本文整理汇总了Python中nltk.metrics.f_measure函数的典型用法代码示例。如果您正苦于以下问题:Python f_measure函数的具体用法?Python f_measure怎么用?Python f_measure使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了f_measure函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: validate
def validate(self, validation_set):
if self.classifier is None:
raise Exception("self.classifier is None")
reference=defaultdict(set)
observed=defaultdict(set)
observed['neutral']=set()
for i, (tweet, label) in enumerate(validation_set):
reference[label].add(i)
observation=self.classify(tweet)
observed[observation].add(i)
acc=classify.accuracy(self.classifier, observed)
posp=precision(reference['positive'],observed['positive'])
posr=recall(reference['positive'], observed['positive'])
posf=f_measure(reference['positive'], observed['positive'])
negp=precision(reference['negative'],observed['negative'])
negr=recall(reference['negative'], observed['negative'])
negf=f_measure(reference['negative'], observed['negative'])
print "accuracy: %s" % acc
print "pos precision: %s" % posp
print "pos recall: %s" % posr
print "pos f-measure: %s" % posf
print "neg precision: %s" % negp
print "neg recall: %s" % negr
print "neg f-measure: %s" % negf
return (acc, posp, posr, posf, negp, negr, negf)
开发者ID:anov,项目名称:honors,代码行数:27,代码来源:classifier.py
示例2: print_precision_recall
def print_precision_recall(classifier, test_dict):
refsets = defaultdict(set)
testsets = defaultdict(set)
for i, (feats, label) in enumerate(test_dict):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
print 'pos precision:', precision(refsets['positive'], testsets['positive'])
print 'pos recall:', recall(refsets['positive'], testsets['positive'])
print 'pos F-measure:', f_measure(refsets['positive'], testsets['positive'])
print 'neg precision:', precision(refsets['negative'], testsets['negative'])
print 'neg recall:', recall(refsets['negative'], testsets['negative'])
print 'neg F-measure:', f_measure(refsets['negative'], testsets['negative'])
开发者ID:gleicon,项目名称:sentiment_analysis,代码行数:13,代码来源:filters.py
示例3: benchmarking
def benchmarking(self, classifier,_test_set,all_f_measure=[],all_precision=[],all_recall=[]):
from nltk import classify
accuracy = classify.accuracy(classifier, _test_set)
print("accuracy:",accuracy)
from nltk.metrics import precision
from nltk.metrics import recall
from nltk.metrics import f_measure
import collections
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)
for i, (feats, label) in enumerate(_test_set):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
prec=precision(refsets['class'], testsets['class'])
rec=recall(refsets['class'], testsets['class'])
f1=f_measure(refsets['class'], testsets['class'])
print('precision:', prec)
print('recall:', rec)
print('F-measure:', f1)
all_f_measure.append(f1)
all_precision.append(prec)
all_recall.append(rec)
print('========Show top 10 most informative features========')
classifier.show_most_informative_features(10)
开发者ID:jerrygaoLondon,项目名称:oke-extractor,代码行数:30,代码来源:okeConceptRecogniser.py
示例4: eval_stats
def eval_stats(results):
'''
Compute recall, precision, and f-measure from passed results.
The expected format for results is a dictionary whose keys=<name of article>
and values=tuple (<test category>, <reference category>, <scores>), where:
test=category suggested by classifier, reference=pre-classified gold
category, scores=can be None or dictionary whose keys=category names and
values=matching score for this article.
'''
# Calculate number of correct matches
correct = 0
missed = defaultdict(tuple)
for article_name, (suggested, real, scores) in results.iteritems():
if suggested==real:
correct += 1
else:
missed[article_name] = (suggested, real)
success_ratio = correct / float(len(results))
print "Ratio: %0.3f" % success_ratio
# Print wrong matches
for name, (suggested, real) in missed.iteritems():
print "%s\t%s\t%s" % (name, suggested, real)
# Create sets of references / test classification for evaluation
cat_ref = defaultdict(set)
cat_test= defaultdict(set)
for name, (test_category, ref_category, scores) in results.iteritems():
cat_ref[ref_category].add(name) # gold-tagged categories
cat_test[test_category].add(name) # suggested categories
# Precision, recall, f-measure, support (num of reference articles in
# each category) for each category
print "\nCategory\tPrecision\tRecall\tF-measure\tSupport"
measures = defaultdict(tuple)
for category in cat_ref.keys():
cat_prec = metrics.precision(cat_ref[category], cat_test[category])
cat_rec = metrics.recall(cat_ref[category], cat_test[category])
cat_f = metrics.f_measure(cat_ref[category], cat_test[category])
cat_support = len(cat_ref[category])
measures[category] = (cat_prec, cat_rec, cat_f, cat_support)
print "%s\t%0.3f\t%0.3f\t%0.3f\t%d" % \
(category, cat_prec, cat_rec, cat_f, cat_support)
# Calculate precision, recall, f-measure for entire corpus:
# This is a weighted average of the values of separate categories
# SUM(product of all precisions, product of all supports)/sum(total number of supports)
avg_prec = weighted_average([(cat_measure[0], cat_measure[3]) for \
cat_measure in measures.values()])
avg_rec = weighted_average([(cat_measure[1], cat_measure[3]) for \
cat_measure in measures.values()])
avg_f = weighted_average([(cat_measure[2], cat_measure[3]) for \
cat_measure in measures.values()])
total_support = sum([cat_support[3] for cat_support in measures.values()])
print "%s\t%0.3f\t%0.3f\t%0.3f\t%d" % ("Total", avg_prec, avg_rec, avg_f, total_support)
开发者ID:campustimes,项目名称:pnlp-final-project,代码行数:56,代码来源:eval_class.py
示例5: evaluate_features
def evaluate_features(feature_extractor, N, only_acc=False):
from nltk.corpus import movie_reviews
from nltk.classify import NaiveBayesClassifier as naive
from nltk.classify.util import accuracy
from nltk.metrics import precision, recall, f_measure
from sys import stdout
negative = movie_reviews.fileids('neg')
positive = movie_reviews.fileids('pos')
negfeats = [(feature_extractor(movie_reviews.sents(fileids=[f])),
'neg') for f in negative]
posfeats = [(feature_extractor(movie_reviews.sents(fileids=[f])),
'pos') for f in positive]
negtrain, negtest = stratifiedSamples(negfeats, N)
postrain, postest = stratifiedSamples(posfeats, N)
trainfeats = negtrain + postrain
testfeats = negtest + postest
classifier = naive.train(trainfeats)
if only_acc: return accuracy(classifier, testfeats)
print 'accuracy: {}'.format(accuracy(classifier, testfeats))
# Precision, Recall, F-measure
from collections import defaultdict
refsets = defaultdict(set)
testsets = defaultdict(set)
for i, (feats, label) in enumerate(testfeats):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
print 'pos precision:', precision(refsets['pos'], testsets['pos'])
print 'pos recall:', recall(refsets['pos'], testsets['pos'])
print 'pos F-measure:', f_measure(refsets['pos'], testsets['pos'])
print 'neg precision:', precision(refsets['neg'], testsets['neg'])
print 'neg recall:', recall(refsets['neg'], testsets['neg'])
print 'neg F-measure:', f_measure(refsets['neg'], testsets['neg'])
stdout.flush()
classifier.show_most_informative_features()
return classifier
开发者ID:lxmonk,项目名称:nlg12_hw2,代码行数:42,代码来源:hw2.py
示例6: calcAllClassesFMeasure
def calcAllClassesFMeasure(classSet, refsets, testsets):
fSum = 0.0
denominator = 0
for category in classSet:
num = f_measure(refsets[category], testsets[category])
if num is None:
continue
fSum += num
denominator += 1
return fSum/denominator
开发者ID:peeceeprashant,项目名称:SharedTask,代码行数:11,代码来源:explicit_sense_perceptron_predict.py
示例7: word_similarity_dict
def word_similarity_dict(self, word):
"""
Return a dictionary mapping from words to 'similarity scores,'
indicating how often these two words occur in the same
context.
"""
word = self._key(word)
word_contexts = set(self._word_to_contexts[word])
scores = {}
for w, w_contexts in self._word_to_contexts.items():
scores[w] = f_measure(word_contexts, set(w_contexts))
return scores
开发者ID:prz3m,项目名称:kind2anki,代码行数:14,代码来源:text.py
示例8: measure
def measure(classifier, testfeats, alpha=0.5):
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)
for i, (feats, label) in enumerate(testfeats):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
precisions = {}
recalls = {}
f_measures = {}
for label in classifier.labels():
precisions[label] = metrics.precision(refsets[label], testsets[label])
recalls[label] = metrics.recall(refsets[label], testsets[label])
f_measures[label] = metrics.f_measure(refsets[label], testsets[label], alpha)
return precisions, recalls, f_measures
开发者ID:hitesh915,项目名称:SentimentAnalysis,代码行数:18,代码来源:sentiment.py
示例9: set
#!/usr/bin/python
import nltk
from nltk.metrics import precision, recall, f_measure
reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
test = 'DET VB VB DET NN NN NN IN DET NN'.split()
reference_set = set(reference)
test_set = set(test)
print "Precision: "
print precision(reference_set, test_set)
print "\n"
print "Recall: "
print recall(reference_set, test_set)
print "\n"
print "F_Measure: "
print f_measure(reference_set, test_set)
开发者ID:amanelis,项目名称:tweethose-nltk,代码行数:21,代码来源:nltk.metrics.py
示例10: precision
refsets, testsets = scoring.multi_ref_test_sets(classifier, test_feats)
else:
refsets, testsets = scoring.ref_test_sets(classifier, test_feats)
for label in labels:
ref = refsets[label]
test = testsets[label]
if not args.no_precision:
print '%s precision: %f' % (label, precision(ref, test) or 0)
if not args.no_recall:
print '%s recall: %f' % (label, recall(ref, test) or 0)
if not args.no_fmeasure:
print '%s f-measure: %f' % (label, f_measure(ref, test) or 0)
if args.show_most_informative and args.algorithm != 'DecisionTree' and not (args.multi and args.binary):
print '%d most informative features' % args.show_most_informative
classifier.show_most_informative_features(args.show_most_informative)
##############
## pickling ##
##############
if not args.no_pickle:
if args.filename:
fname = os.path.expanduser(args.filename)
else:
name = '%s_%s.pickle' % (args.corpus, args.algorithm)
fname = os.path.join(os.path.expanduser('~/nltk_data/classifiers'), name)
开发者ID:jrivero,项目名称:nltk-trainer,代码行数:31,代码来源:train_classifier.py
示例11: enumerate
#script to validate coding
import cPickle as pickle
import sys
from nltk.metrics import accuracy, ConfusionMatrix, precision, recall, f_measure
from collections import defaultdict
import classifier
if __name__=='__main__':
validation_pickle=sys.argv[1]
classifier_pickle=sys.argv[2]
validation_set=pickle.load(open(validation_pickle, 'rb'))
c=pickle.load(open(classifier_pickle, 'rb'))
reference=defaultdict(set)
observed=defaultdict(set)
for i, (tweet, label) in enumerate(validation_set):
reference[label].add(i)
observation=c.classify(tweet)
observed[observation].add(i)
print "accuracy: %s" % accuracy(observed, reference)
print "pos precision: %s" % precision(reference['positive'], observed['positive'])
print "pos recall: %s" % recall(reference['positive'], observed['positive'])
print "pos f-measure: %s" % f_measure(reference['positive'], observed['positive'])
print "neg precision: %s" % precision(reference['negative'], observed['negative'])
print "neg recall: %s" % recall(reference['negative'], observed['negative'])
print "neg f-measure: %s" % f_measure(reference['negative'], observed['negative'])
开发者ID:anov,项目名称:honors,代码行数:27,代码来源:validate.py
示例12: avaliate_new_classifier
def avaliate_new_classifier(featureSet):
print("Vamos treinar o classificador agora!")
print("\n")
#random.shuffle(featureSet)
#Cada um tem 197
positive_tweets = featureSet[:196]
#Misturando as paradas pra nao ficar testando só os mesmos últimos
random.shuffle(positive_tweets)
#print(featureSet[7185])
#Pra pegar 7185 do pos e 7185 do negativo mas o negativo tem 7213
negative_tweets = featureSet[196:293]
random.shuffle(negative_tweets)
neutral_tweets = featureSet[293:]
random.shuffle(neutral_tweets)
#Agora vou dividir cada classe em um conjunto de referencia e outro de teste
pos_cutoff = len(positive_tweets)*3/4
neg_cutoff = len(negative_tweets)*3/4
neu_cutoff = len(neutral_tweets)*3/4
# 75% dos tweets vao pra ser de referencia(treinamento) e o resto pra teste
pos_references = positive_tweets[:pos_cutoff]
pos_tests = positive_tweets[pos_cutoff:]
neg_references = negative_tweets[:neg_cutoff]
neg_tests = negative_tweets[neg_cutoff:]
neu_references = neutral_tweets[:neu_cutoff]
neu_tests = neutral_tweets[neu_cutoff:]
#COnjunto de treinamento e de testes pra calcular a accuracy
training_set = pos_references + neg_references + neu_references
testing_set = pos_tests + neg_tests + neu_tests
start_time = time.time()
global classifier
print("Comecou a treina-lo agora!")
#training_set2 = [(t,l) for (t,l,twe) in training_set]
classifier = nltk.NaiveBayesClassifier.train(training_set)
#testing_set2 = [(t,l) for (t,l,twe) in testing_set]
print("Naive Bayes Algo accuracy:", (nltk.classify.accuracy(classifier, testing_set)) * 100)
classifier.show_most_informative_features(30)
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)
for i, (feats, label) in enumerate(testing_set):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
print 'pos precision:', precision(refsets['pos'], testsets['pos'])
print 'pos recall:', recall(refsets['pos'], testsets['pos'])
print 'pos F-measure:', f_measure(refsets['pos'], testsets['pos'])
print 'neg precision:', precision(refsets['neg'], testsets['neg'])
print 'neg recall:', recall(refsets['neg'], testsets['neg'])
print 'neg F-measure:', f_measure(refsets['neg'], testsets['neg'])
print 'neutral precision:', precision(refsets['neutral'], testsets['neutral'])
print 'neutral recall:', recall(refsets['neutral'], testsets['neutral'])
print 'neutral F-measure:', f_measure(refsets['neutral'], testsets['neutral'])
print("--- Classifier executed in %s seconds ---" % (time.time() - start_time))
开发者ID:CarlosRafael22,项目名称:Estudos-NLTK,代码行数:72,代码来源:sentimentAnalysis.py
示例13: f_measure
def f_measure(self):
return f_measure(self._reference, self._test)
开发者ID:chloebt,项目名称:educe,代码行数:2,代码来源:showscores.py
示例14: avaliate_classifiers
def avaliate_classifiers(featureSet):
print("Vamos treinar o classificador agora!")
print("\n")
#random.shuffle(featureSet)
#Vai fazer o calculo de recall e precision
# You need to build 2 sets for each classification label:
# a reference set of correct values, and a test set of observed values.
#Os primeiros 6686 + 500(dia 14) tweets sao positivos e resto(6757 + 500(dia 14)) negativo
positive_tweets = featureSet[:7185]
#Misturando as paradas pra nao ficar testando só os mesmos últimos
random.shuffle(positive_tweets)
#print(featureSet[7185])
#Pra pegar 7185 do pos e 7185 do negativo mas o negativo tem 7213
negative_tweets = featureSet[7185:14372]
random.shuffle(negative_tweets)
#Agora vou dividir cada classe em um conjunto de referencia e outro de teste
pos_cutoff = len(positive_tweets)*3/4
neg_cutoff = len(negative_tweets)*3/4
# 75% dos tweets vao pra ser de referencia(treinamento) e o resto pra teste
pos_references = positive_tweets[:pos_cutoff]
pos_tests = positive_tweets[pos_cutoff:]
neg_references = negative_tweets[:neg_cutoff]
neg_tests = negative_tweets[neg_cutoff:]
#COnjunto de treinamento e de testes pra calcular a accuracy
training_set = pos_references + neg_references
testing_set = pos_tests + neg_tests
start_time = time.time()
global classifier
print("Comecou a treina-lo agora!")
#training_set2 = [(t,l) for (t,l,twe) in training_set]
classifier = nltk.NaiveBayesClassifier.train(training_set)
#testing_set2 = [(t,l) for (t,l,twe) in testing_set]
print("Naive Bayes Algo accuracy:", (nltk.classify.accuracy(classifier, testing_set)) * 100)
classifier.show_most_informative_features(30)
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)
# for i, (feats, label, l) in enumerate(testing_set):
# refsets[label].add(i)
# observed = classifier.classify(feats)
# testsets[observed].add(i)
# print("--"*200)
# print()
# print("Classified as: ",observed)
# print()
# print(l)
# print()
# print("--"*200)
# raw_input("Press any key to continue:")
print 'pos precision:', precision(refsets['pos'], testsets['pos'])
print 'pos recall:', recall(refsets['pos'], testsets['pos'])
print 'pos F-measure:', f_measure(refsets['pos'], testsets['pos'])
print 'neg precision:', precision(refsets['neg'], testsets['neg'])
print 'neg recall:', recall(refsets['neg'], testsets['neg'])
print 'neg F-measure:', f_measure(refsets['neg'], testsets['neg'])
print("--- Classifier executed in %s seconds ---" % (time.time() - start_time))
开发者ID:CarlosRafael22,项目名称:Estudos-NLTK,代码行数:72,代码来源:sentimentAnalysis.py
示例15: int
stop = int(len(texts) * args.fraction)
for t in texts[:stop]:
feat = bag_of_words(norm_words(t))
feats.append(feat)
test_feats.append((feat, label))
print "accuracy:", accuracy(classifier, test_feats)
refsets, testsets = scoring.ref_test_sets(classifier, test_feats)
for label in labels:
ref = refsets[label]
test = testsets[label]
print "%s precision: %f" % (label, precision(ref, test) or 0)
print "%s recall: %f" % (label, recall(ref, test) or 0)
print "%s f-measure: %f" % (label, f_measure(ref, test) or 0)
else:
if args.instances == "sents":
texts = categorized_corpus.sents()
total = len(texts)
elif args.instances == "paras":
texts = (itertools.chain(*para) for para in categorized_corpus.paras())
total = len(categorized_corpus.paras)
elif args.instances == "files":
texts = (categorized_corpus.words(fileids=[fid]) for fid in categorized_corpus.fileids())
total = len(categorized_corpus.fileids())
stop = int(total * args.fraction)
feats = (bag_of_words(norm_words(i)) for i in itertools.islice(texts, stop))
label_counts = collections.defaultdict(int)
开发者ID:berkeley-food-recommendations,项目名称:nltk-trainer,代码行数:31,代码来源:analyze_classifier_coverage.py
示例16: print
trainfeats = negfeats[:4000] + posfeats[:4000]
testfeats = negfeats[4000:] + posfeats[4000:]
print("train on %d instances, test on %d instances" % (len(trainfeats), len(testfeats)))
classifier = NaiveBayesClassifier.train(trainfeats)
refsets = collections.defaultdict(set)
testsets = collections.defaultdict(set)
for i, (feats, label) in enumerate(testfeats):
refsets[label].add(i)
observed = classifier.classify(feats)
testsets[observed].add(i)
# cross validation 3-fold
feats = negfeats + posfeats
M = math.floor(len(feats) / 3)
result = []
for n in range(3):
val_set = feats[n * M :][:M]
train_set = feats[(n + 1) * M :] + feats[: n * M]
classifier = nltk.NaiveBayesClassifier.train(train_set)
result.append("{:.4f}".format(round(nltk.classify.accuracy(classifier, val_set) * 100, 4)))
print("cross_validation:", result)
print("pos precision:", precision(refsets["pos"], testsets["pos"]))
print("pos recall:", recall(refsets["pos"], testsets["pos"]))
print("pos F-measure:", f_measure(refsets["pos"], testsets["pos"]))
print("neg precision:", precision(refsets["neg"], testsets["neg"]))
print("neg recall:", recall(refsets["neg"], testsets["neg"]))
print("neg F-measure:", f_measure(refsets["neg"], testsets["neg"]))
classifier.show_most_informative_features()
开发者ID:efrenaguilar95,项目名称:Yelp_Analyzer,代码行数:30,代码来源:nbClassifierV2.py
示例17: cross_fold
def cross_fold(instances, trainf, testf, folds=10, trace=1, metrics=True, informative=0):
if folds < 2:
raise ValueError('must have at least 3 folds')
# ensure isn't an exhaustible iterable
instances = list(instances)
# randomize so get an even distribution, in case labeled instances are
# ordered by label
random.shuffle(instances)
l = len(instances)
step = l / folds
if trace:
print('step %d over %d folds of %d instances' % (step, folds, l))
accuracies = []
precisions = collections.defaultdict(list)
recalls = collections.defaultdict(list)
f_measures = collections.defaultdict(list)
for f in range(folds):
if trace:
print('\nfold %d' % (f+1))
print('-----%s' % ('-'*len('%s' % (f+1))))
start = f * step
end = start + step
train_instances = instances[:start] + instances[end:]
test_instances = instances[start:end]
if trace:
print('training on %d:%d + %d:%d' % (0, start, end, l))
obj = trainf(train_instances)
if trace:
print('testing on %d:%d' % (start, end))
if metrics:
refsets, testsets = ref_test_sets(obj, test_instances)
for key in set(refsets.keys() + testsets.keys()):
ref = refsets[key]
test = testsets[key]
p = precision(ref, test) or 0
r = recall(ref, test) or 0
f = f_measure(ref, test) or 0
precisions[key].append(p)
recalls[key].append(r)
f_measures[key].append(f)
if trace:
print('%s precision: %f' % (key, p))
print('%s recall: %f' % (key, r))
print('%s f-measure: %f' % (key, f))
accuracy = testf(obj, test_instances)
if trace:
print('accuracy: %f' % accuracy)
accuracies.append(accuracy)
if trace and informative and hasattr(obj, 'show_most_informative_features'):
obj.show_most_informative_features(informative)
if trace:
print('\nmean and variance across folds')
print('------------------------------')
print('accuracy mean: %f' % (sum(accuracies) / folds))
print('accuracy variance: %f' % array(accuracies).var())
for key, ps in iteritems(precisions):
print('%s precision mean: %f' % (key, sum(ps) / folds))
print('%s precision variance: %f' % (key, array(ps).var()))
for key, rs in iteritems(recalls):
print('%s recall mean: %f' % (key, sum(rs) / folds))
print('%s recall variance: %f' % (key, array(rs).var()))
for key, fs in iteritems(f_measures):
print('%s f_measure mean: %f' % (key, sum(fs) / folds))
print('%s f_measure variance: %f' % (key, array(fs).var()))
return accuracies, precisions, recalls, f_measures
开发者ID:Herka,项目名称:nltk-trainer,代码行数:84,代码来源:scoring.py
示例18: ConfusionMatrix
print 'Dictionary : ', dictionary.get_name(), '\n'
print ConfusionMatrix(gold_standard,results).pp()
print 'Accuracy: ', accuracy(gold_standard,results)
for c in [0,1,-1]:
print 'Metrics for class ', c
gold = set()
test = set()
for i,x in enumerate(gold_standard):
if x == c:
gold.add(i)
for i,x in enumerate(results):
if x == c:
test.add(i)
print 'Precision: ', precision(gold, test)
print 'Recall : ', recall(gold, test)
print 'F_measure: ', f_measure(gold, test)
print '\n\n'
#################### Sentences classification ##########################
# Not reported in the paper because LIWC doesn't have neutral class
positive_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='positive')]
negative_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='negative')]
neutral_sents = [reli.words_sentence_pos(s) for s in reli.sents(polarity='neutral')]
print '#########################################################################'
print '###################### Sentences classification #########################'
print '#########################################################################'
开发者ID:Jewelryland,项目名称:STIL_LIWC_Evaluation,代码行数:31,代码来源:Experiments.py
注:本文中的nltk.metrics.f_measure函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论