本文整理汇总了Python中nltk.corpus.stopwords.words函数的典型用法代码示例。如果您正苦于以下问题:Python words函数的具体用法?Python words怎么用?Python words使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了words函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_stopwords
def get_stopwords(include_trectext_syntax=True):
ignore_words = ['<doc>', '</doc>', '<text>', '</text>']
ignore_words.extend(stopwords.words('english'))
ignore_words.extend(stopwords.words('dutch'))
return set(ignore_words)
开发者ID:cvangysel,项目名称:embedding-utils,代码行数:7,代码来源:nltk_utils.py
示例2: find_opinions
def find_opinions(tokens, feature, feat, id):
fg = 0
for opinion in tokens:
if opinion[0] == 'advmod' or opinion[0] == 'neg':
if opinion[3].lower() in stopwords.words('english'):
continue
# endif
if feature[1:3] == opinion[1:3]:
fg = 1
modifier_set.add(opinion[3])
if id != -1:
mods[id].append(opinion[3])
feat.write(
feature[3] + ' ' + feature[1] + ' ' +
opinion[3] + '\n')
# endif
# endif
elif opinion[0] == 'dep':
if opinion[3].lower() in stopwords.words('english'):
continue
# endif
if feature[1:3] == opinion[1:3]:
opinions_set.add(opinion[3])
find_opinions(
tokens, ['nsubj', opinion[3], opinion[4], feature[3],
feature[4]], feat, -1)
# endelif
# endfor
if fg == 0:
feat.write(feature[3] + ' ' + feature[1] + '\n')
开发者ID:farhan0581,项目名称:majorProject,代码行数:32,代码来源:features.py
示例3: find_features
def find_features(tokens, feat):
i = 0
for feature in tokens:
if feature[0] == 'nsubj':
if feature[3].lower() in stopwords.words('english'):
continue
if feature[1].lower() in stopwords.words('english'):
continue
if not valid_feature(tokens, feature):
continue
# endif
mods.append([])
features_set.add(feature[3])
opinions_set.add(feature[1])
find_opinions(tokens, feature, feat, len(mods) - 1)
if i != 0:
if tokens[i - 1][0] == 'nsubj' and tokens[i - 1][3:5] == feature[3:5]:
for mod in mods[len(mods) - 2]:
if mod not in mods[len(mods) - 1]:
mods[len(mods) - 1].append(mod)
feat.write(
feature[3] + ' ' + feature[1] + ' ' + mod + '\n')
# endif
i = i + 1
开发者ID:farhan0581,项目名称:majorProject,代码行数:25,代码来源:features.py
示例4: extract_bigrams
def extract_bigrams(self, text):
text = self.remove_return_lines_and_quotes(text)
bigrams = []
st = PorterStemmer()
stop = stopwords.words('english')
more_stop_words = [
'(', ')', "'s", ',', ':', '<', '>', '.', '-', '&', '*', '...']
stop = stopwords.words('english')
stop = stop + more_stop_words
tokens = st.stem(text)
tokens = nltk.word_tokenize(tokens.lower())
tokens = [i for i in tokens if i not in stop]
tokens = [word for word in tokens if len(word) > 2]
bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
finder.apply_freq_filter(2)
top_bigrams = finder.nbest(bigram_measures.pmi, 1000)
for bg in top_bigrams:
bg = " ".join(bg)
tag = nltk.pos_tag([bg])[0]
if tag[1] not in ['VBG', 'RB', 'VB', 'VBD', 'VBN', 'VBP', 'VBZ', 'PRP', 'IN', 'DT', 'CC', 'PRP$']:
bigrams.append(tag[0])
return bigrams
开发者ID:webeng,项目名称:feature_engineering,代码行数:31,代码来源:keywords.py
示例5: clean
def clean(self, raw):
letters_only = re.sub("[^a-zA-Z#@]", " ", raw)
words = letters_only.split()
for i in range(0, len(words)):
if "#" in words[i]:
s = words[i].split('#')
words[i] = '# '.join(s)
if "@" in words[i]:
s = words[i].split('@')
words[i] = '@ '.join(s)
if "http" in words[i]:
s = words[i].split('http')
words[i]= "http".join(s)
total_stop_words = set(stopwords.words("english"))
removed_stop_words = set(stopwords.words("english")[0:20])
stop_words = total_stop_words - removed_stop_words
content_words = [w for w in words if not w in stop_words]
return " ".join(content_words)
开发者ID:jpriniski,项目名称:TwitterGatekeeping,代码行数:25,代码来源:FTAC.py
示例6: removeStopWords
def removeStopWords(tokens, lang):
filteredToken=tokens
if lang =='en':
filteredToken = [w for w in tokens if not w in stopwords.words('english')]
elif lang =='es':
filteredToken = [w for w in tokens if not w in stopwords.words('spanish')]
return filteredToken
开发者ID:thejamesmarq,项目名称:UWT-PAN,代码行数:7,代码来源:Util.py
示例7: frequencounting4Up
def frequencounting4Up(Listings):
"""
Get the keywords count and the rank of the keywords
:param Listings: the input list of tweets
:return: a list of tuple ranked by words counts
"""
MyCounter = Counter()
chars = ['.', '/', "'", '"', '?', '!', '#', '$', '%', '^', '&',
'*', '(', ')', ' - ', '_', '+', '=', '@', ':', '\\', ',',
';', '~', '`', '<', '>', '|', '[', ']', '{', '}', '-', '"', '&', 'rt']
UpdatingChars = ['&', 'rt', '', '#dctraffic', '#mdtraffic', '#vatraffic', 'amp', '-']
# This section below will filter out the common english words and punctuations from the target tweets.
for line in Listings:
if type(line) is str:
for word in line.strip().lower().split():
if PunkRemovement(word.strip().lower()) not in UpdatingChars + stopwords.words(
'english') and not word.isdigit():
if len(word) > 1:
MyCounter[PunkRemovement(word.strip().lower())] += 1
else:
for word in line.text.decode('UTF-8').strip().lower().split():
if PunkRemovement(word.strip().lower()) not in chars + stopwords.words('english'):
MyCounter[PunkRemovement(word.strip().lower())] += 1
return MyCounter.most_common()
开发者ID:DCgov,项目名称:Traffic_Tweet_analysis,代码行数:28,代码来源:Freqencycounting.py
示例8: freqgen_word
def freqgen_word(word):
connect(word)
# get english stopwords
stopen = stopwords.words('english')
stopfr = stopwords.words('french')
#stopsp = stopwords.words('spanish')
query={}
projection={"text":1}
cursor = db.Tweetfind.find(query,projection)
texts = pandas.Series(list(cursor))
tokens = []
for text in texts.values:
tokens.extend([word.lower().strip(':;,#."-\'!') for word in text['text'].split()])
filtered_tokens=[]
st = ['&',' ','it\'s','haven\'t','can\'t','don\'t','i\'m','i\'ve','i\'ll','i\'d','#','e','@','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','rt','(',')']
for word in tokens:
try:
if (not word.decode('utf-8') in stopen) and (not word.decode('utf-8') in stopfr):
if not word in st:
filtered_tokens.append(word.decode('utf-8'))
except :
pass
freq_dist = nltk.FreqDist(filtered_tokens)
print type(freq_dist)
#print freq_dist.plot(25)
return freq_dist
开发者ID:youssefmrini,项目名称:Tweets-analyses,代码行数:30,代码来源:word_freq_final.py
示例9: pre_process
def pre_process(self, text):
for i in range(len(text)):
text[i] = text[i].replace("-", " ")
word_list = text[i].encode('ascii', 'ignore').lower().split(" ")
processed_text = []
count = 0
for word in word_list:
if word in stopwords.words('english'):
continue
if re.match('@\w+', word):
continue
if re.match('#\w+', word):
continue
word = re.sub('[0-9]+', 'gotNumber', word)
word = re.sub('http(s)?.+', 'gotURL', word)
word = re.sub('[^a-zA-Z0-9]', ' ', word)
words = word.split(' ')
for w in words:
if w is not ' ' and len(w) > 1 and w not in stopwords.words('english'):
w = self.sno.stem(w)
processed_text.append(w)
count += 1
print '. ',
if count == 11:
print ''
count = 0
text[i] = processed_text
print ''
return text
开发者ID:niteshthali08,项目名称:Disaster-Notofication,代码行数:29,代码来源:data_processor.py
示例10: fuzzer
def fuzzer(localstring, dbpstring):
lwl = localstring.replace('-','').replace(',.', '').split()
lfwl = [w for w in lwl if not w in stopwords.words('english')]
dwl = dbpstring.replace('-','').split()
dfwl = [w for w in dwl if not w in stopwords.words('english')]
ratio = fuzz.token_sort_ratio(str(lfwl), str(dfwl))
return ratio
开发者ID:barmintor,项目名称:ead2rdf2solr,代码行数:7,代码来源:utils.py
示例11: clean_total_words
def clean_total_words(data):
all_text=list()
for i in range(len(data)):
all_text.append(data[i]['text'])
words=list()
for i in range(len(all_text)):
words.append(nltk.word_tokenize(all_text[i]))
wordss= list(itertools.chain.from_iterable(words))
word_after_clean=list()
for i in range(len(words)):
wordss[i]=wordss[i].lower()
stop_words = set(stopwords.words('english'))
stop_words.update(['.', ',', '"', "'", '?', '!', ':', ';', '(', ')', '[', ']', '{', '}'])
for i in range(len(wordss)):
if wordss[i] not in stop_words:
word_after_clean.append(wordss[i])
word_clean=list()
for i in range(len(word_after_clean)):
if word_after_clean[i].isalpha()==True:
word_clean.append(word_after_clean[i])
word_clea=list()
for i in range(len(word_clean)):
word_clea.append(word_clean[i].lower())
stop_words = set(stopwords.words('english'))
word_c=list()
for i in range(len(word_clea)):
if word_clea[i] not in stop_words:
word_c.append(word_clea[i])
return(word_c)
开发者ID:Chenyu-Renee,项目名称:CS289FinalProject,代码行数:29,代码来源:word_matrix.py
示例12: extract_features
def extract_features(self, article, feats, threegram_sent_ppl, fourgram_sent_ppl, fivegram_sent_ppl, sixgram_sent_ppl, index = None):
featureSet = {}
articleWords = article.replace("<s>", "").replace("</s>", "").split()
featureSet["articlelen"] = len(articleWords)
fx_words = [word for word in articleWords if word.lower() in stopwords.words('english')]
featureSet["fxwordcount"] = len(fx_words)/len(articleWords)
non_words = [word for word in articleWords if word.isalpha() != True]
featureSet["nonwordcount"] = len(non_words)/len(articleWords)
content_words = [word for word in articleWords if word.lower() not in stopwords.words('english')]
featureSet["contentwordcount"] = len(content_words)/len(articleWords)
featureSet["uniquewords"] = len(set(articleWords))/len(articleWords)
featureSet.update(feats)
try:
sents = [x for x in article.split("\n") if len(x) > 1]
ppl_five = ppl_wrangling(sents, fivegram_sent_ppl)
ppl_six = ppl_wrangling(sents, sixgram_sent_ppl)
ppl_three = ppl_wrangling(sents, threegram_sent_ppl)
ppl_four = ppl_wrangling(sents, fourgram_sent_ppl)
featureSet["ppl-5"] = ppl_five
featureSet["ppl-6"] = ppl_six
featureSet["ppl-3"] = ppl_three
featureSet["ppl-4"] = ppl_four
except:
pass
featureSet.update(self.posTags(index, article))
return featureSet
开发者ID:emilytag,项目名称:lang-stats-sp2016,代码行数:28,代码来源:RunMe.py
示例13: evaluate_html
def evaluate_html(content, html_conf):
fdist = FreqDist()
if html_conf['usehtml'] == False:
logging.info('Discarding HTML tags')
return fdist
logging.info("\tEvaluating HTML")
# try with TITLE tag
titles = re.findall("<title>[A-Za-z0-9 ]+</title>", content)
for title in titles:
root = etree.fromstring(title)
words_list = nltk.word_tokenize(re.sub('[^A-Za-z0-9 ]', ' ', root.text))
terms_list = [ x for x in words_list if x.lower() not in stopwords.words('english')]
stems = steming(terms_list)
for i in range(html_conf['title']):
fdist.update(stems)
# try with H1 tag
headers = re.findall("<h1>[A-Za-z0-9 ]+</h1>", content)
for header in headers:
root = etree.fromstring(header)
words_list = nltk.word_tokenize(re.sub('[^A-Za-z0-9 ]', ' ', root.text))
terms_list = [ x for x in words_list if x.lower() not in stopwords.words('english')]
stems = steming(terms_list)
for i in range(html_conf['h1']):
fdist.update(stems)
return fdist
开发者ID:pejotr,项目名称:doc-clustering,代码行数:31,代码来源:preprocessing.py
示例14: palavrasChaves
def palavrasChaves(self):
# fun��o da NLTK que retorna as stopwords na lingua inglesa
stopE = stopwords.words('english')
# fun��o da NLTK que retorna as stopwords na lingua portuguesa
stop = stopwords.words('portuguese')
stopS = stopwords.words('spanish')
palavrasChaves = []
textoArtigo = []
#retira pontua��es do texto e divide o texto em palavras
for i in self.titulo.lower().replace(',','').replace('.','').replace('-','').replace('(','').replace(')','').split():
#retira as stopwords da lingua portuguesa do texto do artigo que est� sendo apresentado
if i not in stop:
#retira as stopwords da lingua inglesa do texto do artigo que est� sendo apresentado
if i not in stopE:
#ignora palavras com menos de 3 caracteres. Isso � para tratar palavras, como por exemplo o verbo "�"
if i not in stopS:
if len(i) > 2:
textoArtigo.append(i)
# apresenta a frequencia de repeticoes das palavras no corpo do artigo
freq = FreqDist(textoArtigo)
# separa as quatro palavras mais frequentes
items = freq.items()[:4]
# coloca as palavras mais frequentes do texto na variavel palavrasChaves
for i in range(0,len(items)):
palavrasChaves.append(items[i][0])
return palavrasChaves
开发者ID:dienerpiske,项目名称:QSabe,代码行数:34,代码来源:models.py
示例15: word_standardize
def word_standardize(sentences):
tokens = []
sentences_st = []
for sent in sentences:
tokens.extend(word_tokenize(sent))
sentences_st.append(word_tokenize(sent))
words = tokens
st = LancasterStemmer()
words = [w.lower() for w in words]
words = [w for w in words if not w in stopwords.words('english')]
words = [w for w in words if not w in '!"#$%&\'()*+,-./:;<=>[email protected][\\]^_`{|}~']
st_words = [st.stem(w) for w in words]
sent_result = []
for sent in sentences_st:
sent = [w.lower() for w in sent]
sent = [w for w in sent if not w in stopwords.words('english')]
sent = [w for w in sent if not w in '!"#$%&\'()*+,-./:;<=>[email protected][\\]^_`{|}~']
sent_result.append(sent)
return st_words, sent_result
开发者ID:chqsark,项目名称:hightext,代码行数:25,代码来源:pullData.py
示例16: informationgaincompare
def informationgaincompare(doc, text1, text2):
text1a = tokenize(text1)
text2a = tokenize(text2)
t1 = []
t2 = []
punctpattern = re.compile(r'[,;\'"\)\(}{\[\].!\?<>=+-/*\\:]+')
for i in text1a:
if i in stopwords.words('english') or punctpattern.match(i) != None:
continue
t1.append(i)
for i in text2a:
if i in stopwords.words('english') or punctpattern.match(i) != None:
continue
t2.append(i)
doctokens = tokenize(doc)
docwords = []
for i in doctokens:
if i in stopwords.words('english') or punctpattern.match(i) != None:
continue
docwords.append(i)
count1 = 0
for i in t1:
count1 += docwords.count(i)
count2 = 0
for i in t2:
count2 +=docwords.count(i)
l = len(docwords)
p1 = float(count1)/l
p2 = float(count2)/l
return (-p1*math.log(p1), -p2*math.log(p2))
开发者ID:vandanab,项目名称:Blog2Microblog,代码行数:30,代码来源:util.py
示例17: loadQueries
def loadQueries(fileloc):
setTags=set()
global training_doc_count
global set_of_tokens
xml_data=open(fileloc,'r')
buf=xml_data.readlines()
xml_data.close()
count = 10
for line in buf:
#if count < 0:
# break
#count =count -1
#print line
match = re.search('<row(.*)Body="(.*)" OwnerUserId(.*)Title="(.*)"(.*)Tags="(.*)" Answer(.*)/>', line)
if match:
body=match.group(2)
tokens_in_body = re.findall(r"[\w-]+", body,re.UNICODE)
valid_tokens=filter(lambda x: x not in stopwords.words('english') and len(x) >= 3,tokens_in_body)
title=match.group(4)
tokens_in_title = re.findall(r"[\w-]+",title,re.UNICODE)
valid_tokens_in_title=filter(lambda x: x not in stopwords.words('english') and len(x) >= 3, tokens_in_title)
valid_tokens.extend(valid_tokens_in_title)
tags=match.group(6)
tokens_in_tags = re.findall(r"[\w-]+", tags,re.UNICODE)
valid_tags=filter(lambda x: x not in stopwords.words('english') and len(x) >= 3, tokens_in_tags)
#print valid_tokens
#print valid_tags
training_set_cluster[training_doc_count]=set(valid_tags)
for x in valid_tags:
setTags.add(x)
add_values_to_dict(valid_tokens,training_doc_count)
training_doc_count +=1
print len(main_dict)
print len(setTags)
print len(document_freq_dict)
开发者ID:M4573R,项目名称:CSCE-625-Project,代码行数:35,代码来源:KNNClassifier.py
示例18: getBOW
def getBOW():
predatelist, postdatelist = getDates()
stpwrds = stopwords.words('english')
path = './unique/posts'
stpwrds = stopwords.words("english")
idList = []
doclist = [joinpath(path, fname) for fname in listdir(path) if fname.endswith('.txt')]
count = 1
predoc = []
postdoc = []
for file in doclist:
with open(file,'r') as posts:
for line in posts:
if parser.parse(line.split('\t')[1]).date() in predatelist:
predoc.append(line.split('\t')[-1].decode('utf-8','ignore'))
elif parser.parse(line.split('\t')[1]).date() in postdatelist:
postdoc.append(line.split('\t')[-1].decode('utf-8','ignore'))
texts1 = [[word for word in document.lower().split() if word not in stpwrds] for document in predoc]
texts2 = [[word for word in document.lower().split() if word not in stpwrds] for document in postdoc]
all_tokens_pre = sum(texts1, [])
all_tokens_post = sum(texts1, [])
tokens_once1 = set(word for word in set(all_tokens_pre) if all_tokens_pre.count(word) == 1)
tokens_once2 = set(word for word in set(all_tokens_post) if all_tokens_post.count(word) == 1)
texts1 = [[word for word in text if word not in tokens_once1 and word not in stpwrds and word.isalpha()] for text in texts1]
texts2 = [[word for word in text if word not in tokens_once2 and word not in stpwrds and word.isalpha()] for text in texts2]
return texts1, texts2
开发者ID:mkumar23,项目名称:Social-media-analysis,代码行数:29,代码来源:topics.py
示例19: adapted_lesk
def adapted_lesk(context_sentence, ambiguous_word, \
pos=None, option=False,lemma=True,hyperhypo=True, \
stop=True):
"""
This function is the implementation of the Adapted Lesk algorithm,
described in Banerjee and Pederson (2002). It makes use of the lexical
items from semantically related senses within the wordnet
hierarchies and to generate more lexical items for each sense.
see www.d.umn.edu/~tpederse/Pubs/cicling2002-b.pdf
"""
# Ensure that ambiguous word is a lemma.
#ambiguous_word = lemmatize(ambiguous_word)
# Get the signatures for each synset.
ss_sign = simple_signature(ambiguous_word,lemma=True,hyperhypo=True)
#print ss_sign
for ss in ss_sign:
related_senses = list(set(ss.member_holonyms() + ss.member_meronyms() +
ss.part_meronyms() + ss.part_holonyms() +
ss.similar_tos() + ss.substance_holonyms() +
ss.substance_meronyms()))
try:
signature = list([j for j in chain(*[i.lemma_names() for i in \
related_senses]) if j not in stopwords.words('english')])
except:
signature = list([j for j in chain(*[i.lemma_names for i in \
related_senses]) if j not in stopwords.words('english')])
ss_sign[ss]+=signature
context_sentence = lemmatize_sentence(context_sentence)
best_sense = compare_overlaps(context_sentence, ss_sign)
return best_sense
开发者ID:animeshh,项目名称:Word-Sense-Disambiguation-NLP,代码行数:33,代码来源:lesk_wsd.py
示例20: remove_stopwords
def remove_stopwords(lines,method=2):
if method==0:
# using nltk stopwords
stopwords_list = set(stopwords.words("english"))
elif method==1:
# using klearn stopwords
stopwords_list = list(text.ENGLISH_STOP_WORDS)
elif method==2:
stopwords_list =list(set(stopwords.words("english") + list(text.ENGLISH_STOP_WORDS)))
else:
raise ValueError('Method value should be [0-2]')
without_sw_lines = []
# run thru all lines
for each_line in lines:
a_line_without_sw = ''
#tokenize each line
tokens = each_line.split()
# run thru all tokens
for each_token in tokens:
if each_token not in stopwords_list:
a_line_without_sw = a_line_without_sw+' '+each_token
#recreate the list all over
without_sw_lines.append(a_line_without_sw)
return without_sw_lines
开发者ID:pan-webis-de,项目名称:cobicaduarte16,代码行数:30,代码来源:preparing_module.py
注:本文中的nltk.corpus.stopwords.words函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论