• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python lasagne.NeuralNet类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中nolearn.lasagne.NeuralNet的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet类的具体用法?Python NeuralNet怎么用?Python NeuralNet使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NeuralNet类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: lasagne_oneLayer_classifier

def lasagne_oneLayer_classifier(param, X, labels):

	## initialize the NN
	layers0 = [('input', InputLayer),
           	('dense0', DenseLayer),
           	('dropout', DropoutLayer),
           	('output', DenseLayer)]


	net0 = NeuralNet(layers=layers0,

                 	input_shape=(None, param['num_features']),
                 	dense0_num_units=param['dense0_num_units'],
                 	dropout_p=param['dropout_p'],
                 	output_num_units=param['num_classes'],
                 	output_nonlinearity=softmax,
                 
                 	update=nesterov_momentum,
                 	update_learning_rate=param['update_learning_rate'],
                 	update_momentum=param['update_momentum'],
                 
                 	eval_size=0.02,
                 	verbose=1,
                 	max_epochs=param['max_epochs'])

	## fit the results
	net0.fit(X, labels)
	
	return net0
开发者ID:huanqi,项目名称:Otto_Group_Competition,代码行数:29,代码来源:classifier.py


示例2: fit_nn_and_predict_probas

def fit_nn_and_predict_probas(features, dv, features_t):
	bwh = BestWeightsHolder()
	tvs = TrainValidSplitter(standardize=True,few=True)

	layers = [('input', InputLayer),
		   ('dense0', DenseLayer),
		   ('dropout0', DropoutLayer),
		   ('dense1', DenseLayer),
		   ('dropout1', DropoutLayer),
		   ('output', DenseLayer)]

	net = NeuralNet(layers=layers,
			input_shape=(None, features.shape[1]),
			dense0_num_units=512,
			dropout0_p=0.4,
			dense1_num_units=256,
			dropout1_p=0.4,
			output_num_units=38,
			output_nonlinearity=softmax,
			update=adagrad,
			update_learning_rate=0.02,
			train_split=tvs,
			verbose=1,
			max_epochs=40,
			on_epoch_finished=[bwh.hold_best_weights])

	holder = net.fit(features, dv)
	holder.load_params_from(bwh.best_weights)
	return holder.predict_proba(np.hstack((tvs.standa.transform(features_t[:,:23]), features_t[:,23:])))
开发者ID:matchado,项目名称:WalmartTripType,代码行数:29,代码来源:train_and_predict.py


示例3: fit_model

def fit_model(train_x, y, test_x):
    """Feed forward neural network for kaggle digit recognizer competition.
    Intentionally limit network size and optimization time (by choosing max_epochs = 15) to meet runtime restrictions
    """
    print("\n\nRunning Convetional Net.  Optimization progress below\n\n")
    net1 = NeuralNet(
        layers=[  #list the layers here
            ('input', layers.InputLayer),
            ('hidden1', layers.DenseLayer),
            ('output', layers.DenseLayer),
            ],

        # layer parameters:
        input_shape=(None, train_x.shape[1]),
        hidden1_num_units=200, hidden1_nonlinearity=rectify,  #params of first layer
        output_nonlinearity=softmax,  # softmax for classification problems
        output_num_units=10,  # 10 target values

        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=0.05,
        update_momentum=0.7,

        regression=False,
        max_epochs=10,  # Intentionally limited for execution speed
        verbose=1,
        )

    net1.fit(train_x, y)
    predictions = net1.predict(test_x)
    return(predictions)
开发者ID:huanqi,项目名称:Otto_Group_Competition,代码行数:31,代码来源:NN_Lasagne_Example_2.py


示例4: test_diamond

    def test_diamond(self, NeuralNet):
        input, hidden1, hidden2, concat, output = (
            Mock(), Mock(), Mock(), Mock(), Mock())
        nn = NeuralNet(
            layers=[
                ('input', input),
                ('hidden1', hidden1),
                ('hidden2', hidden2),
                ('concat', concat),
                ('output', output),
                ],
            input_shape=(10, 10),
            hidden2_incoming='input',
            concat_incoming=['hidden1', 'hidden2'],
            )
        nn.initialize_layers(nn.layers)

        input.assert_called_with(name='input', shape=(10, 10))
        hidden1.assert_called_with(incoming=input.return_value, name='hidden1')
        hidden2.assert_called_with(incoming=input.return_value, name='hidden2')
        concat.assert_called_with(
            incoming=[hidden1.return_value, hidden2.return_value],
            name='concat'
            )
        output.assert_called_with(incoming=concat.return_value, name='output')
开发者ID:alobrix,项目名称:Deep-Learning,代码行数:25,代码来源:test_lasagne.py


示例5: _create_nnet

    def _create_nnet(self, input_dims, output_dims, learning_rate, num_hidden_units=15, batch_size=32, max_train_epochs=1,
                     hidden_nonlinearity=nonlinearities.rectify, output_nonlinearity=None, update_method=updates.sgd):
        """
        A subclass may override this if a different sort
        of network is desired.
        """
        nnlayers = [('input', layers.InputLayer), ('hidden', layers.DenseLayer), ('output', layers.DenseLayer)]
        nnet = NeuralNet(layers=nnlayers,

                           # layer parameters:
                           input_shape=(None, input_dims),
                           hidden_num_units=num_hidden_units,
                           hidden_nonlinearity=hidden_nonlinearity,
                           output_nonlinearity=output_nonlinearity,
                           output_num_units=output_dims,

                           # optimization method:
                           update=update_method,
                           update_learning_rate=learning_rate,

                           regression=True,  # flag to indicate we're dealing with regression problem
                           max_epochs=max_train_epochs,
                           batch_iterator_train=BatchIterator(batch_size=batch_size),
                           train_split=nolearn.lasagne.TrainSplit(eval_size=0),
                           verbose=0,
                         )
        nnet.initialize()
        return nnet
开发者ID:rihardsk,项目名称:predictive-rl,代码行数:28,代码来源:cacla_agent_nolearn.py


示例6: train

def train():
    weather = load_weather()
    training = load_training()
    
    X = assemble_X(training, weather)
    print len(X[0])
    mean, std = normalize(X)
    y = assemble_y(training)
        
    input_size = len(X[0])
    
    learning_rate = theano.shared(np.float32(0.1))
    
    net = NeuralNet(
    layers=[  
        ('input', InputLayer),
         ('hidden1', DenseLayer),
        ('dropout1', DropoutLayer),
        ('hidden2', DenseLayer),
        ('dropout2', DropoutLayer),
        ('output', DenseLayer),
        ],
    # layer parameters:
    input_shape=(None, input_size), 
    hidden1_num_units=325, 
    dropout1_p=0.4,
    hidden2_num_units=325, 
    dropout2_p=0.4,
    output_nonlinearity=sigmoid, 
    output_num_units=1, 

    # optimization method:
    update=nesterov_momentum,
    update_learning_rate=learning_rate,
    update_momentum=0.9,
    
    # Decay the learning rate
    on_epoch_finished=[
            AdjustVariable(learning_rate, target=0, half_life=1),
            ],

    # This is silly, but we don't want a stratified K-Fold here
    # To compensate we need to pass in the y_tensor_type and the loss.
    regression=True,
    y_tensor_type = T.imatrix,
    objective_loss_function = binary_crossentropy,
     
    max_epochs=85, 
    eval_size=0.1,
    verbose=1,
    )

    X, y = shuffle(X, y, random_state=123)
    net.fit(X, y)
    
    _, X_valid, _, y_valid = net.train_test_split(X, y, net.eval_size)
    probas = net.predict_proba(X_valid)[:,0]
    print("ROC score", metrics.roc_auc_score(y_valid, probas))

    return net, mean, std     
开发者ID:kaiwang0112006,项目名称:mykaggle_westnile,代码行数:60,代码来源:SimpleLasagneNN.py


示例7: train

def train(x_train, y_train):
	clf_nn = NeuralNet(
		layers=[  # three layers: one hidden layer
			('input', layers.InputLayer),
			('hidden1', layers.DenseLayer),
			('hidden2', layers.DenseLayer),
			('output', layers.DenseLayer),
			],
		# layer parameters:
		input_shape=(None, 2538),  # 784 input pixels per batch
		hidden1_num_units=100,  # number of units in hidden layer
		hidden2_num_units=100,
		output_nonlinearity=nonlinearities.softmax,  # output layer uses identity function
		output_num_units=10,  # 10 target values

		# optimization method:
		update=nesterov_momentum,
		update_learning_rate=0.01,
		update_momentum=0.9,
		
		max_epochs=50,  # we want to train this many epochs
		verbose=1,
		)
	clf_nn.fit(x_train, y_train)
	return clf_nn
开发者ID:YilinGUO,项目名称:NLP,代码行数:25,代码来源:cw.py


示例8: CompileNetwork

def CompileNetwork(l_out, epochs, update, update_learning_rate, objective_l2,
				   earlystopping, patience, batch_size, verbose):
	
    update_fn = getattr(updates, update)
    earlystop = EarlyStopping(patience=patience, verbose=verbose)

    net = NeuralNet(
        l_out,
        max_epochs=epochs,
         
        update=update_fn,
        
        objective_l2=objective_l2,
        
        batch_iterator_train = BatchIterator(batch_size=batch_size),
        batch_iterator_test = BatchIterator(batch_size=batch_size),    
        verbose=verbose,
        on_training_finished = [earlystop.load_best_weights]
    )
    
    if earlystopping == True: 
        net.on_epoch_finished.append(earlystop)
    if update_learning_rate is not None: 
        net.update_learning_rate=update_learning_rate
    

    return net
开发者ID:jacobzweig,项目名称:RCNN_Toolbox,代码行数:27,代码来源:RCNN.py


示例9: test_initialization_with_tuples

    def test_initialization_with_tuples(self, NeuralNet):
        input = Mock(__name__="InputLayer", __bases__=(InputLayer,))
        hidden1, hidden2, output = [Mock(__name__="MockLayer", __bases__=(Layer,)) for i in range(3)]
        nn = NeuralNet(
            layers=[
                (input, {"shape": (10, 10), "name": "input"}),
                (hidden1, {"some": "param", "another": "param"}),
                (hidden2, {}),
                (output, {"name": "output"}),
            ],
            input_shape=(10, 10),
            mock1_some="iwin",
        )
        out = nn.initialize_layers(nn.layers)

        input.assert_called_with(name="input", shape=(10, 10))
        assert nn.layers_["input"] is input.return_value

        hidden1.assert_called_with(incoming=input.return_value, name="mock1", some="iwin", another="param")
        assert nn.layers_["mock1"] is hidden1.return_value

        hidden2.assert_called_with(incoming=hidden1.return_value, name="mock2")
        assert nn.layers_["mock2"] is hidden2.return_value

        output.assert_called_with(incoming=hidden2.return_value, name="output")

        assert out is nn.layers_["output"]
开发者ID:buyijie,项目名称:nolearn,代码行数:27,代码来源:test_base.py


示例10: train_net

def train_net(X, y):
    net2 = NeuralNet(
    layers=[
        ('input', layers.InputLayer),
        ('ncaa', NCAALayer),
        ('dropout1', layers.DropoutLayer),
        ('hidden', layers.DenseLayer),
        ('dropout2', layers.DropoutLayer),
        ('output', layers.DenseLayer),
        ],
    input_shape = (None, num_features * 2),
    ncaa_num_units = 128,
    dropout1_p=0.2,
    hidden_num_units=128,
    dropout2_p=0.3,
    output_nonlinearity=nonlinearities.sigmoid,
    output_num_units=1,

    update=nesterov_momentum,
    update_learning_rate=theano.shared(float32(0.01)),
    update_momentum=theano.shared(float32(0.9)),

    regression=True,  # flag to indicate we're dealing with regression problem
    max_epochs=20,  # we want to train this many epochs
    verbose=1,
    )

    net2.fit(X, y)
    return net2
开发者ID:stonezyl,项目名称:march-ml-mania-2015,代码行数:29,代码来源:model.py


示例11: train_network

def train_network():
    layers0 = [('input', InputLayer),
               ('dense0', DenseLayer),
               ('dropout0', DropoutLayer),
               ('dense1', DenseLayer),
               ('dropout1', DropoutLayer),
               ('dense2', DenseLayer),
               ('output', DenseLayer)]

    es = EarlyStopping(patience=200)
    net0 = NeuralNet(layers=layers0,
        input_shape=(None, num_features),
        dense0_num_units=256,
        dropout0_p=0.5,
        dense1_num_units=128,
        dropout1_p=0.5,
        dense2_num_units=64,
        output_num_units=num_classes,
        output_nonlinearity=softmax,

        update=nesterov_momentum,
        update_learning_rate=theano.shared(float32(0.01)),
        update_momentum=theano.shared(float32(0.9)),

        eval_size=0.2,
        verbose=1,
        max_epochs=1000,
        on_epoch_finished=[
            AdjustVariable('update_learning_rate', start=0.01, stop=0.0001),
            AdjustVariable('update_momentum', start=0.9, stop=0.999),
            es
            ])

    net0.fit(X, y)
    return (es.best_valid, net0)
开发者ID:Adri96,项目名称:aifh,代码行数:35,代码来源:example_otto.py


示例12: test_initialization_legacy

    def test_initialization_legacy(self, NeuralNet):
        input = Mock(__name__='InputLayer', __bases__=(InputLayer,))
        hidden1, hidden2, output = [
            Mock(__name__='MockLayer', __bases__=(Layer,)) for i in range(3)]
        nn = NeuralNet(
            layers=[
                ('input', input),
                ('hidden1', hidden1),
                ('hidden2', hidden2),
                ('output', output),
                ],
            input_shape=(10, 10),
            hidden1_some='param',
            )
        out = nn.initialize_layers(nn.layers)

        input.assert_called_with(
            name='input', shape=(10, 10))
        assert nn.layers_['input'] is input.return_value

        hidden1.assert_called_with(
            incoming=input.return_value, name='hidden1', some='param')
        assert nn.layers_['hidden1'] is hidden1.return_value

        hidden2.assert_called_with(
            incoming=hidden1.return_value, name='hidden2')
        assert nn.layers_['hidden2'] is hidden2.return_value

        output.assert_called_with(
            incoming=hidden2.return_value, name='output')

        assert out[0] is nn.layers_['output']
开发者ID:dnouri,项目名称:nolearn,代码行数:32,代码来源:test_base.py


示例13: test_diamond

    def test_diamond(self, NeuralNet):
        input = Mock(__name__='InputLayer', __bases__=(InputLayer,))
        hidden1, hidden2, concat, output = [
            Mock(__name__='MockLayer', __bases__=(Layer,)) for i in range(4)]
        nn = NeuralNet(
            layers=[
                ('input', input),
                ('hidden1', hidden1),
                ('hidden2', hidden2),
                ('concat', concat),
                ('output', output),
                ],
            input_shape=(10, 10),
            hidden2_incoming='input',
            concat_incomings=['hidden1', 'hidden2'],
            )
        nn.initialize_layers(nn.layers)

        input.assert_called_with(name='input', shape=(10, 10))
        hidden1.assert_called_with(incoming=input.return_value, name='hidden1')
        hidden2.assert_called_with(incoming=input.return_value, name='hidden2')
        concat.assert_called_with(
            incomings=[hidden1.return_value, hidden2.return_value],
            name='concat'
            )
        output.assert_called_with(incoming=concat.return_value, name='output')
开发者ID:dnouri,项目名称:nolearn,代码行数:26,代码来源:test_base.py


示例14: fit

def fit(xTrain, yTrain, dense0_num=800, dropout_p=0.5, dense1_num=500, update_learning_rate=0.01,
        update_momentum=0.9, test_ratio=0.2, max_epochs=20):
        #update_momentum=0.9, test_ratio=0.2, max_epochs=20, train_fname='train.csv'):
    #xTrain, yTrain, encoder, scaler = load_train_data(train_fname)
    #xTest, ids = load_test_data('test.csv', scaler)

    num_features = len(xTrain[0,:])
    num_classes = 9
    print num_features

    layers0 = [('input', InputLayer),
           ('dense0', DenseLayer),
           ('dropout', DropoutLayer),
           ('dense1', DenseLayer),
           ('output', DenseLayer)]

    clf = NeuralNet(layers=layers0,
                 input_shape=(None, num_features),
                 dense0_num_units=dense0_num,
                 dropout_p=dropout_p,
                 dense1_num_units=dense1_num,
                 output_num_units=num_classes,
                 output_nonlinearity=softmax,
                 update=nesterov_momentum,
                 update_learning_rate=update_learning_rate,
                 update_momentum=update_momentum,
                 eval_size=test_ratio,
                 verbose=1,
                 max_epochs=max_epochs)

    clf.fit(xTrain, yTrain)
    ll_train = metrics.log_loss(yTrain, clf.predict_proba(xTrain))
    print ll_train

    return clf
开发者ID:qi-feng,项目名称:ClassificationUsingScikitLearn,代码行数:35,代码来源:nn_otto_ensemble_v8.6.py


示例15: neural_network

def neural_network(x_train, y_train):
    X, y, encoder, scaler = load_train_data(x_train, y_train)
    num_classes = len(encoder.classes_)
    num_features = X.shape[1]
    layers0 = [
        ("input", InputLayer),
        ("dropoutf", DropoutLayer),
        ("dense0", DenseLayer),
        ("dropout", DropoutLayer),
        ("dense1", DenseLayer),
        ("dropout2", DropoutLayer),
        ("output", DenseLayer),
    ]
    net0 = NeuralNet(
        layers=layers0,
        input_shape=(None, num_features),
        dropoutf_p=0.15,
        dense0_num_units=1000,
        dropout_p=0.25,
        dense1_num_units=500,
        dropout2_p=0.25,
        output_num_units=num_classes,
        output_nonlinearity=softmax,
        update=adagrad,
        update_learning_rate=0.005,
        eval_size=0.01,
        verbose=1,
        max_epochs=30,
    )
    net0.fit(X, y)
    return (net0, scaler)
开发者ID:ctozlm,项目名称:KDDCUP15,代码行数:31,代码来源:kddcup15.py


示例16: fit

 def fit(self,tr,add_feat_tr):
      ## if trend exists, remove trend
      if self.trend ==1:
          trend = self.est_trend(tr)
          tr = tr-np.asarray(trend)
      layers0=[
           ## 2 layers with one hidden layer
           (InputLayer, {'shape': (None,8,self.window_length)}),
           (DenseLayer, {'num_units': 8*self.window_length}),
           (DropoutLayer, {'p':0.3}),
           (DenseLayer, {'num_units': 8*self.window_length/3}),
           ## the output layer
           (DenseLayer, {'num_units': 1, 'nonlinearity': None}),
      ]
      feats = build_feat(tr, add_feat_tr, window_length=self.window_length)
      print feats.shape
      feat_target = get_target(tr,window_length=self.window_length)
      print feat_target.shape
      net0 = NeuralNet(
           layers=layers0,
           max_epochs=400,
           update=nesterov_momentum,
           update_learning_rate=0.01,
           update_momentum=0.9,
           verbose=1,
           regression=True,
      )
      net0.fit(feats[:-1],feat_target)
      return net0,feats,feat_target
开发者ID:aubreychen9012,项目名称:signal-interpolation,代码行数:29,代码来源:interpolator.py


示例17: createNet

def createNet(X, Y, ln, loadFile = ""):
    net1 = NeuralNet(
        layers=[  # four layers: two hidden layers
            ('input', layers.InputLayer),
            ('hidden', layers.DenseLayer),
            ('hidden1', layers.DenseLayer),
            ('hidden2', layers.DenseLayer),
            ('hidden3', layers.DenseLayer),
            ('output', layers.DenseLayer),
            ],
        # layer parameters: Best 400 400
        input_shape=(None, numInputs),  # 31 inputs
        hidden_num_units=400,  # number of units in hidden layer
        hidden1_num_units=400,
        hidden2_num_units=400,
        hidden3_num_units=400,
        output_nonlinearity=None,  # output layer uses identity function
        output_num_units=numOutputs,  # 4 outputs
    
        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=ln,
        update_momentum=0.9,
    
        regression=True,  # flag to indicate we're dealing with regression problem
        max_epochs=1500,  # we want to train this many epochs
        verbose=1,
        )
    #if (loadFile != ""):
        #net1.load_params_from(loadFile)
    net1.max_epochs = 50
    net1.update_learning_rate = ln;

    return net1
开发者ID:tmoldwin,项目名称:NNGen,代码行数:34,代码来源:Lasagne.py


示例18: loadNet

def loadNet(netName):
    if os.path.exists(netName):
        net = pickle.load(open(netName, "rb"))
    else:
        net = NeuralNet(
            layers=[  # three layers: one hidden layer
                      ('input', layers.InputLayer),
                      ('hidden', layers.DenseLayer),
                      ('output', layers.DenseLayer),
                      ],
            # layer parameters:
            input_shape=(None, 9216),  # 96x96 input pixels per batch
            hidden_num_units=100,  # number of units in hidden layer
            output_nonlinearity=None,  # output layer uses identity function
            output_num_units=30,  # 30 target values

            # optimization method:
            update=nesterov_momentum,
            update_learning_rate=0.01,
            update_momentum=0.9,

            regression=True,  # flag to indicate we're dealing with regression problem
            max_epochs=400,  # we want to train this many epochs
            verbose=1,
        )

        X, y = load()
        net.fit(X, y)

        print("X.shape == {}; X.min == {:.3f}; X.max == {:.3f}".format(X.shape, X.min(), X.max()))
        print("y.shape == {}; y.min == {:.3f}; y.max == {:.3f}".format(y.shape, y.min(), y.max()))

        pickle.dump(net, open(netName, 'wb'), -1)

    return net
开发者ID:kanak87,项目名称:oldboy_rep,代码行数:35,代码来源:nn.py


示例19: net_fitted

    def net_fitted(self, NeuralNet, X_train, y_train):
        nn = NeuralNet(
            layers=[
                ('input', InputLayer),
                ('conv1', Conv2DLayer),
                ('conv2', Conv2DLayer),
                ('pool2', MaxPool2DLayer),
                ('output', DenseLayer),
                ],
            input_shape=(None, 1, 28, 28),
            output_num_units=10,
            output_nonlinearity=softmax,

            more_params=dict(
                conv1_filter_size=(5, 5), conv1_num_filters=16,
                conv2_filter_size=(3, 3), conv2_num_filters=16,
                pool2_pool_size=(8, 8),
                hidden1_num_units=16,
                ),

            update=nesterov_momentum,
            update_learning_rate=0.01,
            update_momentum=0.9,

            max_epochs=3,
            )

        return nn.fit(X_train, y_train)
开发者ID:aaxwaz,项目名称:nolearn,代码行数:28,代码来源:test_lasagne.py


示例20: train

    def train(self, X, y_train, X_test, ids_test, y_test, outfile, is_valid):
        X = np.array(X)
        encoder = LabelEncoder()
        y = encoder.fit_transform(y_train).astype(np.int32)
        num_classes = len(encoder.classes_)
        num_features = X.shape[1]

        layers0 = [('input', InputLayer),
           ('dense1', DenseLayer),
           ('dropout1', DropoutLayer),
           ('dense2', DenseLayer),
           ('dropout2', DropoutLayer),
           ('output', DenseLayer)]

        net0 = NeuralNet(layers=layers0,
                 input_shape=(None, num_features),
                 dense1_num_units=3500,
                 dropout1_p=0.4,
                 dense2_num_units=2300,
                 dropout2_p=0.5,
                 output_num_units=num_classes,
                 output_nonlinearity=softmax,
                 #update=nesterov_momentum,
                 update=adagrad,
                 update_learning_rate=0.01,
                 #update_momentum=0.9,
                 #objective_loss_function=softmax,
                 objective_loss_function=categorical_crossentropy,
                 eval_size=0.2,
                 verbose=1,
                 max_epochs=20)
        net0.fit(X, y)
        X_test = np.array(X_test)
        self.make_submission(net0, X_test, ids_test, encoder)
开发者ID:hustmonk,项目名称:k21,代码行数:34,代码来源:net6.py



注:本文中的nolearn.lasagne.NeuralNet类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python authz.require函数代码示例发布时间:2022-05-27
下一篇:
Python dbn.DBN类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap