本文整理汇总了Python中numpy.abs函数的典型用法代码示例。如果您正苦于以下问题:Python abs函数的具体用法?Python abs怎么用?Python abs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了abs函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: trilaterate3D
def trilaterate3D(distances2):
p1=np.array(distances2[0][:3])
p2=np.array(distances2[1][:3])
p3=np.array(distances2[2][:3])
p4=np.array(distances2[3][:3])
r1=distances2[0][-1]
r2=distances2[1][-1]
r3=distances2[2][-1]
r4=distances2[3][-1]
e_x=(p2-p1)/np.linalg.norm(p2-p1)
i=np.dot(e_x,(p3-p1))
e_y=(p3-p1-(i*e_x))/(np.linalg.norm(p3-p1-(i*e_x)))
e_z=np.cross(e_x,e_y)
d=np.linalg.norm(p2-p1)
j=np.dot(e_y,(p3-p1))
x=((r1**2)-(r2**2)+(d**2))/(2*d)
y=(((r1**2)-(r3**2)+(i**2)+(j**2))/(2*j))-((i/j)*(x))
z1=np.sqrt(r1**2-x**2-y**2)
z2=np.sqrt(r1**2-x**2-y**2)*(-1)
ans1=p1+(x*e_x)+(y*e_y)+(z1*e_z)
ans2=p1+(x*e_x)+(y*e_y)+(z2*e_z)
dist1=np.linalg.norm(p4-ans1)
dist2=np.linalg.norm(p4-ans2)
if np.abs(r4-dist1)<np.abs(r4-dist2):
return ans1
else:
return ans2
开发者ID:fatihyazici,项目名称:Python,代码行数:27,代码来源:uwb+seri+port.py
示例2: check_vpd_ks2_astrometry
def check_vpd_ks2_astrometry():
"""
Check the VPD and quiver plots for our KS2-extracted, re-transformed astrometry.
"""
catFile = workDir + '20.KS2_PMA/wd1_catalog.fits'
tab = atpy.Table(catFile)
good = (tab.xe_160 < 0.05) & (tab.ye_160 < 0.05) & \
(tab.xe_814 < 0.05) & (tab.ye_814 < 0.05) & \
(tab.me_814 < 0.05) & (tab.me_160 < 0.05)
tab2 = tab.where(good)
dx = (tab2.x_160 - tab2.x_814) * ast.scale['WFC'] * 1e3
dy = (tab2.y_160 - tab2.y_814) * ast.scale['WFC'] * 1e3
py.clf()
q = py.quiver(tab2.x_814, tab2.y_814, dx, dy, scale=5e2)
py.quiverkey(q, 0.95, 0.85, 5, '5 mas', color='red', labelcolor='red')
py.savefig(workDir + '20.KS2_PMA/vec_diffs_ks2_all.png')
py.clf()
py.plot(dy, dx, 'k.', ms=2)
lim = 30
py.axis([-lim, lim, -lim, lim])
py.xlabel('Y Proper Motion (mas)')
py.ylabel('X Proper Motion (mas)')
py.savefig(workDir + '20.KS2_PMA/vpd_ks2_all.png')
idx = np.where((np.abs(dx) < 10) & (np.abs(dy) < 10))[0]
print('Cluster Members (within dx < 10 mas and dy < 10 mas)')
print((' dx = {dx:6.2f} +/- {dxe:6.2f} mas'.format(dx=dx[idx].mean(),
dxe=dx[idx].std())))
print((' dy = {dy:6.2f} +/- {dye:6.2f} mas'.format(dy=dy[idx].mean(),
dye=dy[idx].std())))
开发者ID:jluastro,项目名称:JLU-python-code,代码行数:35,代码来源:reduce_2014_02_25.py
示例3: cada_torrilhon_limiter
def cada_torrilhon_limiter(r,cfl,epsilon=1.0e-3):
r"""
Cada-Torrilhon modified
Additional Input:
- *epsilon* =
"""
a = np.ones((2,len(r))) * 0.95
b = np.empty((3,len(r)))
a[0,:] = cfl
cfl = np.min(a)
a[1,:] = 0.05
cfl = np.max(a)
# Multiply all parts except b[0,:] by (1.0 - epsilon) as well
b[0,:] = 1.0 + (1+cfl) / 3.0 * (r - 1)
b[1,:] = 2.0 * np.abs(r) / (cfl + epsilon)
b[2,:] = (8.0 - 2.0 * cfl) / (np.abs(r) * (cfl - 1.0 - epsilon)**2)
b[1,::2] *= (1.0 - epsilon)
a[0,:] = np.min(b)
a[1,:] = (-2.0 * (cfl**2 - 3.0 * cfl + 8.0) * (1.0-epsilon)
/ (np.abs(r) * (cfl**3 - cfl**2 - cfl + 1.0 + epsilon)))
return np.max(a)
开发者ID:tareqmalas,项目名称:pyclaw,代码行数:25,代码来源:tvd.py
示例4: diamond
def diamond(radius, dtype=np.uint8):
"""
Generates a flat, diamond-shaped structuring element of a given
radius. A pixel is part of the neighborhood (i.e. labeled 1) if
the city block/manhattan distance between it and the center of the
neighborhood is no greater than radius.
Parameters
----------
radius : int
The radius of the diamond-shaped structuring element.
Other Parameters
----------------
dtype : data-type
The data type of the structuring element.
Returns
-------
selem : ndarray
The structuring element where elements of the neighborhood
are 1 and 0 otherwise.
"""
half = radius
(I, J) = np.meshgrid(range(0, radius * 2 + 1), range(0, radius * 2 + 1))
s = np.abs(I - half) + np.abs(J - half)
return np.array(s <= radius, dtype=dtype)
开发者ID:alfonsodiecko,项目名称:PYTHON_DIST,代码行数:28,代码来源:selem.py
示例5: zplane
def zplane(self, title="", fontsize=18):
""" Display filter in the complex plane
Parameters
----------
"""
rb = self.z
ra = self.p
t = np.arange(0, 2 * np.pi + 0.1, 0.1)
plt.plot(np.cos(t), np.sin(t), "k")
plt.plot(np.real(ra), np.imag(ra), "x", color="r")
plt.plot(np.real(rb), np.imag(rb), "o", color="b")
M1 = -10000
M2 = -10000
if len(ra) > 0:
M1 = np.max([np.abs(np.real(ra)), np.abs(np.imag(ra))])
if len(rb) > 0:
M2 = np.max([np.abs(np.real(rb)), np.abs(np.imag(rb))])
M = 1.6 * max(1.2, M1, M2)
plt.axis([-M, M, -0.7 * M, 0.7 * M])
plt.title(title, fontsize=fontsize)
plt.show()
开发者ID:tattoxcm,项目名称:pylayers,代码行数:25,代码来源:DF.py
示例6: getOmega
def getOmega(dels):
# for k in range(1,dels.delta_d.shape[0])
N = dels.delta_d.shape[1]
delta_t = dels.delta_t
delta_d = dels.delta_d
a_t = np.diff(delta_t)
a_t = a_t[:,0:-1]
a_d = np.diff(delta_t[:,::-1])
a_d = a_d[:,::-1]
a_d = a_d[:,1::]
b_t = np.diff(delta_d)
b_t = b_t[:,0:-1]
b_d = np.diff(delta_d[:,::-1])
b_d = b_d[:,::-1]
b_d = b_d[:,1::]
c_t = 0.25*(np.abs(a_t)+np.abs(b_t))*np.sign(a_t)*np.sign(b_t)*(np.sign(a_t)*np.sign(b_t)-1)
c_d = 0.25*(np.abs(a_d)+np.abs(b_d))*np.sign(a_d)*np.sign(b_d)*(np.sign(a_d)*np.sign(b_d)-1)
Omega = 1.0/(2*N)*(c_t.mean(axis=0) + c_d.mean(axis=0))
return Omega
开发者ID:oewhien,项目名称:Python-Collection,代码行数:25,代码来源:Huett_stoch_res_basics.py
示例7: test_surface_evaluate
def test_surface_evaluate(self):
from sfepy.discrete import FieldVariable
problem = self.problem
us = problem.get_variables()['us']
vec = nm.empty(us.n_dof, dtype=us.dtype)
vec[:] = 1.0
us.set_data(vec)
expr = 'ev_surface_integrate.i.Left( us )'
val = problem.evaluate(expr, us=us)
ok1 = nm.abs(val - 1.0) < 1e-15
self.report('with unknown: %s, value: %s, ok: %s'
% (expr, val, ok1))
ps1 = FieldVariable('ps1', 'parameter', us.get_field(),
primary_var_name='(set-to-None)')
ps1.set_data(vec)
expr = 'ev_surface_integrate.i.Left( ps1 )'
val = problem.evaluate(expr, ps1=ps1)
ok2 = nm.abs(val - 1.0) < 1e-15
self.report('with parameter: %s, value: %s, ok: %s'
% (expr, val, ok2))
ok2 = True
return ok1 and ok2
开发者ID:Gkdnz,项目名称:sfepy,代码行数:27,代码来源:test_term_consistency.py
示例8: evolve
def evolve(part, logLstar):
q = part.params2q(part.params) # normalized array of thawed parameters
n = len(q)
qprime = copy.copy(q)
m = g.masses[g.thawedIdxs]
for t in range(g.T):
dq = part.stepsize * np.random.randn(n) / m
dq[np.abs(dq)>g.maxStep] = g.maxStep
dq[np.abs(dq)<g.minStep] = g.minStep
qprime += dq
# bounce if out of bounds:
if part.outOfBounds(qprime):
qprime = bounce(qprime)
# check likelihood constraint:
logL = part.measLoglike(qprime)
if logL < logLstar:
part.reject()
#print (logL, 'r', part.stepsize, qprime)
else:
part.accept(qprime)
part.distance += np.linalg.norm(dq)
#print (logL, 'a', part.stepsize, qprime)
print '\ntraveled %.6f \n' % part.distance
开发者ID:jmrv,项目名称:nest,代码行数:28,代码来源:cmc.py
示例9: _gpinv
def _gpinv(p, k, sigma):
"""Inverse Generalized Pareto distribution function"""
x = np.full_like(p, np.nan)
if sigma <= 0:
return x
ok = (p > 0) & (p < 1)
if np.all(ok):
if np.abs(k) < np.finfo(float).eps:
x = - np.log1p(-p)
else:
x = np.expm1(-k * np.log1p(-p)) / k
x *= sigma
else:
if np.abs(k) < np.finfo(float).eps:
x[ok] = - np.log1p(-p[ok])
else:
x[ok] = np.expm1(-k * np.log1p(-p[ok])) / k
x *= sigma
x[p == 0] = 0
if k >= 0:
x[p == 1] = np.inf
else:
x[p == 1] = - sigma / k
return x
开发者ID:zaxtax,项目名称:pymc3,代码行数:25,代码来源:stats.py
示例10: connect_edges
def connect_edges(self):
"""Connect detected edges based on their slopes."""
# Fitting a straight line to each edge.
p0 = [0., 0.]
radian2angle = 180. / np.pi
for edge in self.edges:
p1, s = leastsq(self.residuals, p0,
args=(edge['x'][:-1], edge['y'][:-1]))
edge['slope'] = p1[0]
edge['intercept'] = p1[1]
edge['slope_angle'] = np.arctan(edge['slope']) * radian2angle
# Connect by the slopes of two edges.
len_edges = len(self.edges)
for i in range(len_edges - 1):
for j in range(i + 1, len_edges):
if np.abs(self.edges[i]['slope_angle'] -
self.edges[j]['slope_angle']) <= \
self.connectivity_angle:
# Then, the slope between the centers of the two edges
# should be similar with the slopes of
# the two lines of the edges as well.
c_slope = (self.edges[i]['y_center'] -
self.edges[j]['y_center']) / \
(self.edges[i]['x_center'] -
self.edges[j]['x_center'])
c_slope_angle = np.arctan(c_slope) * radian2angle
if np.abs(c_slope_angle - self.edges[i]['slope_angle']) <= \
self.connectivity_angle and \
np.abs(c_slope_angle - self.edges[j]['slope_angle']) <= \
self.connectivity_angle:
self.edges[i]['connectivity'] = self.edges[j]['index']
break
开发者ID:dwkim78,项目名称:ASTRiDE,代码行数:34,代码来源:edge.py
示例11: t2smap
def t2smap(catd,mask,tes):
"""
t2smap(catd,mask,tes)
Input:
catd has shape (nx,ny,nz,Ne,nt)
mask has shape (nx,ny,nz)
tes is a 1d numpy array
"""
nx,ny,nz,Ne,nt = catd.shape
N = nx*ny*nz
echodata = fmask(catd,mask)
Nm = echodata.shape[0]
#Do Log Linear fit
B = np.reshape(np.abs(echodata), (Nm,Ne*nt)).transpose()
B = np.log(B)
x = np.array([np.ones(Ne),-tes])
X = np.tile(x,(1,nt))
X = np.sort(X)[:,::-1].transpose()
beta,res,rank,sing = np.linalg.lstsq(X,B)
t2s = 1/beta[1,:].transpose()
s0 = np.exp(beta[0,:]).transpose()
#Goodness of fit
alpha = (np.abs(B)**2).sum(axis=0)
t2s_fit = blah = (alpha - res)/(2*res)
out = unmask(t2s,mask),unmask(s0,mask),unmask(t2s_fit,mask)
return out
开发者ID:manfredg,项目名称:MEICA-BMU,代码行数:34,代码来源:tedana.py
示例12: plot_robots_ratio_time_micmac
def plot_robots_ratio_time_micmac(deploy_robots_mic, deploy_robots_mac, deploy_robots_desired, delta_t):
plot_option = 0 # 0: ratio, 1: cost
num_iter = deploy_robots_mic.shape[1]
total_num_robots = np.sum(deploy_robots_mic[:,0,:])
diffmic_sqs = np.zeros(num_iter)
diffmac_sqs = np.zeros(num_iter)
diffmic_rat = np.zeros(num_iter)
diffmac_rat = np.zeros(num_iter)
for t in range(num_iter):
diffmic = np.abs(deploy_robots_mic[:,t,:] - deploy_robots_desired)
diffmac = np.abs(deploy_robots_mac[:,t,:] - deploy_robots_desired)
diffmic_rat[t] = np.sum(diffmic) / total_num_robots
diffmic_sqs[t] = np.sum(np.square(diffmic))
diffmac_rat[t] = np.sum(diffmac) / total_num_robots
diffmac_sqs[t] = np.sum(np.square(diffmac))
x = np.arange(0, num_iter) * delta_t
if(plot_option==0):
l1 = plt.plot(x,diffmic_rat)
l2 = plt.plot(x,diffmac_rat)
if(plot_option==1):
l1 = plt.plot(x,diffmic_sqs)
l2 = plt.plot(x,diffmac_sqs)
plt.xlabel('time [s]')
plt.ylabel('ratio of misplaced robots')
plt.legend((l1, l2),('Micro','Macro'))
plt.show()
开发者ID:proroka,项目名称:diversity,代码行数:29,代码来源:funcdef_util_heterogeneous.py
示例13: update
def update(self):
logging.debug("About to extract features for %d trips " % (len(self.trips)))
trip_features, labels = self.extract_features()
logging.debug("trip_features.size() = %s, nTrips = %d " % (trip_features.size, len(self.trips)))
#TODO: why the hell is this happening..? absurd feature extraction
trip_features = np.nan_to_num(trip_features)
trip_features[np.abs(trip_features) < .001] = 0
trip_features[np.abs(trip_features) > 1000000] = 0
nonzero = ~np.all(trip_features==0, axis=1)
logging.debug("nonzero list = %s" % nonzero)
trip_features = trip_features[nonzero]
labels = labels[nonzero]
# logging.debug("Trip Features: %s" % trip_features)
try:
self.regression.fit(trip_features, labels)
self.coefficients = self.regression.coef_
self.save_coefficients()
except ValueError as e:
logging.warning("While fitting the regression, got error %s" % e)
if ("%s" % e) == "The number of classes has to be greater than one":
logging.warning("Training set has no alternatives!")
raise e
# else:
# np.save("/tmp/broken_array", trip_features)
# raise e
'''
开发者ID:e-mission,项目名称:e-mission-server,代码行数:27,代码来源:user_utility_model.py
示例14: savgol
def savgol(x, window_size=3, order=2, deriv=0, rate=1):
''' Savitzky-Golay filter '''
# Check the input
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size > len(x):
raise TypeError("Not enough data points!")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 1:
raise TypeError("window_size is too small for the polynomials order")
if order <= deriv:
raise TypeError("The 'deriv' of the polynomial is too high.")
# Calculate some required parameters
order_range = range(order+1)
half_window = (window_size -1) // 2
num_data = len(x)
# Construct Vandermonde matrix, its inverse, and the Savitzky-Golay coefficients
a = [[ii**jj for jj in order_range] for ii in range(-half_window, half_window+1)]
pa = np.linalg.pinv(a)
sg_coeff = pa[deriv] * rate**deriv * scipy.special.factorial(deriv)
# Get the coefficients for the fits at the beginning and at the end of the data
coefs = np.array(order_range)**np.sign(deriv)
coef_mat = np.zeros((order+1, order+1))
row = 0
for ii in range(deriv,order+1):
coef = coefs[ii]
for jj in range(1,deriv):
coef *= (coefs[ii]-jj)
coef_mat[row,row+deriv]=coef
row += 1
coef_mat *= rate**deriv
# Add the first and last point half_window times
firstvals = np.ones(half_window) * x[0]
lastvals = np.ones(half_window) * x[-1]
x_calc = np.concatenate((firstvals, x, lastvals))
y = np.convolve( sg_coeff[::-1], x_calc, mode='full')
# chop away intermediate data
y = y[window_size-1:window_size+num_data-1]
# filtering for the first and last few datapoints
y[0:half_window] = np.dot(np.dot(np.dot(a[0:half_window], coef_mat), \
np.mat(pa)), x[0:window_size])
y[len(y)-half_window:len(y)] = np.dot(np.dot(np.dot(a[half_window+1:window_size], \
coef_mat), pa), x[len(x)-window_size:len(x)])
return y
开发者ID:freepanda,项目名称:Hyperlapse,代码行数:58,代码来源:savitzky_golay_filter.py
示例15: isparallel
def isparallel(O1,O2):
'''
Judge whether two array-like vectors are parallel to each other.
Parameters
----------
O1,O2 : 1d array-like
The input vectors.
Returns
-------
int
* 0: not parallel
* 1: parallel
* -1: anti-parallel
'''
norm1=nl.norm(O1)
norm2=nl.norm(O2)
if norm1<RZERO or norm2<RZERO:
return 1
elif O1.shape[0]==O2.shape[0]:
buff=np.inner(O1,O2)/(norm1*norm2)
if np.abs(buff-1)<RZERO:
return 1
elif np.abs(buff+1)<RZERO:
return -1
else:
return 0
else:
raise ValueError("isparallel error: the shape of the array-like vectors does not match.")
开发者ID:waltergu,项目名称:HamiltonianPy,代码行数:30,代码来源:Geometry.py
示例16: _beam_map_single
def _beam_map_single(self, bl_index, f_index):
p_stokes = [ 0.5 * np.array([[1.0, 0.0], [0.0, 1.0]]),
0.5 * np.array([[1.0, 0.0], [0.0, -1.0]]),
0.5 * np.array([[0.0, 1.0], [1.0, 0.0]]),
0.5 * np.array([[0.0, -1.0J], [1.0J, 0.0]]) ]
# Get beam maps for each feed.
feedi, feedj = self.uniquepairs[bl_index]
beami, beamj = self.beam(feedi, f_index), self.beam(feedj, f_index)
# Get baseline separation and fringe map.
uv = self.baselines[bl_index] / self.wavelengths[f_index]
fringe = visibility.fringe(self._angpos, self.zenith, uv)
pow_stokes = [ np.sum(beami * np.dot(beamj.conjugate(), polproj), axis=1) * self._horizon for polproj in p_stokes]
# Calculate the solid angle of each beam
pxarea = (4*np.pi / beami.shape[0])
om_i = np.sum(np.abs(beami)**2 * self._horizon[:, np.newaxis]) * pxarea
om_j = np.sum(np.abs(beamj)**2 * self._horizon[:, np.newaxis]) * pxarea
omega_A = (om_i * om_j)**0.5
# Calculate the complex visibility transfer function
cv_stokes = [ p * (2 * fringe / omega_A) for p in pow_stokes ]
return cv_stokes
开发者ID:TianlaiProject,项目名称:tlpipe,代码行数:29,代码来源:telescope.py
示例17: plot_marginal_pdfs
def plot_marginal_pdfs( res, nbins=101, **kwargs):
""" plot the results of a classification run
:return:
"""
from matplotlib import pyplot as pl
import numpy as np
nparam = len(res.vparam_names)
# nrow = np.sqrt( nparam )
# ncol = nparam / nrow + 1
nrow, ncol = 1, nparam
pdfdict = get_marginal_pdfs( res, nbins )
fig = pl.gcf()
for parname in res.vparam_names :
iax = res.vparam_names.index( parname )+1
ax = fig.add_subplot( nrow, ncol, iax )
parval, pdf, mean, std = pdfdict[parname]
ax.plot( parval, pdf, **kwargs )
if np.abs(std)>=0.1:
ax.text( 0.95, 0.95, '%s %.1f +- %.1f'%( parname, np.round(mean,1), np.round(std,1)),
ha='right',va='top',transform=ax.transAxes )
elif np.abs(std)>=0.01:
ax.text( 0.95, 0.95, '%s %.2f +- %.2f'%( parname, np.round(mean,2), np.round(std,2)),
ha='right',va='top',transform=ax.transAxes )
elif np.abs(std)>=0.001:
ax.text( 0.95, 0.95, '%s %.3f +- %.3f'%( parname, np.round(mean,3), np.round(std,3)),
ha='right',va='top',transform=ax.transAxes )
else :
ax.text( 0.95, 0.95, '%s %.3e +- %.3e'%( parname, mean, std),
ha='right',va='top',transform=ax.transAxes )
pl.draw()
开发者ID:srodney,项目名称:medband,代码行数:35,代码来源:classify.py
示例18: max_lm
def max_lm(baselines, wavelengths, uwidth, vwidth=0.0):
"""Get the maximum (l,m) that a baseline is sensitive to.
Parameters
----------
baselines : np.ndarray
An array of baselines.
wavelengths : np.ndarray
An array of wavelengths.
uwidth : np.ndarray
Width of the receiver in the u-direction.
vwidth : np.ndarray
Width of the receiver in the v-direction.
Returns
-------
lmax, mmax : array_like
"""
umax = (np.abs(baselines[:, 0]) + uwidth) / wavelengths
vmax = (np.abs(baselines[:, 1]) + vwidth) / wavelengths
mmax = np.ceil(2 * np.pi * umax).astype(np.int64)
lmax = np.ceil((mmax**2 + (2*np.pi*vmax)**2)**0.5).astype(np.int64)
return lmax, mmax
开发者ID:TianlaiProject,项目名称:tlpipe,代码行数:26,代码来源:telescope.py
示例19: compare_objs
def compare_objs(x, y):
assert type(x) is type(y)
if type(x) is dict:
assert x.keys().sort() == y.keys().sort()
for ky in x:
compare_objs(x[ky], y[ky])
elif type(x) is list:
assert len(x) == len(y)
for ind in range(len(x)):
compare_objs(x[ind], y[ind])
elif type(x) is np.ndarray:
assert x.shape == y.shape
if not np.allclose(x, y, atol=1.0e-5, rtol=0.0):
x = x.reshape(x.size)
y = y.reshape(y.size)
dd = x - y
worst_case = np.max(np.abs(dd))
print "worst case abs diff = %e" % worst_case
ind = np.where((x != 0) | (y != 0))
rel_err = np.abs(np.divide(dd[ind], np.abs(x[ind]) + np.abs(y[ind])))
worst_case = np.max(rel_err)
print "worst case rel diff = %e" % worst_case
assert False
else:
assert x == y
开发者ID:GerritKlaschke,项目名称:neon,代码行数:25,代码来源:serialization_check.py
示例20: DM
def DM(self, z):
"""Transverse Comoving Distance (Mpc)
Parameters
----------
z : float
redshift
Returns
-------
y : float
The transverse comoving distance in Mpc, given by Hogg eqn 16
Examples
--------
>>> cosmo = Cosmology()
>>> cosmo.DM(1.0)
3303.8288058874678
"""
# Compute the transverse comoving distance in Mpc (Eqn 16)
if self.OmegaK > 0.0:
return self.DH / np.sqrt(self.OmegaK) * \
np.sinh(np.sqrt(self.OmegaK)*self.DC(z)/self.DH)
elif self.OmegaK == 0.0:
return self.DC(z)
elif self.OmegaK < 0.0:
return self.DH / np.sqrt(np.abs(self.OmegaK)) * \
np.sin(np.sqrt(np.abs(self.OmegaK))*self.DC(z)/self.DH)
开发者ID:jakevdp,项目名称:ASTR599_homework,代码行数:28,代码来源:cosmology.py
注:本文中的numpy.abs函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论