• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.argmax函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.argmax函数的典型用法代码示例。如果您正苦于以下问题:Python argmax函数的具体用法?Python argmax怎么用?Python argmax使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了argmax函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: predict

	def predict(self, X):
		"""
		Predict class labels for X.

		Parameters
		----------
		X : {array-like, sparse matrix},
			Shape = [n_samples, n_features]
			Matrix of training samples.

		Returns
		----------
		maj_vote : array-like, shape = [n_samples]
			Predicted class labels.

		"""
		if self.vote == 'probability':
			maj_vote = np.argmax(self.predict_proba(X), axis=1)
		else:  # 'classlabel' vote

			#  Collect results from clf.predict calls
			predictions = np.asarray([clf.predict(X)
									for clf in self.classifiers_]).T

			maj_vote = np.apply_along_axis(
										lambda x:
										np.argmax(np.bincount(x, weights=self.weights)),
										axis=1,
										arr=predictions)
		maj_vote = self.lablenc_.inverse_transform(maj_vote)
		return maj_vote
开发者ID:prakharchoudhary,项目名称:fun_with_python,代码行数:31,代码来源:majority_voting.py


示例2: get_batch

	def get_batch(self, model, batch_size):
		len_memory = len(self.memory)
		num_actions = 6
		encouraged_actions = np.zeros(num_actions, dtype=np.int)
		predicted_actions = np.zeros(num_actions, dtype=np.int)
		inputs = np.zeros((min(len_memory, batch_size), 4, 80, 74))
		targets = np.zeros((inputs.shape[0], num_actions))
		q_list = np.zeros(inputs.shape[0])
		for i, idx in enumerate(np.random.randint(0, len_memory, size=inputs.shape[0])):
			input_t, action_t, reward_t, input_tp1 = self.memory[idx][0]
			terminal = self.memory[idx][1]

			inputs[i] = input_t

			targets[i] = model.predict(input_t.reshape(1, 4, 80, 74))[0]
			q_next = np.max(model.predict(input_tp1.reshape(1, 4, 80, 74))[0])

			q_list[i] = np.max(targets[i])
			predicted_actions[np.argmax(targets[i])] += 1

			targets[i, action_t] =  (1. - terminal) * self.discount * q_next + reward_t

			if reward_t > 0. or terminal:
				print "Action %d rewarded with %f (sample #%d)"%(action_t, targets[i, action_t], idx)

			encouraged_actions[np.argmax(targets[i])] += 1

		return inputs, targets, encouraged_actions, predicted_actions, np.average(q_list)
开发者ID:blazer82,项目名称:ai,代码行数:28,代码来源:atari.py


示例3: choose_action

        def choose_action(planner_type=1):
            """ Select action based on various action selection methods, depending on the planner_type parameter 

            Parameters
            ----------
            planner_type:
                            1 .. planner that chooses random action
                            2 .. greedy planner
                            3 .. randomized planner
                            4 .. naive reward matrix planner (decide optimally if all rewards are known at given state and explore unexplored otherwise)

            """
            if (planner_type == 1):
                return random.choice(self.actions)
            elif (planner_type == 2):
                return self.actions[np.argmax(self.q[self.state_index(self.state)])]
            elif (planner_type == 3):
                return self.actions[np.argmax(self.q[self.state_index(self.state)])] if random.random() > 0.1 else random.choice(self.actions)
            elif (planner_type == 4):
                if (np.count_nonzero(self.rewards[self.state_index(self.state)]) == len(self.actions)):   # case where all actions have been explored (assumes zero reward does not occur)
                    #print 'I have learned all rewards in this state'
                    return self.actions[np.argmax(self.rewards[self.state_index(self.state)])]
                else: # case where actions still need to be explored
                    for i in range(len(self.actions)):  # identif first unexplored action and try it
                        if (self.rewards[self.state_index(self.state),i] == 0):
                            return self.actions[i]
开发者ID:btanz,项目名称:machine-learning-nanodegree,代码行数:26,代码来源:agent.py


示例4: predict

    def predict(self, X):
        """ Predict class labels for X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        Returns
        ----------
        maj : array-like, shape = [n_samples]
            Predicted class labels.
        """
        if self.voting == "soft":
            maj = np.argmax(self.predict_proba(X), axis=1)

        else:  # 'hard' voting
            predictions = self._predict(X)
            maj = np.apply_along_axis(
                lambda x: np.argmax(np.bincount(x, weights=self.weights)), axis=1, arr=predictions
            )

        maj = self.le_.inverse_transform(maj)

        return maj
开发者ID:ldvignolo,项目名称:scikit-learn,代码行数:26,代码来源:voting_classifier.py


示例5: KTCheckOverValidLoop

def KTCheckOverValidLoop(cc):
	#
	# Check-over-Valid Loop CONDITION
	#
	if(cc.mCVI + cc.kCB <= 2500):
		#
		# Check-over-Valid Loop BODY
		#
		
		#                  Socket,  Rq#, B,      first,         last,                 sizeIn, sizeOut, x128+s0, x128+s1, maxT, maxR, minS, maxS
		X, Y = KNFetchImgs(cc.sock, 1,   cc.kCB, 22500+cc.mCVI, 22500+cc.mCVI+cc.kCB, 256,    192,     1,       1,       0,    0,    1.0,  1.0)
		YEst   = cc.model.predict({"input":X})["output"]
		
		yDiff  = np.argmax(Y, axis=1) != np.argmax(YEst, axis=1)
		
		cc.mCVI      += cc.kCB
		cc.mCVErrCnt += long(np.sum(yDiff))
		
		sys.stdout.write("\rChecking... {:5d} valid set errors on {:5d} checked ({:7.3f}%)".format(
		                 cc.mCVErrCnt, cc.mCVI, 100.0*float(cc.mCVErrCnt)/cc.mCVI))
		sys.stdout.flush()
		
		return cc.invoke(KTCheckOverValidLoop, snap=cc.shouldCVSnap)
	else:
		#
		# Check-over-Valid Loop EPILOGUE
		#
		
		cc.log({"validErr":float(cc.mCVErrCnt)/cc.mCVI})
		sys.stdout.write("\n")
		sys.stdout.flush()
		return cc.invoke(KTEpochLoopEnd, snap=False)
开发者ID:obilaniu,项目名称:IFT6266,代码行数:32,代码来源:kitnn.py


示例6: compare_subcarrier_location

def compare_subcarrier_location(alpha, M, K, overlap, oversampling_factor):
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    goofy_ordering = False
    taps = gfdm_filter_taps('rrc', alpha, M, K, oversampling_factor)
    A0 = gfdm_modulation_matrix(taps, M, K, oversampling_factor, group_by_subcarrier=goofy_ordering)
    n = np.arange(M * K * oversampling_factor, dtype=np.complex)
    colors = iter(cm.rainbow(np.linspace(0, 1, K)))

    for k in range(K):
        color = next(colors)
        f = np.exp(1j * 2 * np.pi * (float(k) / (K * oversampling_factor)) * n)
        F = abs(np.fft.fft(f))
        fm = np.argmax(F) / M
        plt.plot(F, '-.', label=k, color=color)

        data = get_zero_f_data(k, K, M)

        x0 = gfdm_gr_modulator(data, 'rrc', alpha, M, K, overlap, compat_mode=goofy_ordering) * (2. / K)
        f0 = 1. * np.argmax(abs(np.fft.fft(x0))) / M
        plt.plot(abs(np.fft.fft(x0)), label='FFT' + str(k), color=color)

        xA = A0.dot(get_data_matrix(data, K, group_by_subcarrier=goofy_ordering).flatten()) * (1. / K)
        fA = np.argmax(abs(np.fft.fft(xA))) / M
        plt.plot(abs(np.fft.fft(xA)), '-', label='matrix' + str(k), color=color)
        print fm, fA, f0
    plt.legend()
    plt.show()
开发者ID:jdemel,项目名称:gr-gfdm,代码行数:28,代码来源:gfdm_modulation.py


示例7: test_decision_function_shape

def test_decision_function_shape():
    # check that decision_function_shape='ovr' gives
    # correct shape and is consistent with predict

    clf = svm.SVC(kernel='linear', C=0.1,
                  decision_function_shape='ovr').fit(iris.data, iris.target)
    dec = clf.decision_function(iris.data)
    assert_equal(dec.shape, (len(iris.data), 3))
    assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1))

    # with five classes:
    X, y = make_blobs(n_samples=80, centers=5, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    clf = svm.SVC(kernel='linear', C=0.1,
                  decision_function_shape='ovr').fit(X_train, y_train)
    dec = clf.decision_function(X_test)
    assert_equal(dec.shape, (len(X_test), 5))
    assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1))

    # check shape of ovo_decition_function=True
    clf = svm.SVC(kernel='linear', C=0.1,
                  decision_function_shape='ovo').fit(X_train, y_train)
    dec = clf.decision_function(X_train)
    assert_equal(dec.shape, (len(X_train), 10))

    # check deprecation warning
    clf = svm.SVC(kernel='linear', C=0.1).fit(X_train, y_train)
    msg = "change the shape of the decision function"
    dec = assert_warns_message(ChangedBehaviorWarning, msg,
                               clf.decision_function, X_train)
    assert_equal(dec.shape, (len(X_train), 10))
开发者ID:abhisg,项目名称:scikit-learn,代码行数:32,代码来源:test_svm.py


示例8: _findUSpace

 def _findUSpace(self):
     """Find independent U components with respect to invariant
     rotations.
     """
     n = len(self.invariants)
     R6zall = numpy.tile(-numpy.identity(6, dtype=float), (n, 1))
     R6zall_iter = numpy.split(R6zall, n, axis=0)
     i6kl = ((0, (0, 0)), (1, (1, 1)), (2, (2, 2)),
             (3, (0, 1)), (4, (0, 2)), (5, (1, 2)))
     for op, R6z in zip(self.invariants, R6zall_iter):
         R = op.R
         for j, Ucj in enumerate(self.Ucomponents):
             Ucj2 = numpy.dot(R, numpy.dot(Ucj, R.T))
             for i, kl in i6kl:
                 R6z[i,j] += Ucj2[kl]
     Usp6 = nullSpace(R6zall)
     # normalize Usp6 by its maximum component
     mxcols = numpy.argmax(numpy.fabs(Usp6), axis=1)
     mxrows = numpy.arange(len(mxcols))
     Usp6 /= Usp6[mxrows,mxcols].reshape(-1, 1)
     Usp6 = numpy.around(Usp6, 2)
     # normalize again after rounding to get correct signs
     mxcols = numpy.argmax(numpy.fabs(Usp6), axis=1)
     Usp6 /= Usp6[mxrows,mxcols].reshape(-1, 1)
     self.Uspace = numpy.tensordot(Usp6, self.Ucomponents, axes=(1, 0))
     self.Uisotropy = (len(self.Uspace) == 1)
     return
开发者ID:diffpy,项目名称:diffpy.Structure,代码行数:27,代码来源:symmetryutilities.py


示例9: _best_path

    def _best_path(self, unlabeled_sequence):
        T = len(unlabeled_sequence)
        N = len(self._states)
        self._create_cache()
        self._update_cache(unlabeled_sequence)
        P, O, X, S = self._cache

        V = np.zeros((T, N), np.float32)
        B = -np.ones((T, N), np.int)

        V[0] = P + O[:, S[unlabeled_sequence[0]]]
        for t in range(1, T):
            for j in range(N):
                vs = V[t-1, :] + X[:, j]
                best = np.argmax(vs)
                V[t, j] = vs[best] + O[j, S[unlabeled_sequence[t]]]
                B[t, j] = best

        current = np.argmax(V[T-1,:])
        sequence = [current]
        for t in range(T-1, 0, -1):
            last = B[t, current]
            sequence.append(last)
            current = last

        sequence.reverse()
        return list(map(self._states.__getitem__, sequence))
开发者ID:FY-KHM,项目名称:AI-Project,代码行数:27,代码来源:hmm.py


示例10: action_callback

    def action_callback(self, state):
        '''
        Implement this function to learn things and take actions.
        Return 0 if you don't want to jump and 1 if you do.
        '''

        # You might do some learning here based on the current state and the last state.

        # You'll need to select and action and return it.
        # Return 0 to swing and 1 to jump.

        new_state  = state
        self.flag += 1
        if self.last_state == None:
            self.flag = 1
            return 0
        if self.flag == 2:
            self.gravity = state['monkey']['vel']
        #if self.epsilon < random.random():
        index = self.find_index(state)
        old_action = self.Q[self.find_index(self.last_state)][self.last_action]
        #print old_action
        self.Q[index] = old_action + self.alpha * (self.last_reward + self.gamma * np.argmax(self.Q[index]) - old_action)
        self.last_action = np.argmax(self.Q[index])
        # else:
        #     self.last_action = random.randrange(0, 2)
        self.last_state  = new_state
        #print [self.Q[index][0], self.Q[index][1]]
        self.time += 0.1
        self.epsilon = 1 / self.time
        return self.last_action
开发者ID:mingu600,项目名称:Practical4,代码行数:31,代码来源:stub.py


示例11: forwardProp

 def forwardProp(self,node,correct, guess):
     cost = total = 0.0
     if node.isLeaf == True:
         node.fprop = True
         node.hActs1 = self.L[:, node.word]
         node.probs = softmax(self.Ws.dot(node.hActs1)+self.bs)
         p = node.probs*make_onehot(node.label, len(self.bs))
         cost = -np.log(np.sum(p))
         correct.append(node.label)
         guess.append(np.argmax(node.probs))
         return cost, 1
         
     c1,t1 = self.forwardProp(node.left,correct,guess)
     c2,t2 = self.forwardProp(node.right,correct,guess)
     if node.left.fprop and node.right.fprop:
         node.fprop = True
         h = np.hstack([node.left.hActs1, node.right.hActs1])
         tmp = np.zeros(len(node.left.hActs1))
         for i in range(len(tmp)):
             tmp[i] = h.dot(self.V[i]).dot(h)
         node.hActs1 = self.ReLU(self.W.dot(h) + self.b + tmp)
         node.probs = softmax(self.Ws.dot(node.hActs1)+self.bs)
         p = node.probs*make_onehot(node.label,len(self.bs))
         cost = -np.log(np.sum(p))
         correct.append(node.label)
         guess.append(np.argmax(node.probs))
         
     cost += c1
     cost += c2
     total += t1
     total += t2
     return cost, total + 1
开发者ID:alphadl,项目名称:cs224d,代码行数:32,代码来源:rntn.py


示例12: predict

    def predict(self, X):
        """Predict class for X.

        The predicted class of an input sample is computed as the majority
        prediction of the trees in the forest.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : array of shape = [n_samples] or [n_samples, n_outputs]
            The predicted classes.
        """
        n_samples = len(X)
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return self.classes_.take(np.argmax(proba, axis=1), axis=0)

        else:
            predictions = np.zeros((n_samples, self.n_outputs_))

            for k in xrange(self.n_outputs_):
                predictions[:, k] = self.classes_[k].take(np.argmax(proba[k],
                                                                    axis=1),
                                                          axis=0)

            return predictions
开发者ID:emef,项目名称:scikit-learn,代码行数:31,代码来源:forest.py


示例13: get_next_list_tensor

 def get_next_list_tensor(self, inc= None):
     '''Returns the next batch in a list, where each element of the list
     corresponds to a single sequence. 
     '''
     batch= list()
     # define the increment of the cursor between calls
     if inc is None:
         inc= self.window_size
         
     for b in range(self.batch_size): # each element of the batch has a cursor
         # confirm that the current window stays in the page
         while (self.cursor[b]+self.window_size)>(self.cumlength[self.cursor_page[b]]):
             #self.cursor[b] = (self.cursor[b] + self.window_size )%self.length
             self.cursor[b] = (self.cursor[b] + inc )%self.length
             self.cursor_page[b] = np.argmax(self.cursor[b]<self.cumlength)
         
         # get window for current cursor
         start_idx= self.cursor[b] - (self.cumlength[self.cursor_page[b]] - self.page_len[self.cursor_page[b]])
         batch.append( self.data[ self.cursor_page[b] ][start_idx:(start_idx+self.window_size)] )
         
         # update cursor
         #self.cursor[b] = (self.cursor[b] + self.window_size)%self.length
         self.cursor[b] = (self.cursor[b] + inc)%self.length
         self.cursor_page[b] = np.argmax(self.cursor[b]<self.cumlength)
         
     return batch
开发者ID:danmar3,项目名称:2dlearn-lib,代码行数:26,代码来源:Batch_generator.py


示例14: minimize_energy

 def minimize_energy(S_init=None, R_init=None):
     en = 0.
     curen = -np.inf
     i=0
     en_tot = -np.inf
     curS = S_init
     curR = R_init
         
     while (np.abs(en - curen) > eps):    
         i+=1
         if curR is not None:
             # optimize topics given regions
             ans = np.zeros((segment_num, topics_num))        
             for v, l in struct2.iteritems():
                 ans[v,:] -= binary_prescale * w2[:,curR[l]].sum(axis=1).flatten()
                     
             curS = np.argmax(ans, axis=1).flatten()        
             
         # optimize regions given topics
         # unary energy
         ans = alpha *alpha_prescale *  np.log(pR)
         # binary energy
         for v, l in struct1.iteritems():
             ans[v,:] -= binary_prescale * w2[curS[l],:].sum(axis=0).flatten()
         curR = np.argmax(ans, axis=1).flatten()
         
         curen, en = np.sum(np.max(ans, axis=1)), curen        
         en_un = alpha_prescale * alpha * np.log(pR)
         en_un = en_un[range(len(curR)),curR].sum()
     
         if curen > en_tot:
             S = curS
             R = curR
             en_tot = curen    
     return R,S, en_tot
开发者ID:amiltonwong,项目名称:pottics,代码行数:35,代码来源:__init__.py


示例15: ApproxCharacteristicMatrix

 def ApproxCharacteristicMatrix(self, B, c):  
     if B <= 3:
         print "Parameter B should be greater than 3!"
         return None
            
     if c < 1:
         print "Parameter B should be greater than 1!"
         return None
     
     Ixy = float('-inf')
     for y in range(2, B/2 + 1):
         x = B/y
         I = ApproxMaxMI(self.D,x,y,c*x)
         IPerp = ApproxMaxMI(self.DPerp,x,y,c*x)
         maxI_index  = np.argmax(I)
         maxIPerp_index = np.argmax(IPerp)
         
         if I[maxI_index] > IPerp[maxIPerp_index]:
             tempMaxI = I[maxI_index]
             max_x = maxI_index
         else:
             tempMaxI = IPerp[maxIPerp_index] 
             max_x = maxIPerp_index 
             
         if tempMaxI > Ixy:
             Ixy = tempMaxI
             Mxy = Ixy/np.log(min(max_x,y))
                 
     return Mxy        
开发者ID:yantsing,项目名称:MINE,代码行数:29,代码来源:MINE.py


示例16: _check_image_inversion

    def _check_image_inversion(self):
        """Check the image for proper inversion, i.e. that pixel value increases with dose.

        Notes
        -----
        Inversion is checked by the following:
        - Summing the image along both horizontal and vertical directions.
        - If the maximum point of both horizontal and vertical is in the middle 1/3, the image is assumed to be correct.
        - Otherwise, invert the image.
        """

        # sum the image along each axis
        x_sum = np.sum(self.image.array, 0)
        y_sum = np.sum(self.image.array, 1)

        # determine the point of max value for each sum profile
        xmaxind = np.argmax(x_sum)
        ymaxind = np.argmax(y_sum)

        # If that maximum point isn't near the center (central 1/3), invert image.
        center_in_central_third = ((xmaxind > len(x_sum) / 3 and xmaxind < len(x_sum) * 2 / 3) and
                               (ymaxind > len(y_sum) / 3 and ymaxind < len(y_sum) * 2 / 3))

        if not center_in_central_third:
            self.image.invert()
开发者ID:gitter-badger,项目名称:pylinac,代码行数:25,代码来源:starshot.py


示例17: predict

 def predict(self,data):
     if len(self.classes)==2:
         return 1*(self.predict_proba(data)>0.5)
     elif self.multiclass=="multi":
         return np.argmax(self.predict_proba(data),axis=1)
     else:
         return np.argmax(self.predict_proba(data),axis=1)
开发者ID:ryanshiroma,项目名称:my-machine-learning-library,代码行数:7,代码来源:myfunctions.py


示例18: test_dev

    def test_dev(self, X_dev, y_dev):
        if len(y_dev[0]) > 1:
            pc_sentiment = np.zeros(len(X_dev))
            for i in np.arange(len(X_dev)):
                pc_sentiment[i] = np.argmax(self.predict(np.asarray(X_dev[i], dtype=np.float32)
                                                         # ,np.ones((len(X_dev[i]),self.input_dim),dtype=np.float32)
                                                         ))

            correct = 0.0
            for i in np.arange(len(X_dev)):
                if pc_sentiment[i] == np.argmax(y_dev[i]):
                    correct += 1
        else:
            correct = 0.0
            pc_sentiment = np.zeros(len(X_dev))
            for i in np.arange(len(X_dev)):
                pred = self.predict(np.asarray(X_dev[i], dtype=np.float32))[0]
                # print(str(pred)+" "+str(y_dev[i][0]))

                pc_sentiment[i] = (np.floor(pred * 3.0) + 1.00) / 3.00
                # ,np.ones((len(X_dev[i]),self.input_dim),dtype=np.float32)

            for i in np.arange(len(X_dev)):
                if pc_sentiment[i] == y_dev[i][0]:
                    correct += 1

        accuracy = correct / len(X_dev)

        print(accuracy)
开发者ID:samiraabnar,项目名称:LSTMAttentionModel,代码行数:29,代码来源:AttendedLSTM.py


示例19: spike_latency

def spike_latency(signal, threshold, fs):
    """Find the latency of the first spike over threshold

    :param signal: Spike trace recording (vector)
    :type signal: numpy array
    :param threshold: Threshold value to determine spikes
    :type threshold: float
    :returns: float -- Time of peak of first spike, or None if no values over threshold

    This is the same as the first value returned from calc_spike_times
    """
    over, = np.where(signal > threshold)
    segments, = np.where(np.diff(over) > 1)

    if len(over) > 1:
        if len(segments) == 0:
            # only signal peak
            idx = over[0] + np.argmax(signal[over[0]:over[-1]])
            latency = float(idx) / fs
        elif segments[0] == 0:
            # first point in singleton
            latency = float(over[0]) / fs
        else:
            idx = over[0] + np.argmax(signal[over[0]:over[segments[0]]])
            latency = float(idx) / fs
    elif len(over) > 0:
        latency = float(over[0]) / fs
    else:
        latency = np.nan

    return latency
开发者ID:portfors-lab,项目名称:SparkleAnalysis,代码行数:31,代码来源:spikestats.py


示例20: accuracy

  def accuracy(self, x, t):
    y = self.predict(x)

    y = np.argmax(y, axis=1)
    t = np.argmax(t, axis=1)

    return np.sum(y==t)/float(t.shape[0])
开发者ID:hunering,项目名称:demo-code,代码行数:7,代码来源:two_layer_net.py



注:本文中的numpy.argmax函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.argmin函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.arctanh函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap