本文整理汇总了Python中nipy.testing.assert_true函数的典型用法代码示例。如果您正苦于以下问题:Python assert_true函数的具体用法?Python assert_true怎么用?Python assert_true使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_true函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_scaling_io_dtype
def test_scaling_io_dtype():
# Does data dtype get set?
# Is scaling correctly applied?
rng = np.random.RandomState(19660520) # VBD
ulp1_f32 = np.finfo(np.float32).eps
types = (np.uint8, np.uint16, np.int16, np.int32, np.float32)
with InTemporaryDirectory():
for in_type in types:
for out_type in types:
data, _ = randimg_in2out(rng, in_type, out_type, 'img.nii')
img = load_image('img.nii')
# Check the output type is as expected
hdr = img.metadata['header']
assert_equal(hdr.get_data_dtype().type, out_type)
# Check the data is within reasonable bounds. The exact bounds
# are a little annoying to calculate - see
# nibabel/tests/test_round_trip for inspiration
data_back = img.get_data().copy() # copy to detach from file
del img
top = np.abs(data - data_back)
nzs = (top !=0) & (data !=0)
abs_err = top[nzs]
if abs_err.size != 0: # all exact, that's OK.
continue
rel_err = abs_err / data[nzs]
if np.dtype(out_type).kind in 'iu':
slope, inter = hdr.get_slope_inter()
abs_err_thresh = slope / 2.0
rel_err_thresh = ulp1_f32
elif np.dtype(out_type).kind == 'f':
abs_err_thresh = big_bad_ulp(data.astype(out_type))[nzs]
rel_err_thresh = ulp1_f32
assert_true(np.all(
(abs_err <= abs_err_thresh) |
(rel_err <= rel_err_thresh)))
开发者ID:Zebulias,项目名称:nipy,代码行数:35,代码来源:test_image_io.py
示例2: test_series_from_mask
def test_series_from_mask():
""" Test the smoothing of the timeseries extraction
"""
# A delta in 3D
data = np.zeros((40, 40, 40, 2))
data[20, 20, 20] = 1
mask = np.ones((40, 40, 40), dtype=np.bool)
with InTemporaryDirectory():
for affine in (np.eye(4), np.diag((1, 1, -1, 1)),
np.diag((.5, 1, .5, 1))):
img = nib.Nifti1Image(data, affine)
nib.save(img, 'testing.nii')
series, header = series_from_mask('testing.nii', mask, smooth=9)
series = np.reshape(series[:, 0], (40, 40, 40))
vmax = series.max()
# We are expecting a full-width at half maximum of
# 9mm/voxel_size:
above_half_max = series > .5*vmax
for axis in (0, 1, 2):
proj = np.any(np.any(np.rollaxis(above_half_max,
axis=axis), axis=-1), axis=-1)
assert_equal(proj.sum(), 9/np.abs(affine[axis, axis]))
# Check that NaNs in the data do not propagate
data[10, 10, 10] = np.NaN
img = nib.Nifti1Image(data, affine)
nib.save(img, 'testing.nii')
series, header = series_from_mask('testing.nii', mask, smooth=9)
assert_true(np.all(np.isfinite(series)))
开发者ID:VirgileFritsch,项目名称:nipy,代码行数:29,代码来源:test_mask.py
示例3: test_model_selection_mfx_spatial_rand_walk
def test_model_selection_mfx_spatial_rand_walk():
prng = np.random.RandomState(10)
data, XYZ, XYZvol, vardata, signal = make_data(n=20,
dim=np.array([1,20,20]),
r=3, amplitude=3, noise=1,
jitter=0.5, prng=prng)
labels = (signal > 0).astype(int)
P = os.multivariate_stat(data, vardata, XYZ, std=0.5, sigma=5, labels=labels)
P.network[:] = 0
P.init_hidden_variables()
P.evaluate(nsimu=100, burnin=100, verbose=verbose,
proposal='rand_walk', proposal_std=0.5)
L00 = P.compute_log_region_likelihood()
# Test simulated annealing procedure
P.estimate_displacements_SA(nsimu=100, c=0.99,
proposal_std=P.proposal_std, verbose=verbose)
L0 = P.compute_log_region_likelihood()
yield assert_true(L0.sum() > L00.sum())
#Prior0 = P.compute_log_prior()
#Post0 = P.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
#M0 = L0 + Prior0[:-1] - Post0[:-1]
M0 = P.compute_marginal_likelihood(update_spatial=True)
#yield assert_almost_equal(M0.sum(), P.compute_marginal_likelihood(verbose=verbose).sum(), 0)
P.network[1] = 1
#P.init_hidden_variables(init_spatial=False)
P.init_hidden_variables(init_spatial=False)
P.evaluate(nsimu=100, burnin=100, verbose=verbose,
update_spatial=False, proposal_std=P.proposal_std)
#L1 = P.compute_log_region_likelihood()
#Prior1 = P.compute_log_prior()
#Post1 = P.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
#M1 = L1 + Prior1[:-1] - Post1[:-1]
M1 = P.compute_marginal_likelihood(update_spatial=True)
#yield assert_almost_equal(0.1*M1.sum(), 0.1*P.compute_marginal_likelihood(verbose=verbose).sum(), 0)
yield assert_true(M1 > M0)
开发者ID:cindeem,项目名称:nipy,代码行数:35,代码来源:test_spatial_relaxation_onesample.py
示例4: test_model_selection_exact
def test_model_selection_exact():
prng = np.random.RandomState(10)
data, XYZ, XYZvol, vardata, signal = make_data(n=30, dim=20, r=3,
amplitude=1, noise=0, jitter=0, prng=prng)
labels = (signal > 0).astype(int)
P1 = os.multivariate_stat(data, labels=labels)
P1.init_hidden_variables()
P1.evaluate(nsimu=100, burnin=10, verbose=verbose)
L1 = P1.compute_log_region_likelihood()
Prior1 = P1.compute_log_prior()
#v, m_mean, m_var = P1.v.copy(), P1.m_mean.copy(), P1.m_var.copy()
Post1 = P1.compute_log_posterior(nsimu=1e2, burnin=1e2, verbose=verbose)
M1 = L1 + Prior1[:-1] - Post1[:-1]
yield assert_almost_equal(M1.mean(),
P1.compute_marginal_likelihood().mean(), 0)
P0 = os.multivariate_stat(data, labels=labels)
P0.network *= 0
P0.init_hidden_variables()
P0.evaluate(nsimu=100, burnin=100, verbose=verbose)
L0 = P0.compute_log_region_likelihood()
Prior0 = P0.compute_log_prior()
Post0 = P0.compute_log_posterior(nsimu=1e2, burnin=1e2,
verbose=verbose)
M0 = L0 + Prior0[:-1] - Post0[:-1]
yield assert_almost_equal(M0.mean(),
P0.compute_marginal_likelihood().mean(), 0)
yield assert_true(M1[1] > M0[1])
yield assert_true(M1[0] < M0[0])
开发者ID:cindeem,项目名称:nipy,代码行数:28,代码来源:test_spatial_relaxation_onesample.py
示例5: test_agreement
def test_agreement():
# The test: does Protocol manage to recreate the design of fMRIstat?
for design_type in ['event', 'block']:
dd = D[design_type]
for i in range(X[design_type].shape[1]):
_, cmax = matchcol(X[design_type][:,i], fmristat[design_type])
if not dd.dtype.names[i].startswith('ns'):
assert_true(np.greater(np.abs(cmax), 0.999))
开发者ID:FNNDSC,项目名称:nipy,代码行数:8,代码来源:test_FIAC.py
示例6: test_threshold_connect_components
def test_threshold_connect_components():
a = np.zeros((10, 10))
a[0, 0] = 1
a[3, 4] = 1
a = threshold_connect_components(a, 2)
assert_true(np.all(a == 0))
a[0, 0:3] = 1
b = threshold_connect_components(a, 2)
assert_true(np.all(a == b))
开发者ID:Lx37,项目名称:nipy,代码行数:9,代码来源:test_mask.py
示例7: test_image_list
def test_image_list():
img = load_image(funcfile)
exp_shape = (17, 21, 3, 20)
imglst = ImageList.from_image(img, axis=-1)
# Test empty ImageList
emplst = ImageList()
yield assert_equal(len(emplst.list), 0)
# Test non-image construction
a = np.arange(10)
yield assert_raises(ValueError, ImageList, a)
yield assert_raises(ValueError, ImageList.from_image, img, None)
# check all the axes
for i in range(4):
order = range(4)
order.remove(i)
order.insert(0,i)
img_re_i = img.reordered_reference(order).reordered_axes(order)
imglst_i = ImageList.from_image(img, axis=i)
yield assert_equal(imglst_i.list[0].shape, img_re_i.shape[1:])
# check the affine as well
yield assert_almost_equal(imglst_i.list[0].affine,
img_re_i.affine[1:,1:])
yield assert_equal(img.shape, exp_shape)
# length of image list should match number of frames
yield assert_equal(len(imglst.list), img.shape[3])
# check the affine
A = np.identity(4)
A[:3,:3] = img.affine[:3,:3]
A[:3,-1] = img.affine[:3,-1]
yield assert_almost_equal(imglst.list[0].affine, A)
# Slicing an ImageList should return an ImageList
sublist = imglst[2:5]
yield assert_true(isinstance(sublist, ImageList))
# Except when we're indexing one element
yield assert_true(isinstance(imglst[0], Image))
# Verify array interface
# test __array__
yield assert_true(isinstance(np.asarray(sublist), np.ndarray))
# Test __setitem__
sublist[2] = sublist[0]
yield assert_equal(np.asarray(sublist[0]).mean(),
np.asarray(sublist[2]).mean())
# Test iterator
for x in sublist:
yield assert_true(isinstance(x, Image))
yield assert_equal(x.shape, exp_shape[:3])
开发者ID:Garyfallidis,项目名称:nipy,代码行数:56,代码来源:test_image_list.py
示例8: test_same_basis
def test_same_basis():
arr4d = data['fmridata']
shp = arr4d.shape
arr2d = arr4d.reshape((np.prod(shp[:3]), shp[3]))
res = pca(arr2d, axis=-1)
p1b_0 = pos1basis(res)
for i in range(3):
res_again = pca(arr2d, axis=-1)
assert_true(np.all(pos1basis(res_again) ==
p1b_0))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:10,代码来源:test_pca.py
示例9: test_kernel
def test_kernel():
# Verify that convolution with a delta function gives the correct
# answer.
tol = 0.9999
sdtol = 1.0e-8
for x in range(6):
shape = randint(30,60,(3,))
# pos of delta
ii, jj, kk = randint(11,17, (3,))
# random affine coordmap (diagonal and translations)
coordmap = AffineTransform.from_start_step('ijk', 'xyz',
randint(5,20,(3,))*0.25,
randint(5,10,(3,))*0.5)
# delta function in 3D array
signal = np.zeros(shape)
signal[ii,jj,kk] = 1.
signal = Image(signal, coordmap=coordmap)
# A filter with coordmap, shape matched to image
kernel = LinearFilter(coordmap, shape,
fwhm=randint(50,100)/10.)
# smoothed normalized 3D array
ssignal = kernel.smooth(signal).get_data()
ssignal[:] *= kernel.norms[kernel.normalization]
# 3 points * signal.size array
I = np.indices(ssignal.shape)
I.shape = (kernel.coordmap.ndims[0], np.product(shape))
# location of maximum in smoothed array
i, j, k = I[:, np.argmax(ssignal[:].flat)]
# same place as we put it before smoothing?
assert_equal((i,j,k), (ii,jj,kk))
# get physical points position relative to position of delta
Z = kernel.coordmap(I.T) - kernel.coordmap([i,j,k])
_k = kernel(Z)
_k.shape = ssignal.shape
assert_true((np.corrcoef(_k[:].flat, ssignal[:].flat)[0,1] > tol))
assert_true(((_k[:] - ssignal[:]).std() < sdtol))
def _indices(i,j,k,axis):
I = np.zeros((3,20))
I[0] += i
I[1] += j
I[2] += k
I[axis] += np.arange(-10,10)
return I.T
vx = ssignal[i,j,(k-10):(k+10)]
xformed_ijk = coordmap([i, j, k])
vvx = coordmap(_indices(i,j,k,2)) - xformed_ijk
assert_true((np.corrcoef(vx, kernel(vvx))[0,1] > tol))
vy = ssignal[i,(j-10):(j+10),k]
vvy = coordmap(_indices(i,j,k,1)) - xformed_ijk
assert_true((np.corrcoef(vy, kernel(vvy))[0,1] > tol))
vz = ssignal[(i-10):(i+10),j,k]
vvz = coordmap(_indices(i,j,k,0)) - xformed_ijk
assert_true((np.corrcoef(vz, kernel(vvz))[0,1] > tol))
开发者ID:FNNDSC,项目名称:nipy,代码行数:55,代码来源:test_kernel_smooth.py
示例10: test_resid
def test_resid():
# Data is projected onto k=10 dimensional subspace then has its mean
# removed. Should still have rank 10.
k = 10
ncomp = 5
ntotal = k
X = np.random.standard_normal((data['nimages'], k))
p = pca(data['fmridata'], -1, ncomp=ncomp, design_resid=X)
assert_equal(p['basis_vectors'].shape, (data['nimages'], ntotal))
assert_equal(p['basis_projections'].shape, data['mask'].shape + (ncomp,))
assert_equal(p['pcnt_var'].shape, (ntotal,))
assert_almost_equal(p['pcnt_var'].sum(), 100.)
# if design_resid is None, we do not remove the mean, and we get
# full rank from our data
p = pca(data['fmridata'], -1, design_resid=None)
rank = p['basis_vectors'].shape[1]
assert_equal(rank, data['nimages'])
rarr = reconstruct(p['basis_vectors'], p['basis_projections'], -1)
# add back the sqrt MSE, because we standardized
rmse = root_mse(data['fmridata'], axis=-1)[...,None]
assert_true(np.allclose(rarr * rmse, data['fmridata']))
开发者ID:GaelVaroquaux,项目名称:nipy,代码行数:21,代码来源:test_pca.py
示例11: test_mask
def test_mask():
mean_image = np.ones((9, 9))
mean_image[3:-3, 3:-3] = 10
mean_image[5, 5] = 100
mask1 = nnm.compute_mask(mean_image)
mask2 = nnm.compute_mask(mean_image, exclude_zeros=True)
# With an array with no zeros, exclude_zeros should not make
# any difference
assert_array_equal(mask1, mask2)
# Check that padding with zeros does not change the extracted mask
mean_image2 = np.zeros((30, 30))
mean_image2[:9, :9] = mean_image
mask3 = nnm.compute_mask(mean_image2, exclude_zeros=True)
assert_array_equal(mask1, mask3[:9, :9])
# However, without exclude_zeros, it does
mask3 = nnm.compute_mask(mean_image2)
assert_false(np.allclose(mask1, mask3[:9, :9]))
# check that opening is 2 by default
mask4 = nnm.compute_mask(mean_image, exclude_zeros=True, opening=2)
assert_array_equal(mask1, mask4)
# check that opening has an effect
mask5 = nnm.compute_mask(mean_image, exclude_zeros=True, opening=0)
assert_true(mask5.sum() > mask4.sum())
开发者ID:Lx37,项目名称:nipy,代码行数:23,代码来源:test_mask.py
示例12: test_2D
def test_2D():
# check that a standard 2D PCA works too
M = 100
N = 20
L = M-1 # rank after mean removal
data = np.random.uniform(size=(M, N))
p = pca(data)
ts = p['basis_vectors']
imgs = p['basis_projections']
yield assert_equal(ts.shape, (M, L))
yield assert_equal(imgs.shape, (L, N))
rimgs = reconstruct(ts, imgs)
# add back the sqrt MSE, because we standardized
data_mean = data.mean(0)[None,...]
demeaned = data - data_mean
rmse = root_mse(demeaned, axis=0)[None,...]
# also add back the mean
yield assert_array_almost_equal((rimgs * rmse) + data_mean, data)
# if standardize is set, or not, covariance is diagonal
yield assert_true(diagonal_covariance(imgs))
p = pca(data, standardize=False)
imgs = p['basis_projections']
yield assert_true(diagonal_covariance(imgs))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:23,代码来源:test_pca.py
示例13: test_call
def test_call():
value = 10
yield assert_true(np.allclose(E.a(value), 2*value))
yield assert_true(np.allclose(E.b(value), 2*value))
# FIXME: this shape just below is not
# really expected for a CoordinateMap
yield assert_true(np.allclose(E.b([value]), 2*value))
yield assert_true(np.allclose(E.c(value), value/2))
yield assert_true(np.allclose(E.d(value), value/2))
value = np.array([1., 2., 3.])
yield assert_true(np.allclose(E.e(value), value))
# check that error raised for wrong shape
value = np.array([1., 2.,])
yield assert_raises(CoordinateSystemError, E.e, value)
开发者ID:Garyfallidis,项目名称:nipy,代码行数:14,代码来源:test_coordinate_map.py
示例14: test_inverse2
def test_inverse2():
assert_true(np.allclose(E.e.affine, E.e.inverse().inverse().affine))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:2,代码来源:test_coordinate_map.py
示例15: test_compose_cmap
def test_compose_cmap():
value = np.array([1., 2., 3.])
b = compose(E.e, E.e)
assert_true(np.allclose(b(value), value))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:4,代码来源:test_coordinate_map.py
示例16: test_diagonality
def test_diagonality():
# basis_projections are diagonal, whether standarized or not
p = pca(data['fmridata'], -1) # standardized
yield assert_true(diagonal_covariance(p['basis_projections'], -1))
pns = pca(data['fmridata'], -1, standardize=False) # not
yield assert_true(diagonal_covariance(pns['basis_projections'], -1))
开发者ID:Garyfallidis,项目名称:nipy,代码行数:6,代码来源:test_pca.py
示例17: test_design_expression
def test_design_expression():
t1 = F.Term("x")
t2 = F.Term('y')
f = t1.formula + t2.formula
assert_true(str(f.design_expr) in ['[x, y]', '[y, x]'])
开发者ID:bergtholdt,项目名称:nipy,代码行数:5,代码来源:test_formula.py
注:本文中的nipy.testing.assert_true函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论