本文整理汇总了Python中nltk.tokenize.punkt.PunktLanguageVars类的典型用法代码示例。如果您正苦于以下问题:Python PunktLanguageVars类的具体用法?Python PunktLanguageVars怎么用?Python PunktLanguageVars使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PunktLanguageVars类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: tokenize
def tokenize(self, string):
"""Tokenize incoming string."""
punkt = PunktLanguageVars()
generic_tokens = punkt.word_tokenize(string)
# Rewrite as an if-else block for exceptions rather than separate list comprehensions
generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'sodes' else ['si', 'audes'])] # Handle 'sodes' as a special case.
generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'sultis' else ['si', 'vultis'])] # Handle 'sultis' as a special case.
specific_tokens = []
for generic_token in generic_tokens:
is_enclitic = False
if generic_token not in self.exceptions:
for enclitic in self.enclitics:
if generic_token.endswith(enclitic):
if enclitic == 'cum':
if generic_token in self.inclusions:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
else:
specific_tokens += [generic_token]
elif enclitic == 'st':
if generic_token.endswith('ust'):
specific_tokens += [generic_token[:-len(enclitic)+1]] + ['est']
else:
# Does not handle 'similist', 'qualist', etc. correctly
specific_tokens += [generic_token[:-len(enclitic)]] + ['est']
else:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(generic_token)
return specific_tokens
开发者ID:vipul-sharma20,项目名称:cltk,代码行数:32,代码来源:word.py
示例2: nltk_tokenize_words
def nltk_tokenize_words(string, attached_period=False, language=None):
"""Wrap NLTK's tokenizer PunktLanguageVars(), but make final period
its own token.
>>> nltk_punkt("Sentence 1. Sentence 2.")
>>> ['Sentence', 'one', '.', 'Sentence', 'two', '.']
Optionally keep the NLTK's output:
>>> nltk_punkt("Sentence 1. Sentence 2.", attached_period=True)
>>> ['Sentence', 'one.', 'Sentence', 'two.']
TODO: Run some tests to determine whether there is a large penalty for
re-calling PunktLanguageVars() for each use of this function. If so, this
will need to become a class, perhaps inheriting from the PunktLanguageVars
object. Maybe integrate with WordTokenizer.
"""
assert isinstance(string, str), "Incoming string must be type str."
if language=='sanskrit':
periods = ['.', 'ред','рее']
else:
periods = ['.']
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(string)
if attached_period:
return tokens
new_tokens = []
for word in tokens:
for char in periods:
if word.endswith(char):
new_tokens.append(word[:-1])
new_tokens.append(char)
break
else:
new_tokens.append(word)
return new_tokens
开发者ID:Sarthak30,项目名称:cltk,代码行数:34,代码来源:word.py
示例3: tokenize
def tokenize(self, string):
"""Tokenize incoming string."""
#punkt = WhitespaceTokenizer()
punkt= PunktLanguageVars()
generic_tokens = punkt.word_tokenize(string)
generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
specific_tokens = []
for generic_token in generic_tokens:
is_enclitic = False
if generic_token not in self.exceptions:
for enclitic in self.enclitics:
if generic_token.endswith(enclitic):
if enclitic == 'cum':
if generic_token in self.inclusions:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
else:
specific_tokens += [generic_token]
elif enclitic == 'st':
if generic_token.endswith('ust'):
specific_tokens += [generic_token[:-len(enclitic)+1]] + ['est']
else:
# Does not handle 'similist', 'qualist', etc. correctly
specific_tokens += [generic_token[:-len(enclitic)]] + ['est']
else:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(generic_token)
#return iter(specific_tokens) #change this one into an iterator.
startPoint=0 #this is to accumulate the start point.
for item in specific_tokens:
itemLength=len(item)
yield item, startPoint, startPoint+itemLength
startPoint=startPoint+itemLength+1
开发者ID:oudalab,项目名称:sqlite-fts-python,代码行数:35,代码来源:pdb_test_oulatin.py
示例4: tokenize
def tokenize(self, string):
"""Tokenize incoming string."""
punkt = PunktLanguageVars()
generic_tokens = punkt.word_tokenize(string)
generic_tokens = [x for item in generic_tokens for x in ([item] if item != 'nec' else ['c', 'ne'])] # Handle 'nec' as a special case.
specific_tokens = []
for generic_token in generic_tokens:
is_enclitic = False
if generic_token not in self.exceptions:
for enclitic in self.enclitics:
if generic_token.endswith(enclitic):
if enclitic == 'mst':
specific_tokens += [generic_token[:-len(enclitic)+1]] + ['e'+ generic_token[-len(enclitic)+1:]]
elif enclitic == 'cum':
if generic_token in self.inclusions:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
else:
specific_tokens += [generic_token]
else:
specific_tokens += [enclitic] + [generic_token[:-len(enclitic)]]
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(generic_token)
return specific_tokens
开发者ID:ManviG,项目名称:cltk,代码行数:25,代码来源:word.py
示例5: _tokenize
def _tokenize(self, text):
"""
Use NLTK's standard tokenizer, rm punctuation.
:param text: pre-processed text
:return: tokenized text
:rtype : list
"""
sentence_tokenizer = TokenizeSentence('latin')
sentences = sentence_tokenizer.tokenize_sentences(text.lower())
sent_words = []
punkt = PunktLanguageVars()
for sentence in sentences:
words = punkt.word_tokenize(sentence)
assert isinstance(words, list)
words_new = []
for word in words:
if word not in self.punctuation or self.abbreviations or self.numbers or self.abbreviations: # pylint: disable=line-too-long
words_new.append(word)
# rm all numbers here with: re.compose(r'[09]')
sent_words.append(words_new)
return sent_words
开发者ID:Akirato,项目名称:cltk,代码行数:25,代码来源:scanner.py
示例6: tokenize
def tokenize(doc):
'''
INPUT: Document
OUTPUT: Tokenized and stemmed list of words from the document
'''
plv = PunktLanguageVars()
snowball = SnowballStemmer('english')
return [snowball.stem(word) for word in plv.word_tokenize(doc.lower())]
开发者ID:jonoleson,项目名称:PriceMyRental,代码行数:8,代码来源:featurize.py
示例7: tokenize
def tokenize(desc):
'''
INPUT: List of cleaned descriptions
OUTPUT: Tokenized and stemmed list of words from the descriptions
'''
plv = PunktLanguageVars()
snowball = SnowballStemmer('english')
return [snowball.stem(word) for word in plv.word_tokenize(desc.lower())]
开发者ID:nhu2000,项目名称:PriceHome,代码行数:8,代码来源:featurize.py
示例8: tag_ner
def tag_ner(lang, input_text, output_type=list):
"""Run NER for chosen language.
"""
_check_latest_data(lang)
assert lang in NER_DICT.keys(), \
'Invalid language. Choose from: {}'.format(', '.join(NER_DICT.keys()))
types = [str, list]
assert type(input_text) in types, 'Input must be: {}.'.format(', '.join(types))
assert output_type in types, 'Output must be a {}.'.format(', '.join(types))
if type(input_text) == str:
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(input_text)
new_tokens = []
for word in tokens:
if word.endswith('.'):
new_tokens.append(word[:-1])
new_tokens.append('.')
else:
new_tokens.append(word)
input_text = new_tokens
ner_file_path = os.path.expanduser(NER_DICT[lang])
with open(ner_file_path) as file_open:
ner_str = file_open.read()
ner_list = ner_str.split('\n')
ner_tuple_list = []
for count, word_token in enumerate(input_text):
match = False
for ner_word in ner_list:
# the replacer slows things down, but is necessary
if word_token == ner_word:
ner_tuple = (word_token, 'Entity')
ner_tuple_list.append(ner_tuple)
match = True
break
if not match:
ner_tuple_list.append((word_token,))
if output_type is str:
string = ''
for tup in ner_tuple_list:
start_space = ' '
final_space = ''
# this is some mediocre string reconstitution
# maybe not worth the effort
if tup[0] in [',', '.', ';', ':', '?', '!']:
start_space = ''
if len(tup) == 2:
string += start_space + tup[0] + '/' + tup[1] + final_space
else:
string += start_space + tup[0] + final_space
return string
return ner_tuple_list
开发者ID:cltk,项目名称:cltk,代码行数:58,代码来源:ner.py
示例9: test_latin_stopwords
def test_latin_stopwords(self):
"""Test filtering Latin stopwords."""
sentence = 'Quo usque tandem abutere, Catilina, patientia nostra?'
lowered = sentence.lower()
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(lowered)
no_stops = [w for w in tokens if w not in LATIN_STOPS]
target_list = ['usque', 'tandem', 'abutere', ',', 'catilina', ',',
'patientia', 'nostra', '?']
self.assertEqual(no_stops, target_list)
开发者ID:cltk,项目名称:cltk,代码行数:10,代码来源:test_stop.py
示例10: test_french_stopwords
def test_french_stopwords(self):
##test filtering French stopwords
sentence = "En pensé ai e en talant que d ’ Yonec vus die avant dunt il fu nez, e de sun pere cum il vint primes a sa mere ."
lowered = sentence.lower()
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(lowered)
no_stops = [w for w in tokens if w not in FRENCH_STOPS]
target_list = ['pensé', 'talant', 'd', '’', 'yonec', 'die', 'avant', 'dunt', 'nez', ',', 'pere', 'cum', 'primes',
'mere','.']
self.assertEqual(no_stops, target_list)
开发者ID:cltk,项目名称:cltk,代码行数:10,代码来源:test_stop.py
示例11: test_old_norse_stopwords
def test_old_norse_stopwords(self):
"""
Test filtering Old Norse stopwords
Sentence extracted from Eiríks saga rauða (http://www.heimskringla.no/wiki/Eir%C3%ADks_saga_rau%C3%B0a)
"""
sentence = 'Þat var einn morgin, er þeir Karlsefni sá fyrir ofan rjóðrit flekk nökkurn, sem glitraði við þeim'
lowered = sentence.lower()
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(lowered)
no_stops = [w for w in tokens if w not in OLD_NORSE_STOPS]
target_list = ['var', 'einn', 'morgin', ',', 'karlsefni', 'rjóðrit', 'flekk', 'nökkurn', ',', 'glitraði']
self.assertEqual(no_stops, target_list)
开发者ID:cltk,项目名称:cltk,代码行数:12,代码来源:test_stop.py
示例12: test_greek_stopwords
def test_greek_stopwords(self):
"""Test filtering Greek stopwords."""
sentence = 'Ἅρπαγος δὲ καταστρεψάμενος Ἰωνίην ἐποιέετο στρατηίην \
ἐπὶ Κᾶρας καὶ Καυνίους καὶ Λυκίους, ἅμα ἀγόμενος καὶ Ἴωνας καὶ \
Αἰολέας.'
lowered = sentence.lower()
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(lowered)
no_stops = [w for w in tokens if w not in GREEK_STOPS]
target_list = ['ἅρπαγος', 'καταστρεψάμενος', 'ἰωνίην', 'ἐποιέετο',
'στρατηίην', 'κᾶρας', 'καυνίους', 'λυκίους', ',',
'ἅμα', 'ἀγόμενος', 'ἴωνας', 'αἰολέας.']
self.assertEqual(no_stops, target_list)
开发者ID:cltk,项目名称:cltk,代码行数:13,代码来源:test_stop.py
示例13: lemmatize
def lemmatize(self, input_text, return_raw=False, return_string=False):
"""Take incoming string or list of tokens. Lookup done against a
key-value list of lemmata-headword. If a string, tokenize with
``PunktLanguageVars()``. If a final period appears on a token, remove
it, then re-add once replacement done.
TODO: rm check for final period, change PunktLanguageVars() to nltk_tokenize_words()
"""
assert type(input_text) in [list, str], \
logger.error('Input must be a list or string.')
if type(input_text) is str:
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(input_text)
else:
tokens = input_text
lemmatized_tokens = []
for token in tokens:
# check for final period
final_period = False
if token[-1] == '.':
final_period = True
token = token[:-1]
# look for token in lemma dict keys
if token in self.lemmata.keys():
headword = self.lemmata[token.lower()]
# re-add final period if rm'd
if final_period:
headword += '.'
# append to return list
if not return_raw:
lemmatized_tokens.append(headword)
else:
lemmatized_tokens.append(token + '/' + headword)
# if token not found in lemma-headword list
else:
# re-add final period if rm'd
if final_period:
token += '.'
if not return_raw:
lemmatized_tokens.append(token)
else:
lemmatized_tokens.append(token + '/' + token)
if not return_string:
return lemmatized_tokens
elif return_string:
return ' '.join(lemmatized_tokens)
开发者ID:Akirato,项目名称:cltk,代码行数:50,代码来源:lemma.py
示例14: test_akkadian_stopwords
def test_akkadian_stopwords(self):
"""
Test filtering Akkadian stopwrods
Sentence extracted from the law code of Hammurabi, law 3 (Martha Roth 2nd Edition 1997, Law Collections from
Mesopotamia and Asia Minor).
"""
sentence = "šumma awīlum ina dīnim ana šībūt sarrātim ūṣiamma awat iqbû la uktīn šumma dīnum šû dīn napištim awīlum šû iddâk"
lowered = sentence.lower()
punkt = PunktLanguageVars()
tokens = punkt.word_tokenize(lowered)
no_stops = [w for w in tokens if w not in AKKADIAN_STOPS]
target_list = ['awīlum', 'dīnim', 'šībūt', 'sarrātim', 'ūṣiamma', 'awat', 'iqbû', 'uktīn', 'dīnum',
'dīn', 'napištim', 'awīlum', 'iddâk']
self.assertEqual(no_stops, target_list)
开发者ID:cltk,项目名称:cltk,代码行数:14,代码来源:test_stop.py
示例15: _build_concordance
def _build_concordance(self, text_str):
"""
Inherit or mimic the logic of ConcordanceIndex() at http://www.nltk.org/_modules/nltk/text.html
and/or ConcordanceSearchView() & SearchCorpus() at https://github.com/nltk/nltk/blob/develop/nltk/app/concordance_app.py
:param text_string: Text to be turned into a concordance
:type text_string: str
:return: list
"""
p = PunktLanguageVars()
orig_tokens = p.word_tokenize(text_str)
c = ConcordanceIndex(orig_tokens)
#! rm dupes after index, before loop
tokens = set(orig_tokens)
tokens = [x for x in tokens if x not in [',', '.', ';', ':', '"', "'", '[', ']']] # this needs to be changed or rm'ed
return c.return_concordance_all(tokens)
开发者ID:Akirato,项目名称:cltk,代码行数:17,代码来源:philology.py
示例16: tokenize
def tokenize(self, string):
"""Tokenize incoming string."""
punkt = PunktLanguageVars()
generic_tokens = punkt.word_tokenize(string)
specific_tokens = []
for generic_token in generic_tokens:
is_enclitic = False
if generic_token not in self.exceptions:
for enclitic in self.enclitics:
if generic_token.endswith(enclitic):
new_tokens = [generic_token[:-len(enclitic)]] + ['-' + enclitic]
specific_tokens += new_tokens
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(generic_token)
return specific_tokens
开发者ID:paolomonella,项目名称:ursus,代码行数:18,代码来源:word.py
示例17: __init__
class Frequency:
"""Methods for making word frequency lists."""
def __init__(self):
"""Language taken as argument, necessary used when saving word frequencies to
``cltk_data/user_data``."""
self.punkt = PunktLanguageVars()
self.punctuation = [',', '.', ';', ':', '"', "'", '?', '-', '!', '*', '[', ']', '{', '}']
def counter_from_str(self, string):
"""Build word frequency list from incoming string."""
string_list = [chars for chars in string if chars not in self.punctuation]
string_joined = ''.join(string_list)
tokens = self.punkt.word_tokenize(string_joined)
return Counter(tokens)
def counter_from_corpus(self, corpus):
"""Build word frequency list from one of several available corpora.
TODO: Make this count iteratively, not all at once
"""
assert corpus in ['phi5', 'tlg'], \
"Corpus '{0}' not available. Choose from 'phi5' or 'tlg'.".format(corpus)
all_strings = self._assemble_corpus_string(corpus=corpus)
return self.counter_from_str(all_strings)
def _assemble_corpus_string(self, corpus):
"""Takes a list of filepaths, returns a string containing contents of
all files."""
if corpus == 'phi5':
filepaths = assemble_phi5_author_filepaths()
file_cleaner = phi5_plaintext_cleanup
elif corpus == 'tlg':
filepaths = assemble_tlg_author_filepaths()
file_cleaner = tlg_plaintext_cleanup
for filepath in filepaths:
with open(filepath) as file_open:
file_read = file_open.read().lower()
file_clean = file_cleaner(file_read)
yield file_clean
开发者ID:eamonnbell,项目名称:cltk,代码行数:43,代码来源:frequency.py
示例18: tokenize_latin_words
def tokenize_latin_words(string):
from cltk.tokenize.latin_exceptions import latin_exceptions
assert isinstance(string, str), "Incoming string must be type str."
def matchcase(word):
# From Python Cookbook
def replace(m):
text = m.group()
if text.isupper():
return word.upper()
elif text.islower():
return word.lower()
elif text[0].isupper():
return word.capitalize()
else:
return word
return replace
replacements = [(r'mecum', 'cum me'),
(r'tecum', 'cum te'),
(r'secum', 'cum se'),
(r'nobiscum', 'cum nobis'),
(r'vobiscum', 'cum vobis'),
(r'quocum', 'cum quo'),
(r'quacum', 'cum qua'),
(r'quicum', 'cum qui'),
(r'quibuscum', 'cum quibus'),
(r'sodes', 'si audes'),
(r'satin', 'satis ne'),
(r'scin', 'scis ne'),
(r'sultis', 'si vultis'),
(r'similist', 'similis est'),
(r'qualist', 'qualis est')
]
for replacement in replacements:
string = re.sub(replacement[0], matchcase(replacement[1]), string, flags=re.IGNORECASE)
punkt_param = PunktParameters()
abbreviations = ['c', 'l', 'm', 'p', 'q', 't', 'ti', 'sex', 'a', 'd', 'cn', 'sp', "m'", 'ser', 'ap', 'n', 'v', 'k', 'mam', 'post', 'f', 'oct', 'opet', 'paul', 'pro', 'sert', 'st', 'sta', 'v', 'vol', 'vop']
punkt_param.abbrev_types = set(abbreviations)
sent_tokenizer = PunktSentenceTokenizer(punkt_param)
word_tokenizer = PunktLanguageVars()
sents = sent_tokenizer.tokenize(string)
enclitics = ['que', 'n', 'ue', 've', 'st']
exceptions = enclitics
exceptions = list(set(exceptions + latin_exceptions))
tokens = []
for sent in sents:
temp_tokens = word_tokenizer.word_tokenize(sent)
if temp_tokens[0].endswith('ne'):
if temp_tokens[0].lower() not in exceptions:
temp = [temp_tokens[0][:-2], '-ne']
temp_tokens = temp + temp_tokens[1:]
if temp_tokens[-1].endswith('.'):
final_word = temp_tokens[-1][:-1]
del temp_tokens[-1]
temp_tokens += [final_word, '.']
for token in temp_tokens:
tokens.append(token)
# Break enclitic handling into own function?
specific_tokens = []
for token in tokens:
is_enclitic = False
if token.lower() not in exceptions:
for enclitic in enclitics:
if token.endswith(enclitic):
if enclitic == 'n':
specific_tokens += [token[:-len(enclitic)]] + ['-ne']
elif enclitic == 'st':
if token.endswith('ust'):
specific_tokens += [token[:-len(enclitic) + 1]] + ['est']
else:
specific_tokens += [token[:-len(enclitic)]] + ['est']
else:
specific_tokens += [token[:-len(enclitic)]] + ['-' + enclitic]
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(token)
return specific_tokens
开发者ID:mark-keaton,项目名称:cltk,代码行数:93,代码来源:word.py
示例19: tokenize
def tokenize(self, string):
"""Tokenize incoming string."""
def matchcase(word):
# From Python Cookbook
def replace(m):
text = m.group()
if text.isupper():
return word.upper()
elif text.islower():
return word.lower()
elif text[0].isupper():
return word.capitalize()
else:
return word
return replace
replacements = [(r'mecum', 'cum me'),
(r'tecum', 'cum te'),
(r'secum', 'cum se'),
(r'nobiscum', 'cum nobis'),
(r'vobiscum', 'cum vobis'),
(r'quocum', 'cum quo'),
(r'quacum', 'cum qua'),
(r'quicum', 'cum qui'),
(r'quibuscum', 'cum quibus'),
(r'sodes', 'si audes'),
(r'satin', 'satis ne'),
(r'scin', 'scis ne'),
(r'sultis', 'si vultis'),
(r'similist', 'similis est'),
(r'qualist', 'qualis est')
]
for replacement in replacements:
string = re.sub(replacement[0], matchcase(replacement[1]), string, flags=re.IGNORECASE)
print(string)
punkt = PunktLanguageVars()
generic_tokens = punkt.word_tokenize(string)
specific_tokens = []
for generic_token in generic_tokens:
is_enclitic = False
if generic_token.lower() not in self.exceptions:
for enclitic in self.enclitics:
if generic_token.endswith(enclitic):
if enclitic == 'n':
specific_tokens += [generic_token[:-len(enclitic)]] + ['-ne']
elif enclitic == 'st':
if generic_token.endswith('ust'):
specific_tokens += [generic_token[:-len(enclitic)+1]] + ['est']
else:
specific_tokens += [generic_token[:-len(enclitic)]] + ['est']
else:
specific_tokens += [generic_token[:-len(enclitic)]] + ['-' + enclitic]
is_enclitic = True
break
if not is_enclitic:
specific_tokens.append(generic_token)
return specific_tokens
开发者ID:jfaville,项目名称:cltk,代码行数:62,代码来源:word.py
示例20: exec
for f in docs:
#leemos cada documento
exec("file = codecs.open(datapath+'{0}.txt','r','utf-8')".format(f))
content = file.read()
file.close()
#convertimos a minusculas
content = content.lower()
#quitamos numeros y signos de puntuacion para bag of words, bigramas y trigramas
toker = RegexpTokenizer(r'\W+|(,.;)+|[0-9]+', gaps=True)
nc = toker.tokenize(content)
#dejamos solo puntuacion para representacion de signos de puntuacion
tokerPunct = RegexpTokenizer(r'[^,.;!?]+', gaps=True)
ncPunct = tokerPunct.tokenize(content)
p = PunktLanguageVars()
ncGreek = p.word_tokenize(content)
#quitamos palabras funcionales
if language=='english':
filtered_words = [w for w in nc if not w in stopwords.words('english')]
elif language=='greek':
filtered_words = [w for w in ncGreek if not w in STOPS_LIST]
#creamos un diccionario y contamos los elementos mas comunes para bag of words, bigramas y trigramas
contador = Counter(filtered_words)
#obtenemos palabras mas comunes
exec("{0}_mc = contador.most_common(num_common)".format(f))
exec("{0}_str_bow = []".format(f))
exec("{0}_num_bow = []".format(f))
开发者ID:rockdrigoma,项目名称:paulisthatyou,代码行数:31,代码来源:text2vect.py
注:本文中的nltk.tokenize.punkt.PunktLanguageVars类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论