本文整理汇总了Python中nltk.trigrams函数的典型用法代码示例。如果您正苦于以下问题:Python trigrams函数的具体用法?Python trigrams怎么用?Python trigrams使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了trigrams函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: compare_pos
def compare_pos(file_name_1, file_name_2):
tokens_1 = make_tokens(file_name_1)
tokens_2 = make_tokens(file_name_2)
tri_tokens_1 = trigrams(tokens_1)
tri_tokens_2 = trigrams(tokens_2)
dist_1 = nltk.FreqDist(tri_tokens_1)
dist_2 = nltk.FreqDist(tri_tokens_2)
diff_1 = dist_1 - dist_2
diff_2 = dist_2 - dist_1
with open("common_pos_mt.txt", "w") as file:
for word, freq in diff_1.most_common(20):
line = str(word) + " " + str(freq) + '\n'
print(line)
file.write(line)
with open("common_pos_hmn.txt", "w") as file:
for word, freq in diff_2.most_common(20):
line = str(word) + " " + str(freq) + '\n'
print(line)
file.write(line)
"""
开发者ID:NunoXu,项目名称:UnbabelChallenge2016,代码行数:28,代码来源:PosComparasion.py
示例2: train
def train(self,tweets):
# 1st step: build the bag-of-words model
tweet_tokens_list = [tweet_tokens for tweet_tokens,label in tweets]
tokens = []
print('Computing the trainset vocabulary of n-grams')
for tweet_tokens in tweet_tokens_list:
unigrams = [w.lower() for w,t in tweet_tokens]
tokens += unigrams
tokens += ['_'.join(b) for b in bigrams(unigrams)]
tokens += ['_'.join(t) for t in trigrams(unigrams)]
tokens += [t1 + '_*_' + t3 for t1,t2,t3 in trigrams(unigrams)]
# build the bag-of-words list using all the tokens
self.bag_of_words = set(tokens)
data = list()
total_tweets = len(tweets)
features_list = list()
for index,(tweet_tokens,label) in enumerate(tweets):
print('Training for tweet n. {}/{}'.format(index+1,total_tweets))
features_list.append(self.extract_features(tweet_tokens))
# Train a SVM classifier
#data = self.vectorizer.fit_transform([features for features,label in self.train_set_features])
print('Vectorizing the features')
data = self.vectorizer.fit_transform(features_list)
target = self.encoder.fit_transform([label for tweet_tokens,label in tweets])
print('Building the model')
self.classifier.fit(data, target)
开发者ID:pdsujnow,项目名称:EmotionTweetClassifier_3412260,代码行数:29,代码来源:MachineLearningClassifier.py
示例3: main
def main():
text = open('holmes.txt').read()
tokens = nltk.wordpunct_tokenize(text)
charList = []
for word in tokens:
for char in word:
charList.append(char)
fDistChars = nltk.FreqDist(charList)
fDistWords = nltk.FreqDist(tokens)
print("Answer to 1A, there are {} character types in the book, namely: \n{}".format(len(fDistChars),sorted(fDistChars)))
print("\nAnswer to 1B, there are {} word types in the book, namely: \n{}".format(len(fDistWords),sorted(fDistWords)))
bigramChars = nltk.bigrams(charList)
trigramChars = nltk.trigrams(charList)
print("\nAnswer to 1C, the 20 most common characters are: \nUnigrams: \n{}\nBigrams: \n{}\nTrigrams: \n{}".format(most_common(charList),
most_common(bigramChars), most_common(trigramChars)))
bigramWords = nltk.bigrams(tokens)
trigramWords = nltk.trigrams(tokens)
print("\nAnswer to 1D, the 20 most common words are: \nUnigrams: \n{}\nBigrams: \n{}\nTrigrams: \n{}".format(most_common(tokens),
most_common(bigramWords), most_common(trigramWords)))
bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
scoredPMI = finder.score_ngrams(bigram_measures.pmi)
scoredCHI = finder.score_ngrams(bigram_measures.chi_sq)
print("\nAnswer to 2, the 20 most likely collocations are:\nPMI:\n{} \nChi's square\n{}" .format(scoredPMI[:20],scoredCHI[:20]))
print("\nSpearmans correlation = {}".format(nltk.metrics.spearman.spearman_correlation(scoredPMI, scoredCHI)))
开发者ID:Martbov,项目名称:pta-group1,代码行数:33,代码来源:assignment1.py
示例4: extract_features
def extract_features(self, tweet_tokens):
if len(self.bag_of_words) == 0:
print('Bag-of-Words empty!')
unigrams = [w.lower() for w,t in tweet_tokens]
tokens = unigrams
tokens += ['_'.join(b) for b in bigrams(unigrams)]
tokens += ['_'.join(t) for t in trigrams(unigrams)]
tokens += [t1 + '_*_' + t3 for t1,t2,t3 in trigrams(unigrams)]
tweet_tags = [tag for token, tag in tweet_tokens]
feature_set = {}
# 1st set of features: bag-of-words
for token in set(tokens).intersection(self.bag_of_words):
feature_set['has_'+token] = True
# 2nd set of features: the count for each tag type present in the message
# Tweet_nlp taget. Info:
# http://www.ark.cs.cmu.edu/TweetNLP/annot_guidelines.pdf
for tag in ['N','O','^','S','Z','V','A','R','!','D','P','&','T','X','#','@','~','U','E','$',',','G','L','M','Y']:
feature_set['num_'+tag] = sum([1 for t in tweet_tags if t == tag])
# 3rd feature: negation is present?
negators = set(LexiconClassifier().read_negation_words())
if len(negators.intersection(set(tokens))) > 0:
feature_set['has_negator'] = True
# 4th feature: character ngrams
regexp = re.compile(r"([a-z])\1{2,}")
feature_set['has_char_ngrams'] = False
for token,tag in tweet_tokens:
if regexp.search(token):
feature_set['has_char_ngrams'] = True
break
# 5th feature: punctuation ngrams
regexp = re.compile(r"([!\?])\1{2,}")
feature_set['has_punct_ngrams'] = False
for token,tag in tweet_tokens:
if regexp.search(token):
feature_set['has_punct_ngrams'] = True
break
# 6th feature: the number of all upper cased words
feature_set['num_all_caps'] = sum([1 for token,tag in tweet_tokens if token.isupper() and len(token)>=3])
# 7th and 8th feature: the positive and negative score from lexicon
# classifier (i.e., number of positive and negative words from lexicon)
positive_score, negative_score = self.lexicon_classifier.classify(tweet_tokens)
feature_set['pos_lexicon'] = positive_score
feature_set['neg_lexicon'] = -1 * negative_score
return feature_set
开发者ID:pdsujnow,项目名称:EmotionTweetClassifier_3412260,代码行数:56,代码来源:MachineLearningClassifier.py
示例5: jacquard_trigram
def jacquard_trigram(query):
final=[]
for a in file('enwiktionary.a.list'):
a=a.rstrip()
trigram=set(nltk.trigrams(a))
q_trigram=set(nltk.trigrams(query))
intersect=q_trigram.intersection(trigram)
union=q_trigram.union(trigram)
sim=float(len(intersect))/len(union)
final.append([a,sim])
final_sorted= sorted(final,key=lambda sim:sim[1], reverse=True)
print final_sorted[:10]
开发者ID:jubimishra,项目名称:Data-Mining,代码行数:13,代码来源:jacquard_vs_levenshtein.py
示例6: main
def main():
OUT = open("../output.txt", "w")
OUT.close()
INP = open("../data/test.hyp1-hyp2-ref", "r")
inp = INP.read()
for sent in inp.split("\n")[:-1]:
h1 = sent.split(" ||| ")[0].split(" ")
h2 = sent.split(" ||| ")[1].split(" ")
ref = sent.split(" ||| ")[2].split(" ")
h1p = process(h1)
h2p = process(h2)
refp = process(ref)
#print(h1c, h2c, refc)
#h1_match = word_matches(h1, rset)
#h2_match = word_matches(h2, rset)
h1c = Counter(h1)
h2c = Counter(h2)
refc = Counter(ref)
h1_bigrams = nltk.bigrams(h1)
h2_bigrams = nltk.bigrams(h2)
ref_bigrams = nltk.bigrams(ref)
h1_trigrams = nltk.trigrams(h1)
h2_trigrams = nltk.trigrams(h2)
ref_trigrams = nltk.trigrams(ref)
#print(h_bigrams, ref_bigrams)
h1_bigramsc = Counter(h1_bigrams)
h2_bigramsc = Counter(h2_bigrams)
ref_bigramsc = Counter(ref_bigrams)
h1_trigramsc = Counter(h1_trigrams)
h2_trigramsc = Counter(h2_trigrams)
ref_trigramsc = Counter(ref_trigrams)
h1_allc = h1c + h1_bigramsc + h1_trigramsc
h2_allc = h2c + h2_bigramsc + h2_trigramsc
ref_allc = refc + ref_bigramsc + ref_trigramsc
h1_precision = precision(h1_allc, ref_allc)
h2_precision = precision(h2_allc, ref_allc)
h1_recall = recall(h1_allc, ref_allc)
h2_recall = recall(h2_allc, ref_allc)
h1_meteor = meteor(h1_precision, h1_recall)
h2_meteor = meteor(h2_precision, h2_recall)
OUT = open("../output.txt", "a")
if h1_meteor > h2_meteor:
OUT.write("-1\n")
else:
if h1_meteor == h2_meteor:
OUT.write("0\n")
else:
OUT.write("1\n")
OUT.close()
开发者ID:ssitaram,项目名称:sp2013.11-731,代码行数:51,代码来源:meteor.py
示例7: calc_trigrams
def calc_trigrams(brown_tags):
#print brown_tags[0]
#q_values = {}
#unigram_c = collections.defaultdict(int)
bigram_c = collections.defaultdict(int)
trigram_c = collections.defaultdict(int)
for stags in brown_tags:
unigram_tuples = stags
bigram_tuples = list(nltk.bigrams(stags))
trigram_tuples = list(nltk.trigrams(stags))
#print unigram_tuples
#for g in unigram_tuples:
#unigram_c[g] += 1
for g in bigram_tuples:
bigram_c[g] += 1
for g in trigram_tuples:
trigram_c[g] += 1
bigram_c[(START_SYMBOL, START_SYMBOL)] = len(brown_tags)
q_values = {k: math.log(float(v) / bigram_c[k[:2]], 2) for k, v in trigram_c.iteritems()}
return q_values
开发者ID:mothaibatacungmua,项目名称:AI-course,代码行数:27,代码来源:solutionsB.py
示例8: calc_probabilities
def calc_probabilities(training_corpus):
unigram_p = {}
bigram_p = {}
trigram_p = {}
total_unigram=0
unigram_freq=Counter()
bigram_freq=Counter()
trigram_freq=Counter()
u_freq=Counter()
for line in training_corpus:
line=START_SYMBOL+" "+ line+STOP_SYMBOL
unigram_tokens=line.split()
unigram_freq.update(unigram_tokens)
total_unigram=total_unigram+len(unigram_tokens)
for sent in training_corpus:
sent=START_SYMBOL+" "+ START_SYMBOL+" "+sent+STOP_SYMBOL
unigram_tokens=sent.split()
u_freq.update(unigram_tokens)
bigram_tuples=list(nltk.bigrams(unigram_tokens))
bigram_freq.update(bigram_tuples)
trigram_tuples=list(nltk.trigrams(unigram_tokens))
trigram_freq.update(trigram_tuples)
for key in unigram_freq:
unigram_p[(key,)]= math.log(unigram_freq[key]/float(total_unigram),2)
for key in bigram_freq:
bigram_p[key]= math.log(bigram_freq[key]/float(u_freq[key[0]]),2)
for key in trigram_freq:
trigram_p[key]=math.log(trigram_freq[key]/float(bigram_freq[key[0],key[1]]),2)
return unigram_p, bigram_p, trigram_p
开发者ID:jubimishra,项目名称:Natural-Language-Processing,代码行数:34,代码来源:sol.py
示例9: linearscore
def linearscore(unigrams, bigrams, trigrams, corpus):
"""Linear interpolate the probabilities.
See http://web.stanford.edu/~jurafsky/slp3/4.pdf paragraph 4.4.3
"""
scores = []
# Set lambda equal to all the n-grams so that it sums up to 1.
lambda_ = 1.0 / 3
for sentence in corpus:
interpolated_score = 0
tokens0 = sentence.strip().split()
for trigram in nltk.trigrams([START_SYMBOL] + [START_SYMBOL] + tokens0 + [STOP_SYMBOL]):
try:
p3 = trigrams[trigram]
except KeyError:
p3 = MINUS_INFINITY_SENTENCE_LOG_PROB
try:
p2 = bigrams[trigram[1:3]]
except KeyError:
p2 = MINUS_INFINITY_SENTENCE_LOG_PROB
try:
p1 = unigrams[trigram[2]]
except KeyError:
p1 = MINUS_INFINITY_SENTENCE_LOG_PROB
interpolated_score += math.log(lambda_ * (2 ** p3) + lambda_ * (2 ** p2) + lambda_ * (2 ** p1), 2)
scores.append(interpolated_score)
return scores
开发者ID:mennanov,项目名称:nlp-coursera,代码行数:27,代码来源:solutionsA.py
示例10: ngramify
def ngramify(self, word_list, stop):
# creates an ngram from a word_list based on class settings
mode = self.mode
pos = self.inclued_pos
word = self.include_word
stopset = set(stopwords.words("english"))
stopset.remove("not")
if stop:
if word and pos:
selection = [(w.lower(), p) for w, p in word_list if w.lower() not in stopset]
elif word:
selection = [w.lower() for w, p in word_list if w.lower() not in stopset]
elif pos:
selection = [p for w, p in word_list if w.lower() not in stopset]
else:
if word and pos:
selection = [(w.lower(), p) for w, p in word_list]
elif word:
selection = [w.lower() for w, p in word_list]
elif pos:
selection = [p for w, p in word_list]
if mode == "unigrams":
word_list = selection
elif mode == "bigrams":
word_list = nltk.bigrams(selection)
elif mode == "trigrams":
word_list = nltk.trigrams(selection)
return word_list
开发者ID:sctennis77,项目名称:semeval,代码行数:29,代码来源:classify.py
示例11: exercise2
def exercise2(category):
print
print "For Category: " + category
print "Part 1"
print "Words with the tag 'JJ':"
words = bn.tagged_words(categories = category)
wordlist = bn.words(categories = category)
words_JJ = set(sorted([(word, tag) for (word, tag) in words if tag == 'JJ']))
print len(words_JJ)
print
print "Part 2"
print "Words with tags 'VBZ' -> 3rd Person Singular Verbs or ('NNPS' or 'NNS') -> plural nouns:"
words_VBP_NNPS_NNS = [(word, tag) for (word, tag) in words if tag == 'VBZ' or tag == 'NNPS' or tag == 'NNS']
print words_VBP_NNPS_NNS[:10]
print
sent = ""
print "Part 3"
print "The 3 most frequent 3-word prepositional phrases are:"
words = bn.tagged_words(categories = category)
for (w1, t1), (w2, t2), (w3, t3) in nltk.trigrams(words):
if(t1.startswith('IN') and t2.startswith('AT') and t3.startswith('NN')):
sent = sent + w1.lower() + " " + w2.lower() + " " + w3.lower() + "."
sent_part = sent.split(".")
fd = nltk.FreqDist(sent_part)
v = fd.most_common(3)
print v
print
print "Part 4"
print "Ratio of Masculine to Feminine is:"
male_pattern = r'\bhe\b|\bhis\b|\bhim\b|\bhimself\b'
female_pattern = r'\bshe\b|\bher\b|\bhers\b|\bherself\b'
male_pronouns = len([w for w in wordlist if re.search(male_pattern, w.lower())])
female_pronouns = len([w for w in wordlist if re.search(female_pattern, w.lower())])
print "Male : Female is -> %d : %d" %(male_pronouns, female_pronouns)
print
开发者ID:GirishSrinivas,项目名称:PythonPrograms,代码行数:35,代码来源:Girish_Srinivas_ch5a.py
示例12: calcSentProb
def calcSentProb(sent, NGramProbDict, n):
'''
Look up each tag-ngram (trigrams here) in the target sentence in the
ngrams log-prob dictionary; if found, add log-prob to total, else use
the default prob;
'''
prob = 0.0
count = 0
if len(sent)< 2:
prob = -12
count = 1
elif len(sent)<3 or n==2:
for (w1,t1),(w2,t2) in nltk.bigrams(sent):
if (t1,t2) in NGramProbDict.keys():
prob += NGramProbDict[(t1,t2)]
else:
prob += tri_default_prob
count += 1
elif n==3:
for (w1,t1),(w2,t2),(w3,t3) in nltk.trigrams(sent):
if (t1,t2,t3) in NGramProbDict.keys():
prob += NGramProbDict[(t1,t2,t3)]
else:
prob += bi_default_prob
count += 1
return float(prob) / count
开发者ID:divanshugarg,项目名称:Kaggle-Projects-Stuff,代码行数:26,代码来源:grammarAnalNGrams.py
示例13: ngrams_freq
def ngrams_freq(tokens):
trigrams = nltk.trigrams(tokens)
fdist = nltk.FreqDist(trigrams)
dd = {}
for k,v in fdist.items():
dd[k] = v
return dd
开发者ID:tomgond,项目名称:snipplets,代码行数:7,代码来源:utils.py
示例14: score
def score(ngram_p, n, data):
scores = []
if n == 1:
for sentence in data:
line_score = 0
sentence += "STOP "
unigram_tokens = nltk.word_tokenize(sentence)
for token in unigram_tokens:
line_score += ngram_p[(token,)]
scores.append(line_score)
elif n == 2:
for sentence in data:
line_score = 0
sentence = "* " + sentence + "STOP "
bigram_tuples = tuple(nltk.bigrams(nltk.word_tokenize(sentence)))
for bigram in bigram_tuples:
line_score += ngram_p[bigram]
scores.append(line_score)
elif n == 3:
for sentence in data:
line_score = 0
sentence = "* * " + sentence + "STOP "
trigra_tuples = tuple(nltk.trigrams(nltk.word_tokenize(sentence)))
for trigram in trigra_tuples:
line_score += ngram_p[trigram]
scores.append(line_score)
return scores
开发者ID:sunilitggu,项目名称:CS565,代码行数:27,代码来源:solutionsA.py
示例15: _count_words
def _count_words(path):
print path
word_count = defaultdict(int)
with open(path, 'r') as f:
tokens = nltk.word_tokenize(f.read().decode('utf-8').lower())
word_counts = nltk.FreqDist(tokens)
for word, count in word_counts.items():
word_count[word] = count
bigrams = nltk.bigrams(tokens)
bigram_counts = nltk.FreqDist(bigrams)
for bigram, count in bigram_counts.items():
word_count['%s %s' % bigram] = count
trigrams = nltk.trigrams(tokens)
trigram_counts = nltk.FreqDist(trigrams)
for trigram, count in trigram_counts.items():
word_count['%s %s %s' % trigram] = count
filename = path.split('/')[2]
count_date = '%s-%s-%s' % (filename.split('-')[0], filename.split('-')[1], filename.split('-')[2])
with open('data/text/counts/%s.json' % count_date, 'w') as f:
json.dump({ 'words': word_count }, f)
开发者ID:nprapps,项目名称:wh-press-briefings,代码行数:30,代码来源:data.py
示例16: get_trigrams
def get_trigrams(sentence, stopwords, porter):
words = nltk.word_tokenize(sentence)
words = [word.lower() for word in words]
words = [normalize_numeric(word) for word in words]
words = [normalize_stopword(word, stopwords) for word in words]
words = [porter.stem(word) for word in words]
return nltk.trigrams(words)
开发者ID:447327642,项目名称:nltk-examples,代码行数:7,代码来源:eval_model.py
示例17: ngramify
def ngramify(self, word_list):
"""
Tranforms word_list into unigrams, bigrams, trigrams
input:
list of words
"""
# creates an ngram from a word_list based on class settings
mode = self.mode
pos = self.inclued_pos
word = self.include_word
if word and pos:
selection = [(w.lower(), p) for w, p in word_list]
elif word:
selection = [w.lower() for w, p in word_list]
elif pos:
selection = [p for w, p in word_list]
if mode == "unigrams":
word_list = selection
elif mode == "bigrams":
word_list = nltk.bigrams(selection)
elif mode == "trigrams":
word_list = nltk.trigrams(selection)
return word_list
开发者ID:samuelclark,项目名称:semeval2013,代码行数:26,代码来源:classify.py
示例18: demo_findPOSpattern
def demo_findPOSpattern(words_tagged, num=20):
print "List the most {0} ambiguous words ...".format(num)
i = 0
data = nltk.ConditionalFreqDist(words_tagged)
for word in data.conditions():
if len(data[word]) > 3:
i += 1
tags = data[word].keys()
print word.encode('big5'), "=>", ', '.join(tags)
if i >= num: break
while True:
inp = raw_input("Enter a 3-frame pattern (example:'把 N V', 0 to exit): ")
if inp == '0': break
inp = inp.decode('big5')
P = inp.split(' ')
for (w1,t1), (w2,t2), (w3,t3) in nltk.trigrams(words_tagged):
W = (w1, w2, w3); T = (t1, t2, t3);
flag = 0
for i in range(len(W)):
if len(P[i]) == 0: break # if no input pattern then show dialog again
if ord(P[i]) < 128: # an English tag name
if T[i].startswith(P[i]): flag += 1
elif W[i] == P[i]: flag += 1
if flag == len(W):
print ', '.join(W)
开发者ID:dreampocketit,项目名称:bocard,代码行数:25,代码来源:NLTK_tools.py
示例19: calc_probabilities
def calc_probabilities(training_corpus):
unigram_c = collections.defaultdict(int)
bigram_c = collections.defaultdict(int)
trigram_c = collections.defaultdict(int)
for sentence in training_corpus:
tokens0 = sentence.strip().split()
tokens1 = tokens0 + [STOP_SYMBOL]
tokens2 = [START_SYMBOL] + tokens0 + [STOP_SYMBOL]
tokens3 = [START_SYMBOL] + [START_SYMBOL] + tokens0 + [STOP_SYMBOL]
# unigrams
for unigram in tokens1:
unigram_c[unigram] += 1
# bigrams
for bigram in nltk.bigrams(tokens2):
bigram_c[bigram] += 1
# trigrams
for trigram in nltk.trigrams(tokens3):
trigram_c[trigram] += 1
unigrams_len = sum(unigram_c.itervalues())
unigram_p = {k: math.log(float(v) / unigrams_len, 2) for k, v in unigram_c.iteritems()}
# calc P(W2|W1) = P(W2,W1) / P(W1) = C(W2,W1) / C(W1)
unigram_c[START_SYMBOL] = len(training_corpus)
bigram_p = {k: math.log(float(v) / unigram_c[k[0]], 2) for k, v in bigram_c.iteritems()}
bigram_c[(START_SYMBOL, START_SYMBOL)] = len(training_corpus)
trigram_p = {k: math.log(float(v) / bigram_c[k[:2]], 2) for k, v in trigram_c.iteritems()}
return unigram_p, bigram_p, trigram_p
开发者ID:mennanov,项目名称:nlp-coursera,代码行数:32,代码来源:solutionsA.py
示例20: get_classification
def get_classification(self, text):
text = ut.clean(text)
uni = nltk.tokenize.word_tokenize(text)
bi = nltk.bigrams (uni)
tri = nltk.trigrams (uni)
temp_lambda = self.lambda_pi
# Map to store answer to its divergence pairs
list_of_ans = dict()
for (ques, ans) in self.training_set:
fin_val = 0.0
for t in uni:
fin_val += temp_lambda[5] * (float(self.unigram_tot_dict.get(t,0))/self.len)
fin_val += temp_lambda[4] * (float(self.unigram_dict.get((ques,t),0))/len(ques))
for t in bi:
fin_val += temp_lambda[3] * (float(self.bigram_tot_dict.get(t,0))/self.unigram_tot_dict.get(t[:1],1))
fin_val += temp_lambda[2] * (float(self.bigram_dict.get((ques,t),0))/self.unigram_dict.get((ques,t[:1]),1))
for t in tri:
fin_val += temp_lambda[1] * (float(self.trigram_tot_dict.get(t,0))/self.bigram_tot_dict.get(t[:2],1))
fin_val += temp_lambda[0] * (float(self.trigram_dict.get((ques,t),0))/self.bigram_dict.get((ques,t[:2]),1))
list_of_ans[self.training_orig.get(ans, ans)] = fin_val
# Return Weighted list of responses
return list_of_ans
开发者ID:cloudbearings,项目名称:QuestCon,代码行数:33,代码来源:trainer_main.py
注:本文中的nltk.trigrams函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论