.05), (0.8, 0.05)]
        colors = ["purple", "yellow", "green"]
        if feature_dict is not None and feature_dict.get(f, None) is not None:
            d = feature_dict[f]
            for i, key in enumerate([k for k in d if k != "real_id"]):
                plt.text(pos[i][0], pos[i][1], "%s=%.2f" % (key, d[key]) ,transform=ax.transAxes,
                         horizontalalignment="left", color=colors[i])
                if key == target_stat:
                    assert target_value is not None
                    if d[key] >= target_value:
                        p_fancy = FancyBboxPatch((0.1, 0.1), 2.5 - .1, 1 - .1,
                                                 boxstyle="round,pad=0.1",
                                                 ec=(1., 0.5, 1.),
                                                 fc="none")
                        ax.add_patch(p_fancy)
                    elif d[key] <= -target_value:
                        p_fancy = FancyBboxPatch((0.1, 0.1), iscale * 2.5 - .1, iscale - .1,
                                                 boxstyle="round,pad=0.1",
                                                 ec=(0., 0.5, 0.),
                                                 fc="none")
                        ax.add_patch(p_fancy)

#    stdout.write("\rSaving montage: DONE\n")
    if out_file is not None:
        plt.savefig(out_file, transparent=True, facecolor=(bgcol, bgcol, bgcol))
    else:
        plt.draw()
开发者ID:ecastrow,项目名称:pl2mind,代码行数:89,代码来源:nifti_viewer.py


示例20: load

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Example of activation image vizualization
with nipy.labs vizualization tools
"""
print __doc__

import os.path
import pylab as pl
from nibabel import load
from nipy.labs import viz
import get_data_light

# get the data
data_dir = get_data_light.get_it()

img     = load(os.path.join(data_dir, 'spmT_0029.nii.gz'))
data    = img.get_data()
affine  = img.get_affine()

viz.plot_map(data, affine, cut_coords=(-52, 10, 22), 
                        threshold=2.0, cmap=viz.cm.cold_hot)
pl.show()
开发者ID:Hiccup,项目名称:nipy,代码行数:24,代码来源:viz.py



注:本文中的nipy.labs.viz.plot_map函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python design_matrix.make_dmtx函数代码示例发布时间:2022-05-27
下一篇:
Python imageformats.save函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap