• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python parametric_functions.convolution函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nnabla.parametric_functions.convolution函数的典型用法代码示例。如果您正苦于以下问题:Python convolution函数的具体用法?Python convolution怎么用?Python convolution使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了convolution函数的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: discriminator

def discriminator(x, maxh=256, test=False, output_hidden=False):
    """
    Building discriminator network which maps a (B, 1, 28, 28) input to
    a (B, 1).
    """
    # Define shortcut functions
    def bn(xx):
        # Batch normalization
        return PF.batch_normalization(xx, batch_stat=not test)

    def downsample2(xx, c):
        return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)

    assert maxh / 8 > 0
    with nn.parameter_scope("dis"):
        # (1, 28, 28) --> (32, 16, 16)
        with nn.parameter_scope("conv1"):
            c1 = F.elu(bn(PF.convolution(x, maxh / 8,
                                         (3, 3), pad=(3, 3), stride=(2, 2), with_bias=False)))
        # (32, 16, 16) --> (64, 8, 8)
        with nn.parameter_scope("conv2"):
            c2 = F.elu(bn(downsample2(c1, maxh / 4)))
        # (64, 8, 8) --> (128, 4, 4)
        with nn.parameter_scope("conv3"):
            c3 = F.elu(bn(downsample2(c2, maxh / 2)))
        # (128, 4, 4) --> (256, 4, 4)
        with nn.parameter_scope("conv4"):
            c4 = bn(PF.convolution(c3, maxh, (3, 3),
                                   pad=(1, 1), with_bias=False))
        # (256, 4, 4) --> (1,)
        with nn.parameter_scope("fc1"):
            f = PF.affine(c4, 1)
    if output_hidden:
        return f, [c1, c2, c3, c4]
    return f
开发者ID:zwsong,项目名称:nnabla,代码行数:35,代码来源:dcgan.py


示例2: test_save_load_parameters

def test_save_load_parameters():
    v = nn.Variable([64, 1, 28, 28], need_grad=False)
    with nn.parameter_scope("param1"):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(v, 32, (3, 3))
            b = PF.batch_normalization(h, batch_stat=True)
        with nn.parameter_scope("conv2"):
            h1 = PF.convolution(v, 32, (3, 3))
            b2 = PF.batch_normalization(h1, batch_stat=True)

    for k, v in iteritems(nn.get_parameters(grad_only=False)):
        v.data.cast(np.float32)[...] = np.random.randn(*v.shape)

    with nn.parameter_scope("param1"):
        param1 = nn.get_parameters(grad_only=False)
        nn.save_parameters("tmp.h5")
        nn.save_parameters("tmp.protobuf")

    with nn.parameter_scope("param2"):
        nn.load_parameters('tmp.h5')
        param2 = nn.get_parameters(grad_only=False)

    with nn.parameter_scope("param3"):
        nn.load_parameters('tmp.protobuf')
        param3 = nn.get_parameters(grad_only=False)

    for par2 in [param2, param3]:
        assert param1.keys() == par2.keys()  # Check order
        for (n1, p1), (n2, p2) in zip(sorted(param1.items()), sorted(par2.items())):
            assert n1 == n2
            assert np.all(p1.d == p2.d)
            assert p1.data.dtype == p2.data.dtype
            assert p1.need_grad == p2.need_grad
开发者ID:zwsong,项目名称:nnabla,代码行数:33,代码来源:test_save_load_parameters.py


示例3: res_unit

    def res_unit(x, scope_name, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
            return h
开发者ID:kzky,项目名称:works,代码行数:28,代码来源:cnn_model_060.py


示例4: res_unit

 def res_unit(x, scope):
     C = x.shape[1]
     with nn.parameter_scope(scope):
         with nn.parameter_scope('conv1'):
             h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
         with nn.parameter_scope('conv2'):
             h = F.elu(
                 bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
         with nn.parameter_scope('conv3'):
             h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
     return F.elu(F.add2(h, x, inplace=True))
开发者ID:zwsong,项目名称:nnabla,代码行数:11,代码来源:classification.py


示例5: mnist_lenet_prediction

def mnist_lenet_prediction(image, test=False):
    """
    Construct LeNet for MNIST.
    """
    image /= 255.0
    c1 = PF.convolution(image, 16, (5, 5), name='conv1')
    c1 = F.relu(F.max_pooling(c1, (2, 2)), inplace=True)
    c2 = PF.convolution(c1, 16, (5, 5), name='conv2')
    c2 = F.relu(F.max_pooling(c2, (2, 2)), inplace=True)
    c3 = F.relu(PF.affine(c2, 50, name='fc3'), inplace=True)
    c4 = PF.affine(c3, 10, name='fc4')
    return c4
开发者ID:zwsong,项目名称:nnabla,代码行数:12,代码来源:classification.py


示例6: mnist_lenet_feature

def mnist_lenet_feature(image, test=False):
    """
    Construct LeNet for MNIST.
    """
    c1 = F.elu(PF.convolution(image, 20, (5, 5), name='conv1'))
    c1 = F.average_pooling(c1, (2, 2))
    c2 = F.elu(PF.convolution(c1, 50, (5, 5), name='conv2'))
    c2 = F.average_pooling(c2, (2, 2))
    c3 = F.elu(PF.affine(c2, 500, name='fc3'))
    c4 = PF.affine(c3, 10, name='fc4')
    c5 = PF.affine(c4, 2, name='fc_embed')
    return c5
开发者ID:zwsong,项目名称:nnabla,代码行数:12,代码来源:siamese.py


示例7: cifar10_resnet23_prediction

def cifar10_resnet23_prediction(ctx, image, test=False):
    """
    Construct ResNet 23
    """
    # Residual Unit
    def res_unit(x, scope_name, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
            return h

    # Random generator for using the same init parameters in all devices
    nmaps = 64
    ncls = 10

    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
                               with_bias=False)
            h = PF.batch_normalization(h, batch_stat=not test)
            h = F.relu(h)

        h = res_unit(h, "conv2", False)    # -> 32x32
        h = res_unit(h, "conv3", True)     # -> 16x16
        h = bn_dropout(h, "bn_dropout1", test)
        h = res_unit(h, "conv4", False)    # -> 16x16
        h = res_unit(h, "conv5", True)     # -> 8x8
        h = bn_dropout(h, "bn_dropout2", test)
        h = res_unit(h, "conv6", False)    # -> 8x8
        h = res_unit(h, "conv7", True)     # -> 4x4
        h = bn_dropout(h, "bn_dropout3",  test)
        h = res_unit(h, "conv8", False)    # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
        pred = PF.affine(h, ncls)

    return pred
开发者ID:kzky,项目名称:works,代码行数:60,代码来源:cnn_model_057.py


示例8: resnet_model

def resnet_model(ctx, x, inmaps=64, act=F.relu, test=False):
    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            h = PF.convolution(x, inmaps, kernel=(3, 3), pad=(1, 1), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        
        h = res_unit(h, "conv2", act, False) # -> 32x32
        h = res_unit(h, "conv3", act, True)  # -> 16x16
        with nn.parameter_scope("bn0"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv4", act, False) # -> 16x16
        h = res_unit(h, "conv5", act, True)  # -> 8x8
        with nn.parameter_scope("bn1"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv6", act, False) # -> 8x8
        h = res_unit(h, "conv7", act, True)  # -> 4x4
        with nn.parameter_scope("bn2"):
            h = PF.batch_normalization(h, batch_stat=not test)
        if not test:
            h = F.dropout(h)
        h = res_unit(h, "conv8", act, False) # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1
        
        pred = PF.affine(h, 10)
    return pred
开发者ID:kzky,项目名称:works,代码行数:31,代码来源:cnn_model_019.py


示例9: conv_unit

def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        if act is None:
            return h
        h = PF.batch_normalization(h, batch_stat=not test)
        h = act(h)
        return h
开发者ID:kzky,项目名称:works,代码行数:8,代码来源:cnn_ae_model_000.py


示例10: test_graph_model

def test_graph_model(model, seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    nn.clear_parameters()
    if model == "mlp":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
        z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    elif model == "recurrent":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
            z2 = F.relu(z, inplace=True)
        h = z2
        for _ in range(2):
            with nn.parameter_scope('fc2'):
                h = PF.affine(h, 3)
                h = F.relu(h, inplace=True)
        with nn.parameter_scope('fc3'):
            z3 = PF.affine(h, 5)
    elif model == "convolution":
        with nn.parameter_scope('conv1'):
            z = PF.convolution(x, 3, (2, 2))
            z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
    else:
        raise ValueError()
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    L.forward(clear_no_need_grad=True)

    # Backprop
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    L.backward(clear_buffer=True)
    x.g = rng.randn(*x.shape)
    parameters = nn.get_parameters()
    for param in parameters.values():
        param.grad.zero()
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L, inputs, 1e-3)
    assert np.allclose(ngrad, agrad, atol=1.05e-2)
开发者ID:zwsong,项目名称:nnabla,代码行数:57,代码来源:test_graph.py


示例11: conv_unit

def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.prelu, test=False):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        h = PF.batch_normalization(h, batch_stat=not test)
        shape = h.shape
        w = nn.Variable()
        w.d = 0.3
        h = act(h, w)
        return h
开发者ID:kzky,项目名称:works,代码行数:9,代码来源:cnn_model_073.py


示例12: res_block

def res_block(x, scope_name, act=F.relu, dn=False, test=False):
    C = x.shape[1]
    with nn.parameter_scope(scope_name):
        # Conv -> BN -> Relu
        with nn.parameter_scope("conv1"):
            h = PF.convolution(x, C/2, kernel=(1, 1), pad=(0, 0), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        # Conv -> BN -> Relu
        with nn.parameter_scope("conv2"):
            h = PF.convolution(h, C/2, kernel=(3, 3), pad=(1, 1), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
            h = act(h)
        # Conv -> BN
        with nn.parameter_scope("conv3"): 
            h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0), with_bias=False)
            h = PF.batch_normalization(h, decay_rate=0.9, batch_stat=not test)
    return h
开发者ID:kzky,项目名称:works,代码行数:18,代码来源:cnn_model_024.py


示例13: test_graph_clear_buffer

def test_graph_clear_buffer(seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4])
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    # Network definition
    nn.set_default_context(nn.Context())
    nn.clear_parameters()
    x1 = x + 1
    x2 = x1 - 1
    with nn.parameter_scope('conv1'):
        z = PF.convolution(x2, 3, (2, 2))
        z2 = F.relu(z, inplace=True)
    with nn.parameter_scope('fc2'):
        z3 = PF.affine(z2, 5)
    l = F.softmax_cross_entropy(z3, t, 1)
    L = F.mean(l)

    # Forwardprop
    import tempfile
    import os
    tmpd = tempfile.mkdtemp()
    nn.save_parameters(os.path.join(tmpd, 'parameter.h5'))
    first = False
    for cnng in [False, True]:
        for cb in [False, True]:
            _ = nn.load_parameters(os.path.join(tmpd, 'parameter.h5'))
            for v in nn.get_parameters().values():
                v.grad.zero()
            L.forward(clear_no_need_grad=cnng)
            L.backward(clear_buffer=cb)
            if not first:
                first = True
                g = list(nn.get_parameters().values())[0].g.copy()
            else:
                g2 = list(nn.get_parameters().values())[0].g.copy()
                assert np.all(g == g2)
开发者ID:zwsong,项目名称:nnabla,代码行数:40,代码来源:test_graph.py


示例14: generator

def generator(z, maxh=256, test=False, output_hidden=False):
    """
    Building generator network which takes (B, Z, 1, 1) inputs and generates
    (B, 1, 28, 28) outputs.
    """
    # Define shortcut functions
    def bn(x):
        # Batch normalization
        return PF.batch_normalization(x, batch_stat=not test)

    def upsample2(x, c):
        # Twise upsampling with deconvolution.
        return PF.deconvolution(x, c, kernel=(4, 4), pad=(1, 1), stride=(2, 2), with_bias=False)

    assert maxh / 4 > 0
    with nn.parameter_scope("gen"):
        # (Z, 1, 1) --> (256, 4, 4)
        with nn.parameter_scope("deconv1"):
            d1 = F.elu(bn(PF.deconvolution(z, maxh, (4, 4), with_bias=False)))
        # (256, 4, 4) --> (128, 8, 8)
        with nn.parameter_scope("deconv2"):
            d2 = F.elu(bn(upsample2(d1, maxh / 2)))
        # (128, 8, 8) --> (64, 16, 16)
        with nn.parameter_scope("deconv3"):
            d3 = F.elu(bn(upsample2(d2, maxh / 4)))
        # (64, 16, 16) --> (32, 28, 28)
        with nn.parameter_scope("deconv4"):
            # Convolution with kernel=4, pad=3 and stride=2 transforms a 28 x 28 map
            # to a 16 x 16 map. Deconvolution with those parameters behaves like an
            # inverse operation, i.e. maps 16 x 16 to 28 x 28.
            d4 = F.elu(bn(PF.deconvolution(
                d3, maxh / 8, (4, 4), pad=(3, 3), stride=(2, 2), with_bias=False)))
        # (32, 28, 28) --> (1, 28, 28)
        with nn.parameter_scope("conv5"):
            x = F.tanh(PF.convolution(d4, 1, (3, 3), pad=(1, 1)))
    if output_hidden:
        return x, [d1, d2, d3, d4]
    return x
开发者ID:zwsong,项目名称:nnabla,代码行数:38,代码来源:dcgan.py


示例15: mnist_resnet_prediction

def mnist_resnet_prediction(image, test=False):
    """
    Construct ResNet for MNIST.
    """
    image /= 255.0

    def bn(x):
        return PF.batch_normalization(x, batch_stat=not test)

    def res_unit(x, scope):
        C = x.shape[1]
        with nn.parameter_scope(scope):
            with nn.parameter_scope('conv1'):
                h = F.elu(bn(PF.convolution(x, C / 2, (1, 1), with_bias=False)))
            with nn.parameter_scope('conv2'):
                h = F.elu(
                    bn(PF.convolution(h, C / 2, (3, 3), pad=(1, 1), with_bias=False)))
            with nn.parameter_scope('conv3'):
                h = bn(PF.convolution(h, C, (1, 1), with_bias=False))
        return F.elu(F.add2(h, x, inplace=True))
    # Conv1 --> 64 x 32 x 32
    with nn.parameter_scope("conv1"):
        c1 = F.elu(
            bn(PF.convolution(image, 64, (3, 3), pad=(3, 3), with_bias=False)))
    # Conv2 --> 64 x 16 x 16
    c2 = F.max_pooling(res_unit(c1, "conv2"), (2, 2))
    # Conv3 --> 64 x 8 x 8
    c3 = F.max_pooling(res_unit(c2, "conv3"), (2, 2))
    # Conv4 --> 64 x 8 x 8
    c4 = res_unit(c3, "conv4")
    # Conv5 --> 64 x 4 x 4
    c5 = F.max_pooling(res_unit(c4, "conv5"), (2, 2))
    # Conv5 --> 64 x 4 x 4
    c6 = res_unit(c5, "conv6")
    pl = F.average_pooling(c6, (4, 4))
    with nn.parameter_scope("classifier"):
        y = PF.affine(pl, 10)
    return y
开发者ID:zwsong,项目名称:nnabla,代码行数:38,代码来源:classification.py


示例16: downsample2

 def downsample2(xx, c):
     return PF.convolution(xx, c, (3, 3), pad=(1, 1), stride=(2, 2), with_bias=False)
开发者ID:zwsong,项目名称:nnabla,代码行数:2,代码来源:dcgan.py


示例17: one_by_one_conv

def one_by_one_conv(h, scope, k=1, s=1, p=1):
    with nn.parameter_scope(scope):
        maps = h.shape[1]
        h = PF.convolution(h, maps, kernel=(k, k), stride=(s, s), pad=(1, 1))
    return h
开发者ID:kzky,项目名称:works,代码行数:5,代码来源:cnn_model_025.py


示例18: cifar100_resnet23_prediction

def cifar100_resnet23_prediction(image,
                                 ctx, test=False):
    """
    Construct ResNet 23
    """
    # Residual Unit
    def res_unit(x, scope_name, rng, dn=False, test=False):
        C = x.shape[1]
        with nn.parameter_scope(scope_name):

            # Conv -> BN -> Relu
            with nn.parameter_scope("conv1"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C, C / 2, kernel=(1, 1)),
                    rng=rng)
                h = PF.convolution(x, C / 2, kernel=(1, 1), pad=(0, 0),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN -> Relu
            with nn.parameter_scope("conv2"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C / 2, C / 2, kernel=(3, 3)),
                    rng=rng)
                h = PF.convolution(h, C / 2, kernel=(3, 3), pad=(1, 1),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
                h = F.relu(h)
            # Conv -> BN
            with nn.parameter_scope("conv3"):
                w_init = UniformInitializer(
                    calc_uniform_lim_glorot(C / 2, C, kernel=(1, 1)),
                    rng=rng)
                h = PF.convolution(h, C, kernel=(1, 1), pad=(0, 0),
                                   w_init=w_init, with_bias=False)
                h = PF.batch_normalization(h, batch_stat=not test)
            # Residual -> Relu
            h = F.relu(h + x)

            # Maxpooling
            if dn:
                h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))

            return h

    # Random generator for using the same init parameters in all devices
    rng = np.random.RandomState(0)
    nmaps = 384
    ncls = 100

    # Conv -> BN -> Relu
    with nn.context_scope(ctx):
        with nn.parameter_scope("conv1"):
            # Preprocess
            if not test:

                image = F.image_augmentation(image, contrast=1.0,
                                             angle=0.25,
                                             flip_lr=True)
                image.need_grad = False

            w_init = UniformInitializer(
                calc_uniform_lim_glorot(3, nmaps, kernel=(3, 3)),
                rng=rng)
            h = PF.convolution(image, nmaps, kernel=(3, 3), pad=(1, 1),
                               w_init=w_init, with_bias=False)
            h = PF.batch_normalization(h, batch_stat=not test)
            h = F.relu(h)

        h = res_unit(h, "conv2", rng, False)    # -> 32x32
        h = res_unit(h, "conv3", rng, True)     # -> 16x16
        h = res_unit(h, "conv4", rng, False)    # -> 16x16
        h = res_unit(h, "conv5", rng, True)     # -> 8x8
        h = res_unit(h, "conv6", rng, False)    # -> 8x8
        h = res_unit(h, "conv7", rng, True)     # -> 4x4
        h = res_unit(h, "conv8", rng, False)    # -> 4x4
        h = F.average_pooling(h, kernel=(4, 4))  # -> 1x1

        w_init = UniformInitializer(
            calc_uniform_lim_glorot(int(np.prod(h.shape[1:])), ncls, kernel=(1, 1)), rng=rng)
        pred = PF.affine(h, ncls, w_init=w_init)

    return pred
开发者ID:zwsong,项目名称:nnabla,代码行数:83,代码来源:multi_device_multi_process_classification.py


示例19: conv_unit

def conv_unit(x, scope, maps, k=4, s=2, p=1, act=F.relu, test=False, cnt=0):
    with nn.parameter_scope(scope):
        h = PF.convolution(x, maps, kernel=(k, k), stride=(s, s), pad=(p, p))
        h = batch_normalization(h, test=test)
        h = act(h)
        return h
开发者ID:kzky,项目名称:works,代码行数:6,代码来源:cnn_model_015.py



注:本文中的nnabla.parametric_functions.convolution函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python ajax.ajax_answer_lazy函数代码示例发布时间:2022-05-27
下一篇:
Python parametric_functions.batch_normalization函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap