本文整理汇总了Python中numpy.amax函数的典型用法代码示例。如果您正苦于以下问题:Python amax函数的具体用法?Python amax怎么用?Python amax使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了amax函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_peaks_cf
def get_peaks_cf(data, win_size):
"""
data: audio as numpy array to be analyzed
win_size: value in samples to create the blocks for analysis
Used in calc_crest_factor, this function returns an array of peak levels
for each window.
return: array of peak audio levels
"""
if len(data) == 2:
# Seperate left and right channels
data_l = data[0,:]
data_r = data[1,:]
# Buffer up the data
data_matrix_l = librosa.util.frame(data_l, win_size, win_size)
data_matrix_r = librosa.util.frame(data_r, win_size, win_size)
# Get peaks for left and right channels
peaks_l = np.amax(np.absolute(data_matrix_l), axis=0)
peaks_r = np.amax(np.absolute(data_matrix_r), axis=0)
return np.maximum(peaks_l, peaks_r)
else:
data_matrix = librosa.util.frame(data, win_size, win_size)
return np.amax(np.absolute(data_matrix), axis=0)
开发者ID:bombsandbottles,项目名称:THESIS,代码行数:27,代码来源:feature_extraction.py
示例2: test_known_parametrization
def test_known_parametrization():
R = 1
P = 1
toll = 2.e-3
n = 10
ii = np.linspace(0,1,n+1)
control_points_3d = np.asarray(np.zeros([n+1,3]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
print (control_points_3d.shape)
control_points_3d[:,0] = np.array([R*np.cos(5*i * np.pi / (n + 1))for i in ii])
control_points_3d[:,1] = np.array([R*np.sin(5*i * np.pi / (n + 1))for i in ii])
control_points_3d[:,2] = np.array([P*i for i in range(n+1)])
vsl = AffineVectorSpace(UniformLagrangeVectorSpace(n+1),0,1)
arky = ArcLengthParametrizer(vsl, control_points_3d)
new_control_points_3d = arky.reparametrize()
#new_arky = ArcLengthParametrizer(vsl, new_control_points_3d)
#new_new_control_points_3d = arky.reparametrize()
tt = np.linspace(0, 1, 128)
vals = vsl.element(control_points_3d)(tt)
#print vals
new_vals = vsl.element(new_control_points_3d)(tt)
#print vals.shape, new_vals.shape
print (np.amax((np.abs(vals-new_vals))))
assert np.amax(np.abs(control_points_3d-new_control_points_3d))/P < toll
开发者ID:luca-heltai,项目名称:ePICURE,代码行数:26,代码来源:test_arclength.py
示例3: Seuil_var
def Seuil_var(img):
"""
This fonction compute threshold value. In first the image's histogram is calculated. The threshold value is set to the first indexe of histogram wich respect the following criterion : DH > 0, DH(i)/H(i) > 0.1 , H(i) < 0.01 % of the Norm.
In : img : ipl Image : image to treated
Out: seuil : Int : Value of the threshold
"""
dim=255
MaxValue=np.amax(np.asarray(img[:]))
Norm = np.asarray(img[:]).shape[0]*np.asarray(img[:]).shape[1]
scale=MaxValue/dim
Wdim=dim*scale
MaxValue=np.amax(np.asarray(img[:]))
bins= [float(x) for x in range(dim)]
hist,bin_edges = np.histogram(np.asarray(img[:]), bins)
Norm = Norm -hist[0]
median=np.median(hist)
mean=0
var=0
i=1
som = 0
while (som < 0.8*Norm and i <len(hist)-1):
som = som + hist[i]
i=i+1
while ((hist[i]-hist[i-1] < 0 or (hist[i]-hist[i-1])/hist[i-1]>0.1 or hist[i]> 0.01*Norm ) and i < len(hist)-1):
i=i+1
if( i == len(hist)-1):
seuil=0
seuil = i
var = 0
return seuil
开发者ID:IvarsKarpics,项目名称:lucid2,代码行数:33,代码来源:lucid_core.py
示例4: run_sim
def run_sim(R_star, transit_duration, bodies):
"""Run 3-body sim and convert results to TTV + TDV values in [minutes]"""
# Run 3-body sim for one full orbit of the outermost moon
loop(bodies, orbit_duration)
# Move resulting data from lists to numpy arrays
ttv_array = numpy.array([])
ttv_array = ttv_list
tdv_array = numpy.array([])
tdv_array = tdv_list
# Zeropoint correction
middle_point = numpy.amin(ttv_array) + numpy.amax(ttv_array)
ttv_array = numpy.subtract(ttv_array, 0.5 * middle_point)
ttv_array = numpy.divide(ttv_array, 1000) # km/s
# Compensate for barycenter offset of planet at start of simulation:
planet.px = 0.5 * (gravity_firstmoon + gravity_secondmoon)
stretch_factor = 1 / ((planet.px / 1000) / numpy.amax(ttv_array))
ttv_array = numpy.divide(ttv_array, stretch_factor)
# Convert to time units, TTV
ttv_array = numpy.divide(ttv_array, R_star)
ttv_array = numpy.multiply(ttv_array, transit_duration * 60 * 24) # minutes
# Convert to time units, TDV
oldspeed = (2 * R_star / transit_duration) * 1000 / 24 / 60 / 60 # m/sec
newspeed = oldspeed - numpy.amax(tdv_array)
difference = (transit_duration - (transit_duration * newspeed / oldspeed)) * 24 * 60
conversion_factor = difference / numpy.amax(tdv_array)
tdv_array = numpy.multiply(tdv_array, conversion_factor)
return ttv_array, tdv_array
开发者ID:hippke,项目名称:TTV-TDV-exomoons,代码行数:35,代码来源:system_16.py
示例5: CAOSpy_run
def CAOSpy_run(tstart,tstop,mc,pdyn,particles,leftover,drained):
timenow=tstart
#loop through time
while timenow < tstop:
print 'time:',timenow
[thS,npart]=pdyn.gridupdate_thS(particles.lat,particles.z,mc)
#define dt as Curant criterion
dt_D=(mc.mgrid.vertfac.values[0])**2 / (2*np.amax(mc.D[np.amax(thS),:]))
dt_ku=-mc.mgrid.vertfac.values[0]/np.amax(mc.ku[np.amax(thS),:])
dt=np.amin([dt_D,dt_ku])
#INFILT
p_inf=cinf.pmx_infilt(timenow,precTS,mc,dt,leftover)
#print timenow
#print p_inf
particlesnow=pd.concat([particles,p_inf])
#p_backup=particlesnow.copy()
#DIFFUSION
[particlesnow,thS,npart,phi_mx]=pdyn.part_diffusion_split(particlesnow,npart,thS,mc,dt,True,10)
#ADVECTION
particlesnow=pdyn.mac_advection(particlesnow,mc,thS,dt)
#drained particles
drained=drained.append(particlesnow[particlesnow.flag==len(mc.maccols)+1])
particlesnow=particlesnow[particlesnow.flag!=len(mc.maccols)+1]
#MX-MAC-INTERACTION
pdyn.mx_mp_interact(particlesnow,npart,thS,mc,dt)
pondparts=(particlesnow.z<0.)
leftover=np.count_nonzero(-pondparts)
particles=particlesnow[pondparts]
timenow=timenow+dt
return(particles,npart,thS,leftover,drained,timenow)
开发者ID:cojacoo,项目名称:caos_py,代码行数:31,代码来源:run_pickle_c1.py
示例6: create_histogram
def create_histogram (mu, sigma, weights, bin_size, low_spec, high_spec, cu1_accepted, t1_failure_pos):
p1 = figure(title="Normal Distribution",tools = "pan,box_select,box_zoom,xwheel_zoom,reset,save,resize", background_fill="#E8DDCB")
measured = np.random.normal(mu, sigma, 1000)
hist, edges = np.histogram(weights, density=True, bins=bin_size)
x = np.linspace(np.amin(weights), np.amax(weights), 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
p1.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
fill_color="#036564", line_color="#033649",\
)
sort_weights = sorted(weights)
cu1_yield = round(float(len(cu1_accepted))/(float(len(cu1_accepted)) + float(len(t1_failure_pos))),2)
p1.line(x, pdf, line_color="#D95B43", line_width=8, alpha=0.7, legend="PDF")
p1.line(low_spec, y=[0, np.amax(hist)], line_dash=[4, 4], line_color="orange", line_width=3, alpha=.5)
p1.line(high_spec, y=[0, np.amax(hist)], line_dash=[4, 4], line_color="orange", line_width=3, alpha=.5)
p1.line(weights[0], 0, line_width=1, legend='Mean = ' + str(round(mu, 3))) #daily rejected
p1.line(weights[0], 0, line_width=1, legend='2*Std (Std = ' + str(round(sigma, 3)) + ")") #daily accepted
p1.line(weights[0], 0, line_width=1, legend='Yield: ' + str(cu1_yield)) #daily rejected
p1.line(weights[0], 0, line_width=1, legend='Accepted: ' + str(len(cu1_accepted))) #daily accepted
p1.line(weights[0], 0, line_width=1, legend='Rejected: ' + str(len(t1_failure_pos))) #daily rejected
p1.xaxis.bounds = (np.amin(weights), np.amax(weights))
p1.legend.orientation = "top_left"
p1.xaxis.axis_label = 'Weight (g)'
p1.yaxis.axis_label = 'Pr(x)'
return p1
开发者ID:arvindchari88,项目名称:newGitTest,代码行数:33,代码来源:graph_functions.py
示例7: iff_filter
def iff_filter(sig, scale, plot_show = 0):
order = max(sig.size*scale,90)
#order = 80
# Extend signal on both sides for removing boundary effect in convolution
sig_extend = np.ones(sig.size+int(order/2)*2)
sig_extend[int(order/2):(sig.size+int(order/2))] = sig
sig_extend[0:int(order/2)] = sig[(sig.size-int(order/2)):sig.size]
sig_extend[(sig.size+int(order/2)):sig_extend.size] = sig[0:int(order/2)]
# convolve with hamming window and normalize
smooth_sig = np.convolve(sig_extend,np.hamming(order),'same')
smooth_sig = smooth_sig[int(order/2):(sig.size+int(order/2))]
smooth_sig = np.amax(sig)/np.amax(smooth_sig)*smooth_sig
# Plot signal for debug
if(plot_show == 1):
fig, ax = plt.subplots(ncols=2)
ax[0].plot(sig)
ax[0].plot(smooth_sig,'-r')
ax[0].plot(med_sig,'black')
ax[1].loglog(rfft(sig))
ax[1].loglog(rfft(smooth_sig),'-r')
ax[1].loglog(rfft(med_sig),'black')
plt.show()
return smooth_sig
开发者ID:liuyifly06,项目名称:bubblecount,代码行数:27,代码来源:curvature.py
示例8: main
def main(X, Xtest, time):
global cut
global count
cut = 0
count = 0
root = node()
root.trainData = X
root.testData = Xtest
print("shape of xtest in main: ",np.shape(Xtest))
x1 = min(np.amin(X[:,[0]]), np.amin(Xtest[:,[0]]))-.05
x2 = max(np.amax(X[:,[0]]), np.amax(Xtest[:,[0]]))+.1
y1 = min(np.amin(X[:,[1]]), np.amin(Xtest[:,[1]]))-.05
y2 = max(np.amax(X[:,[1]]), np.amax(Xtest[:,[1]]))+.1
plt.figure()
plt.axis([x1,x2,y1,y2])
print("x1 x2 y1 y2: ",x1,x2,y1,y2)
root.coordinates.append([x1,x2])
root.coordinates.append([y1,y2])
leaves = []
MP(root,time,leaves)
point_index = {}
train_key = list(map(tuple,X))
test_key = list(map(tuple,Xtest))
x_shape = np.shape(X)
for i in range(x_shape[0]):
point_index[train_key[i]] = i
Xtest_shape = np.shape(Xtest)
for i in range(0,Xtest_shape[0]):
point_index[test_key[i]] = i
# plt.show()
plt.close()
return feature(leaves, point_index)
开发者ID:Saket97,项目名称:Report,代码行数:32,代码来源:Mondrian.py
示例9: mamPlot
def mamPlot(funct,args):
pl=args[0]
x=np.array([])
ymin=np.array([])
yavg=np.array([])
ymax=np.array([])
f=np.array([])
x=np.append(x,funct.rmsSet[:,0])
ymin=np.append(ymin,funct.rmsSet[:,1])
ymax=np.append(ymax,funct.rmsSet[:,2])
t1=funct.rmsSet[:,3]
t2=funct.rmsSet[:,5]
yavg=np.append(yavg,t1/t2)
f=np.append(f,funct.rmsSet[:,5])
if centroidP(x,yavg):
pl.set_yscale('log')
pl.set_xscale('log')
else:
pl.ticklabel_format(axis='both', style='sci', scilimits=(-2,5),pad=5,direction="bottom")
pl.axis([0, np.amax(x)+(2*np.amax(x)/100), 0, np.amax(ymax)+(2*np.amax(ymax)/100)])
pl.set_xlabel('read memory size',fontsize=8)
pl.set_ylabel("cost",fontsize=8)
pl.grid(True)
pl.set_title("Min/Avg/Max Cost",fontsize=14)
pl.tick_params(axis='x', labelsize=7)
pl.tick_params(axis='y', labelsize=7)
sc=pl.scatter(x,ymax,s=7,c='r', marker = 'o',lw=0.0)
sc1=pl.scatter(x,yavg,s=5.5,c='g', marker = 'o',lw=0.0)
sc2=pl.scatter(x,ymin,s=4,c='b', marker = 'o',lw=0.0)
pl.legend((sc2,sc1,sc),("Min","Avg","Max"),scatterpoints=1,ncol=3,bbox_to_anchor=[0.5, mamAdjust],loc="lower center",fontsize=8)
pylab.close()
开发者ID:coder-chenzhi,项目名称:aprof,代码行数:31,代码来源:functionSet.py
示例10: checkcl
def checkcl(cluster_run, verbose = False):
"""Ensure that a cluster labelling is in a valid format.
Parameters
----------
cluster_run : array of shape (n_samples,)
A vector of cluster IDs for each of the samples selected for a given
round of clustering. The samples not selected are labelled with NaN.
verbose : Boolean, optional (default = False)
Specifies if status messages will be displayed
on the standard output.
Returns
-------
cluster_run : array of shape (n_samples,)
The input vector is modified in place, such that invalid values are
either rejected or altered. In particular, the labelling of cluster IDs
starts at zero and increases by 1 without any gap left.
"""
cluster_run = np.asanyarray(cluster_run)
if cluster_run.size == 0:
raise ValueError("\nERROR: Cluster_Ensembles: checkcl: "
"empty vector provided as input.\n")
elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):
raise ValueError("\nERROR: Cluster_Ensembles: checkl: "
"problem in dimensions of the cluster label vector "
"under consideration.\n")
elif np.where(np.isnan(cluster_run))[0].size != 0:
raise ValueError("\nERROR: Cluster_Ensembles: checkl: vector of cluster "
"labellings provided as input contains at least one 'NaN'.\n")
else:
min_label = np.amin(cluster_run)
if min_label < 0:
if verbose:
print("\nINFO: Cluster_Ensembles: checkcl: detected negative values "
"as cluster labellings.")
cluster_run -= min_label
if verbose:
print("\nINFO: Cluster_Ensembles: checkcl: "
"offset to a minimum value of '0'.")
x = one_to_max(cluster_run)
if np.amax(cluster_run) != np.amax(x):
if verbose:
print("\nINFO: Cluster_Ensembles: checkcl: the vector cluster "
"labellings provided is not a dense integer mapping.")
cluster_run = x
if verbose:
print("INFO: Cluster_Ensembles: checkcl: brought modification "
"to this vector so that its labels range "
"from 0 to {0}, included.\n".format(np.amax(cluster_run)))
return cluster_run
开发者ID:GGiecold,项目名称:Cluster_Ensembles,代码行数:60,代码来源:Cluster_Ensembles.py
示例11: test_make_tone_regular_at_caldb
def test_make_tone_regular_at_caldb():
fq = 15000
db = 100
fs = 100000
dur = 1
risefall = 0.002
calv = 0.1
caldb = 100
npts = fs*dur
tone, timevals = tools.make_tone(fq, db, dur, risefall, fs, caldb, calv)
assert len(tone) == npts
assert len(timevals) == npts
spectrum = np.fft.rfft(tone)
peak_idx = (abs(spectrum - max(spectrum))).argmin()
freq_idx = np.around(fq*(float(npts)/fs))
assert peak_idx == freq_idx
if tools.USE_RMS is True:
print 'tone max', np.around(np.amax(tone), 5), calv*np.sqrt(2)
assert np.around(np.amax(tone), 5) == np.around(calv*np.sqrt(2),5)
else:
assert np.around(np.amax(tone), 5) == calv
assert timevals[-1] == dur - (1./fs)
开发者ID:boylea,项目名称:sparkle,代码行数:27,代码来源:test_audiotools.py
示例12: _write_data
def _write_data(lock, im, index, outfile, outshape, outtype, rescale_factor, logfilename, cputime, itime):
lock.acquire()
try:
t0 = time()
f_out = getHDF5(outfile, 'a')
f_out_dset = f_out.require_dataset('exchange/data', outshape, outtype, chunks=tdf.get_dset_chunks(outshape[0]))
im = im * rescale_factor
tdf.write_tomo(f_out_dset,index,im.astype(outtype))
# Set minimum and maximum:
if (amin(im[:]) < float(f_out_dset.attrs['min'])):
f_out_dset.attrs['min'] = str(amin(im[:]))
if (amax(im[:]) > float(f_out_dset.attrs['max'])):
f_out_dset.attrs['max'] = str(amax(im[:]))
f_out.close()
t1 = time()
# Print out execution time:
log = open(logfilename,"a")
log.write(linesep + "\ttomo_%s processed (CPU: %0.3f sec - I/O: %0.3f sec)." % (str(index).zfill(4), cputime, t1 - t0 + itime))
log.close()
finally:
lock.release()
开发者ID:ElettraSciComp,项目名称:STP-Core,代码行数:25,代码来源:exec_extrapreprocessing.py
示例13: basemap_raster_mercator
def basemap_raster_mercator(lon, lat, grid, cmap = None):
"""
Render a raster in mercator projection. Locations with no values are
rendered transparent.
"""
# longitude/latitude extent
lons = (np.amin(lon), np.amax(lon))
lats = (np.amin(lat), np.amax(lat))
if cmap is None:
cmap = mpl.cm.jet
cmap.set_bad('w', 1.0)
# construct spherical mercator projection for region of interest
m = Basemap(projection='merc',llcrnrlat=lats[0], urcrnrlat=lats[1],
llcrnrlon=lons[0],urcrnrlon=lons[1])
vmin,vmax = np.nanmin(grid),np.nanmax(grid)
masked_grid = np.ma.array(grid,mask=np.isnan(grid))
fig = plt.figure(frameon=False)
plt.axis('off')
m.pcolormesh(lon,lat,masked_grid,latlon=True,cmap=cmap,vmin=vmin,vmax=vmax)
str_io = StringIO.StringIO()
plt.savefig(str_io,bbox_inches='tight',format='png',pad_inches=0,transparent=True)
bounds = [ (lons[0],lats[0]),(lons[1],lats[0]),(lons[1],lats[1]),(lons[0],lats[1]) ]
return str_io.getvalue(), bounds
开发者ID:vejmelkam,项目名称:fdsys,代码行数:28,代码来源:raster_renderer.py
示例14: statprint
def statprint(host_per_pg, pg_per_host):
val = pg_per_host.values() # sets val to a list of the values in pg_per_host
mean = numpy.mean(val)
maxvalue = numpy.amax(val)
minvalue = numpy.amin(val)
std = numpy.std(val)
median = numpy.median(val)
variance = numpy.var(val)
print("for placement groups on hosts: ")
print( "the mean is: ", mean)
print( "the max value is: ", maxvalue)
print( "the min value is: ", minvalue)
print( "the standard deviation is: ", std)
print( "the median is: ", median)
print( "the variance is: ", variance)
# prints statements for stats
host_mean = numpy.mean(host_per_pg)
host_max = numpy.amax(host_per_pg)
host_min = numpy.amin(host_per_pg)
host_std = numpy.std(host_per_pg)
host_median = numpy.median(host_per_pg)
host_variance = numpy.var(host_per_pg)
# these are the variables for hosts/pgs
print("hosts per placement group: ")
print("the mean is: ", host_mean)
print("the max value is: ", host_max)
print("the min value is: ", host_min)
print("the standard deviation is: ", host_std)
print("the median is: ", host_median)
print("the variance is: ", host_variance)
开发者ID:stfc,项目名称:ceph-pg-analyst,代码行数:30,代码来源:py3x.py
示例15: testRotMatOfExpMap
def testRotMatOfExpMap(numpts):
"""Test rotation matrix from axial vector"""
print '* checking case of 1D vector input'
map = numpy.zeros(3)
rmat_1 = rotMatOfExpMap_orig(map)
rmat_2 = rotMatOfExpMap_opt(map)
print 'resulting shapes: ', rmat_1.shape, rmat_2.shape
#
#
map = numpy.random.rand(3, numPts)
map = numpy.zeros([3, numPts])
map[0, :] = numpy.linspace(0, numpy.pi, numPts)
#
print '* testing rotMatOfExpMap with %d random points' % numPts
#
t0 = time.clock()
rmat_1 = rotMatOfExpMap_orig(map)
et1 = time.clock() - t0
#
t0 = time.clock()
rmat_2 = rotMatOfExpMap_opt(map)
et2 = time.clock() - t0
#
print ' timings:\n ... original ', et1
print ' ... optimized', et2
#
drmat = numpy.absolute(rmat_2 - rmat_1)
print 'maximum difference between results'
print numpy.amax(drmat, 0)
return
开发者ID:donald-e-boyce,项目名称:hexrd,代码行数:32,代码来源:rotations.py
示例16: CostVariancePlot
def CostVariancePlot(funct,args):
pl=args[0]
x=np.array([])
y=np.array([])
f=np.array([])
z=np.array([])
x=np.append(x,funct.rmsSet[:,0])
y=np.append(y,funct.rmsSet[:,3])
f=np.append(f,funct.rmsSet[:,5])
z=np.append(z,funct.rmsSet[:,4])
v=np.array([])
v=np.append(v,[0])
i=0
while i<len(x):
v=np.append(v,(z[i]/f[i])-(y[i]/f[i])*(y[i]/f[i]))
i+=1
v=np.delete(v,0)
if centroidP(x,v):
pl.set_yscale('log')
pl.set_xscale('log')
else:
pl.ticklabel_format(axis='both', style='sci', scilimits=(-2,5),pad=5,direction="bottom")
pl.axis([0, np.amax(x)+(10*np.amax(x)/100), 0, np.amax(v)+(10*np.amax(v)/100)])
pl.set_xlabel("read memory size",fontsize=8)
pl.set_ylabel("cost",fontsize=8)
pl.set_title("Variance Cost",fontsize=14)
pl.grid(True)
pl.tick_params(axis='x', labelsize=7)
pl.tick_params(axis='y', labelsize=7)
sc=pl.scatter(x,v,c=f,s=6,marker = 'o',lw=0.0,cmap=cmap,norm=norm)
pylab.close()
开发者ID:coder-chenzhi,项目名称:aprof,代码行数:31,代码来源:functionSet.py
示例17: produce_video
def produce_video(self, interval=200, repeat_delay=2000, filename='video_output.gif', override_min_max=None):
"""
Finalize and save the video of the data.
interval and repeat_delay are the interval between frames and the repeat
delay before restart, both in milliseconds.
filename is the name of the file to save in the present working
directory. At present, only .gifs will implement reliably without
tweaking Python's PATHs.
override_min_max allows the user to set their own maximum and minimum
for the scale on the plot. Use a len-2 tuple, (min, max).
"""
#find the limits for the plot:
if not override_min_max:
self.min_limit = np.amin(self.data_list[0])
self.max_limit = np.amax(self.data_list[0])
assert len(self.data_list) > 1, 'You must include at least two frames to make an animation!'
for i in self.data_list[1:]: #assumes there is more than one frame in the loop
self.min_limit = min((self.min_limit, np.amin(i)))
self.max_limit = max((self.max_limit, np.amax(i)))
else:
self.min_limit=override_min_max[0]
self.max_limit=override_min_max[1]
self.fig.colorbar(self.plotfunc(self.grid, self.data_list[0],limits=(self.min_limit,self.max_limit),allow_colorbar=False, **self.kwds))
ani = animation.FuncAnimation(self.fig, _make_image, frames=self._yield_image, interval=interval, blit=True, repeat_delay=repeat_delay)
ani.save(filename, fps=1000./interval)
开发者ID:geonik84,项目名称:landlab,代码行数:27,代码来源:video_out.py
示例18: caus_ent_backward_nodisount
def caus_ent_backward_nodisount(transition,reward_f,steps):
num_actions = transition.tot_actions;num_states = transition.tot_states
if reward_f.shape[0] ==num_actions:
state_action = True
else: state_action =False
gamma = discount
z_actions = np.zeros([num_actions,num_states])
z_states = np.zeros(num_states)
#Backward - - - - - - - - - - - - - - - - - - - - - - - - - -
print "Caus Ent Backward"
count = 0
delta = 0
for j in range(steps):
prev = np.zeros(z_states.shape)
prev += z_states
for i in range(num_states):
tr = transition.dense_backward[i]
ch = transition.chunks_backward[i]
out = gamma*np.array(sum_chunks(tr[2,:]*z_states[map(int,tr[1,:])],ch))
z_actions[:,i] = out +reward_f[:,i]
m = np.amax(z_actions)
z_states = m + np.log(np.sum(np.exp(z_actions-m),axis = 0))
count+=1
#Action Probability Computation - - - - - - - - - - - - - - - -
delta = np.sum(np.sum(np.absolute(prev-z_states)))
#delta +=1
#print "DElta cause",delta,delta2
if j==steps-1:
z_actions = z_actions
m = np.amax(z_actions)
z_states = m + np.log(np.sum(np.exp(z_actions-m),axis = 0))
policy= np.exp(z_actions-z_states)
return policy,np.log(policy),z_states
开发者ID:KyriacosShiarli,项目名称:IRLF_aamas2016_Replicate,代码行数:33,代码来源:tp_forwardBackward.py
示例19: fit_min_max
def fit_min_max(args,p,max_iter,proj_list,proj_axis):
mins = numpy.array([])
maxs = numpy.array([])
kind = [item for item in args.kind.split(' ')]
for i in xrange(int(args.fmin)+int(args.step),max_iter+1,int(args.step)):
args.proj = proj_list[p]
axis = proj_axis[args.proj]
dat = load_map(args,p,i)
unit_l, unit_d, unit_t, unit_m = load_units(i, args)
if kind[p] == 'dens':
dat *= unit_d # in g/cc
if kind[p] in ['vx','vy','vz']:
dat *= (unit_l/unit_t)/1e5 # in km/s
if kind[p] in ['stars','dm']:
dat += 1e-12
if args.logscale:
mins = numpy.append(mins,numpy.log10(numpy.amin(dat)))
maxs = numpy.append(maxs,numpy.log10(numpy.amax(dat)))
else:
mins = numpy.append(mins,numpy.amin(dat))
maxs = numpy.append(maxs,numpy.amax(dat))
ii = range(int(args.fmin)+int(args.step),max_iter+1,int(args.step))
cmin = polyfit(ii,mins,args.poly)
cmax = polyfit(ii,maxs,args.poly)
return p, cmin, cmax
开发者ID:yangyha,项目名称:Ramses,代码行数:31,代码来源:map2mp4.py
示例20: backward_sparse
def backward_sparse(sparse_transition,reward_f,conv=5,discount = 1.,length = 15,z_states = None):
num_states = sparse_transition.shape[1]; num_actions = sparse_transition.shape[0]/num_states
#if reward_f.shape[0] ==num_actions:
# state_action = True
#else: state_action =False
z_actions = np.zeros(num_actions*num_states)
if z_states==None:
z_states = np.zeros(num_states)
#Backward - - - - - - - - - - - - - - - - - - - - - - - - - -
#print "Caus Ent Backward"
count = 0
delta = 0
reward_temp = reward_f.reshape(num_actions*num_states,order="F")
#while True:
alpha = (1/(num_states*100))*0
for i in range(length):
prev = np.zeros(z_states.shape)
prev += z_states
#print gamma*sparse_transition.dot(z_states)
z_actions = discount*((1-alpha)*sparse_transition.dot(z_states) + alpha*np.sum(z_states) ) +reward_temp
m = np.amax(z_actions.reshape(num_actions,num_states,order="F"),axis = 0)
z_states = m + np.log(np.sum(np.exp(z_actions.reshape(num_actions,num_states,order="F")-m),axis = 0))
count+=1
#Action Probability Computation - - - - - - - - - - - - - - - -
delta = np.amax(np.absolute(prev-z_states))
#print delta
#if count>2 and delta<conv:
#print "Count and delta", count,delta
policy= np.exp(z_actions.reshape(num_actions,num_states,order="F")-z_states)
#print "Policyyy",policy
#break
return policy,np.log(policy),z_states
开发者ID:KyriacosShiarli,项目名称:IRLF_aamas2016_Replicate,代码行数:32,代码来源:tp_forwardBackward.py
注:本文中的numpy.amax函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论