• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.array函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_partial_dependence_helpers

def test_partial_dependence_helpers(est, method, target_feature):
    # Check that what is returned by _partial_dependence_brute or
    # _partial_dependence_recursion is equivalent to manually setting a target
    # feature to a given value, and computing the average prediction over all
    # samples.
    # This also checks that the brute and recursion methods give the same
    # output.

    X, y = make_regression(random_state=0)
    # The 'init' estimator for GBDT (here the average prediction) isn't taken
    # into account with the recursion method, for technical reasons. We set
    # the mean to 0 to that this 'bug' doesn't have any effect.
    y = y - y.mean()
    est.fit(X, y)

    # target feature will be set to .5 and then to 123
    features = np.array([target_feature], dtype=np.int32)
    grid = np.array([[.5],
                     [123]])

    if method == 'brute':
        pdp = _partial_dependence_brute(est, grid, features, X,
                                        response_method='auto')
    else:
        pdp = _partial_dependence_recursion(est, grid, features)

    mean_predictions = []
    for val in (.5, 123):
        X_ = X.copy()
        X_[:, target_feature] = val
        mean_predictions.append(est.predict(X_).mean())

    pdp = pdp[0]  # (shape is (1, 2) so make it (2,))
    assert_allclose(pdp, mean_predictions, atol=1e-3)
开发者ID:manhhomienbienthuy,项目名称:scikit-learn,代码行数:34,代码来源:test_partial_dependence.py


示例2: get_tracedata

    def get_tracedata(self, format = 'AmpPha', single=False):
        '''
        Get the data of the current trace

        Input:
            format (string) : 'AmpPha': Amp in dB and Phase, 'RealImag',

        Output:
            'AmpPha':_ Amplitude and Phase
        '''
        #data = self._visainstrument.ask_for_values(':FORMAT REAL,32;*CLS;CALC1:DATA:NSW? SDAT,1;*OPC',format=1)      
        data = self._visainstrument.ask_for_values('FORM:DATA REAL; FORM:BORD SWAPPED; CALC%i:SEL:DATA:SDAT?'%(self._ci), format = visa.double)      
        data_size = numpy.size(data)
        datareal = numpy.array(data[0:data_size:2])
        dataimag = numpy.array(data[1:data_size:2])
          
        if format.upper() == 'REALIMAG':
          if self._zerospan:
            return numpy.mean(datareal), numpy.mean(dataimag)
          else:
            return datareal, dataimag
        elif format.upper() == 'AMPPHA':
          if self._zerospan:
            datareal = numpy.mean(datareal)
            dataimag = numpy.mean(dataimag)
            dataamp = numpy.sqrt(datareal*datareal+dataimag*dataimag)
            datapha = numpy.arctan(dataimag/datareal)
            return dataamp, datapha
          else:
            dataamp = numpy.sqrt(datareal*datareal+dataimag*dataimag)
            datapha = numpy.arctan2(dataimag,datareal)
            return dataamp, datapha
        else:
          raise ValueError('get_tracedata(): Format must be AmpPha or RealImag') 
开发者ID:rotzinger,项目名称:qkit,代码行数:34,代码来源:Anritsu_VNA.py


示例3: test_RadiusNeighborsRegressor_multioutput_with_uniform_weight

def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight():
    """Test radius neighbors in multi-output regression (uniform weight)"""

    rng = check_random_state(0)
    n_features = 5
    n_samples = 40
    n_output = 4

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples, n_output)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    for algorithm, weights in product(ALGORITHMS, [None, 'uniform']):

        rnn = neighbors. RadiusNeighborsRegressor(weights=weights,
                                                  algorithm=algorithm)
        rnn.fit(X_train, y_train)

        neigh_idx = rnn.radius_neighbors(X_test, return_distance=False)
        y_pred_idx = np.array([np.mean(y_train[idx], axis=0)
                               for idx in neigh_idx])

        y_pred_idx = np.array(y_pred_idx)
        y_pred = rnn.predict(X_test)

        assert_equal(y_pred_idx.shape, y_test.shape)
        assert_equal(y_pred.shape, y_test.shape)
        assert_array_almost_equal(y_pred, y_pred_idx)
开发者ID:93sam,项目名称:scikit-learn,代码行数:28,代码来源:test_neighbors.py


示例4: test_continuum_seismicity

 def test_continuum_seismicity(self):
     '''
     Tests the function hmtk.strain.shift.Shift.continuum_seismicity - 
     the python implementation of the Subroutine Continuum Seismicity from
     the Fortran 90 code GSRM.f90
     '''
     self.strain_model = GeodeticStrain()
     # Define a simple strain model
     test_data = {'longitude': np.zeros(3, dtype=float),
                  'latitude': np.zeros(3, dtype=float),
                  'exx': np.array([1E-9, 1E-8, 1E-7]),
                  'eyy': np.array([5E-10, 5E-9, 5E-8]),
                  'exy': np.array([2E-9, 2E-8, 2E-7])}
     self.strain_model.get_secondary_strain_data(test_data)
     self.model = Shift([5.66, 6.66])
     threshold_moment = moment_function(np.array([5.66, 6.66]))
     
     expected_rate = np.array([[-14.43624419, -22.48168502],
                               [-13.43624419, -21.48168502],
                               [-12.43624419, -20.48168502]]) 
     np.testing.assert_array_almost_equal(
         expected_rate,
         np.log10(self.model.continuum_seismicity(
             threshold_moment,
             self.strain_model.data['e1h'],
             self.strain_model.data['e2h'],
             self.strain_model.data['err'],
             BIRD_GLOBAL_PARAMETERS['OSRnor'])))
开发者ID:atalayayele,项目名称:hmtk,代码行数:28,代码来源:test_shift_calculator.py


示例5: testCNCS

    def testCNCS(self):
        # CNCS_7860 is not an incoherent scatterer but for this test
        # it doesn't matter
        SA, Flux = MDNormSCDPreprocessIncoherent(Filename='CNCS_7860',
                                                 MomentumMin=1,
                                                 MomentumMax=1.5)

        # Just compare 10 points of the Flux
        flux_cmp = np.array([0.00000000e+00, 7.74945234e-04, 4.96143098e-03,
                             1.18914010e-02, 1.18049991e-01, 7.71872176e-01,
                             9.93078957e-01, 9.96312349e-01, 9.98450129e-01,
                             1.00000002e+00])
        np.testing.assert_allclose(Flux.extractY()[0][::1000], flux_cmp)
        self.assertEqual(Flux.getXDimension().name, 'Momentum')
        self.assertEqual(Flux.getXDimension().getUnits(), 'Angstrom^-1')
        self.assertEqual(Flux.blocksize(), 10000)
        self.assertEqual(Flux.getNumberHistograms(), 1)

        # Compare every 20-th bin of row 64
        SA_cmp = np.array([0.11338311, 0.18897185, 0.15117748, 0.11338311, 0.03779437,
                           0.07558874, 0.15117748, 0.18897185, 0.03779437, 0.15117748,
                           0.11338311, 0.07558874, 0.03779437, 0.        , 0.56691555,
                           0.26456059, 0.11338311, 0.07558874, 0.11338311, 0.])
        np.testing.assert_allclose(SA.extractY().reshape((-1,128))[::20,64], SA_cmp)
        self.assertEqual(SA.getXDimension().name, 'Momentum')
        self.assertEqual(SA.getXDimension().getUnits(), 'Angstrom^-1')
        self.assertEqual(SA.blocksize(), 1)
        self.assertEqual(SA.getNumberHistograms(), 51200)
        self.assertEqual(SA.getNEvents(), 51200)
开发者ID:DanNixon,项目名称:mantid,代码行数:29,代码来源:MDNormSCDPreprocessIncoherentTest.py


示例6: __init__

    def __init__(self,data,p,q,formula):

        # Initialize TSM object
        super(EGARCHMReg,self).__init__('EGARCHMReg')

        # Latent variables
        self.p = p
        self.q = q
        self.max_lag = max(self.p,self.q)  
        self.z_no = self.p + self.q + 2
        self._z_hide = 0 # Whether to cutoff variance latent variables from results
        self.supported_methods = ["MLE","PML","Laplace","M-H","BBVI"]
        self.default_method = "MLE"
        self.multivariate_model = False
        self.leverage = False
        self.model_name = "EGARCHMReg(" + str(self.p) + "," + str(self.q) + ")"

        # Format the data
        self.is_pandas = True # This is compulsory for this model type
        self.data_original = data
        self.formula = formula
        self.y, self.X = dmatrices(formula, data)
        self.z_no += self.X.shape[1]*2
        self.y_name = self.y.design_info.describe()
        self.data_name = self.y_name
        self.X_names = self.X.design_info.describe().split(" + ")
        self.y = np.array([self.y]).ravel()
        self.data = self.y
        self.X = np.array([self.X])[0]
        self.index = data.index
        self.initial_values = np.zeros(self.z_no)

        self._create_latent_variables()
开发者ID:ekote,项目名称:pyflux,代码行数:33,代码来源:egarchmreg.py


示例7: vertex_transform1

def vertex_transform1(vertex):
    """
    This transform was applied on the original surface.
    """
    return np.dot(rotation_matrix(np.array([0.0, 0.0, 1.0]), math.pi),
                  np.dot(rotation_matrix(np.array([1.0, 0.0, 0.0]), -math.pi / 1.6),
                         np.array([float(x) / 1.5 for x in vertex[:3]]) + np.array([0.0, -40.0, 20.0])))
开发者ID:fmelinscak,项目名称:tvb-data,代码行数:7,代码来源:scale_obj.py


示例8: init

def init():
    global theMesh,  theLight, theCamera, \
           theScreen,    resolution
    initializeVAO()
    glEnable(GL_CULL_FACE)
    glEnable(GL_DEPTH_TEST)

    # Add our object
    # LIGHT
    theLight = N.array((-0.577, 0.577, 0.577, 0.0),dtype=N.float32)
    # OBJECT
    phongshader = makeShader("phongshader.vert","phongshader.frag")
    verts, elements = readOBJ("suzanne.obj")
    suzanneVerts = getArrayBuffer(verts)
    suzanneElements = getElementBuffer(elements)
    suzanneNum = len(elements)
    theMesh = coloredMesh(N.array((1.0, 0.5, 1.0, 1.0), dtype=N.float32),
                          suzanneVerts,
                          suzanneElements,
                          suzanneNum,
                          phongshader)

    # CAMERA
    width,height = theScreen.get_size()
    aspectRatio = float(width)/float(height)
    near = 0.01
    far = 100.0
    lens = 4.0  # "longer" lenses mean more telephoto
    theCamera = Camera(lens, near, far, aspectRatio)
    theCamera.moveBack(6)
开发者ID:geo7,项目名称:csci480,代码行数:30,代码来源:gm121.py


示例9: calculate_user_similarity

	def calculate_user_similarity(user_rating_dict,user_list,restaurant_list,score_matrix,user_mean):
		similarity_matrix = []
		for row in range(len(user_list)):
			similarity_vector = []
			list1 = user_rating_dict[user_list[row]].keys()
			mean1 = user_mean[row]
			for col in range(row,len(user_list)):		
				list2 = user_rating_dict[user_list[col]].keys()
				mean2 = user_mean[col]
				join_list = list(set(list1+list2))
				rating_vector1 = []
				rating_vector2 = []
				for item in join_list:
					if item in list1:
						rating_vector1.append(user_rating_dict[user_list[row]][item]-mean1)
					else:
						rating_vector1.append(score_matrix[row,restaurant_list.index(item)]-mean1)
					if item in list2:
						rating_vector2.append(user_rating_dict[user_list[col]][item]-mean2)
					else:
						rating_vector2.append(score_matrix[col,restaurant_list.index(item)]-mean2)
				similarity = numpy.sum(numpy.array(rating_vector1)*numpy.array(rating_vector2))/sqrt(numpy.sum(numpy.square(rating_vector1))*numpy.sum(numpy.square(rating_vector2)))
				similarity_vector.append(similarity)
			similarity_matrix.append(similarity_vector)
		similarity_matrix = numpy.array(similarity_matrix)
		for col in range(len(user_list)):
			for row in range(col,len(user_list)):
				similarity_matrix[row,col] = similarity_matrix[col,row]
		return similarity_matrix
开发者ID:raymondwqb,项目名称:Yelp_Recommendation-1,代码行数:29,代码来源:Yelp_recommender.py


示例10: test_array_richcompare_legacy_weirdness

    def test_array_richcompare_legacy_weirdness(self):
        # It doesn't really work to use assert_deprecated here, b/c part of
        # the point of assert_deprecated is to check that when warnings are
        # set to "error" mode then the error is propagated -- which is good!
        # But here we are testing a bunch of code that is deprecated *because*
        # it has the habit of swallowing up errors and converting them into
        # different warnings. So assert_warns will have to be sufficient.
        assert_warns(FutureWarning, lambda: np.arange(2) == "a")
        assert_warns(FutureWarning, lambda: np.arange(2) != "a")
        # No warning for scalar comparisons
        with warnings.catch_warnings():
            warnings.filterwarnings("error")
            assert_(not (np.array(0) == "a"))
            assert_(np.array(0) != "a")
            assert_(not (np.int16(0) == "a"))
            assert_(np.int16(0) != "a")

        for arg1 in [np.asarray(0), np.int16(0)]:
            struct = np.zeros(2, dtype="i4,i4")
            for arg2 in [struct, "a"]:
                for f in [operator.lt, operator.le, operator.gt, operator.ge]:
                    if sys.version_info[0] >= 3:
                        # py3
                        with warnings.catch_warnings() as l:
                            warnings.filterwarnings("always")
                            assert_raises(TypeError, f, arg1, arg2)
                            assert_(not l)
                    else:
                        # py2
                        assert_warns(DeprecationWarning, f, arg1, arg2)
开发者ID:EelcoHoogendoorn,项目名称:numpy,代码行数:30,代码来源:test_deprecations.py


示例11: test

    def test(self):

        with self.test_session() as sess:

            m = tf.constant(np.array([
                [1.0, 2.0],
                [2.0, 0.0]
            ], dtype=np.float32))

            l = linear(m, 4)

            result = sess.run(l, {
                'SimpleLinear/Matrix:0': np.array([
                    [1.0, 2.0],
                    [1.0, 2.0],
                    [1.0, 2.0],
                    [1.0, 2.0],
                ]),
                'SimpleLinear/Bias:0': np.array([
                    0.0,
                    1.0,
                    2.0,
                    3.0,
                ]),
            })

            self.assertAllClose(result, np.array([
                [5.0, 6.0, 7.0, 8.0],
                [2.0, 3.0, 4.0, 5.0],
            ]))
            print(result)
开发者ID:psyas,项目名称:character-aware-neural-language-models,代码行数:31,代码来源:test_linear.py


示例12: loadTrajectoryData

def loadTrajectoryData(inFile = UJILocDataFile):

	with open(UJILocDataFile, 'r') as dataFile: 
		data = dataFile.read()

	# 9-axis IMU data
	# trajectory: dictionary with three elements
	# N is number of samples in the trajectory (data taken at 10Hz)
	# mag: Nx3 numpy array where each line has XYZ mag data
	# gyro: Nx3 numpy array where each line has XYZ gyro vel data
	# accel: Nx3 numpy array where each line has XYZ lin accelerometer data
	segments = data.split("<", 2)
	IMUDataStr = segments[0].split('\n')[:-1]
	magArr = []
	oriArr = []	
	accelArr = []

	for i, lineStr in enumerate(IMUDataStr): 

		lineStr = lineStr.split(' ', 10)[:-1]
		lineStr = [float(x) for x in lineStr]
		magArr.append(lineStr[1:4]) # xyz mag data for sample
		accelArr.append(lineStr[4:7]) # xyz accelerometer data for single samp
		oriArr.append(lineStr[7:10]) # xyz gyro data for sample

	# values initially are given as euler angles which are not good for imu-type calculations. 
	# so we fix em! 	
	gyroArr = rawSensorStateProc.orientationToGyro(oriArr) 
	initOrientationMatrix = rawSensorStateProc.calcInitialOrientation(oriArr[0])

	# IMUData = [{'mag': magArr, 'gyro': gyroArr, 'accel': accelArr}]
	
	# process waypoint data
	# each waypoint consists of a latitude coordinate, longitude coordinate,
	# and index (what IMU dataopoint it represents)
	waypoints = []
	waypointStr = segments[1].split(">", 2)
	numWaypoints = int(waypointStr[0])
	waypointLns = waypointStr[1].lstrip().split('\n')

	for i, lineStr in enumerate(waypointLns): 

		line = lineStr.split(' ', WAYPOINTS_ELEMS_PER_LINE)
		line = [float(x) for x in line]
		
		if i == 0:
			waypoints.append({'lat': line[0], 'long': line[1], 'index': line[4]}) 
		
		waypoints.append({'lat': line[2], 'long': line[3], 'index': line[5]})

		seqLen = line[5]

	
	traj = ({'waypoints': np.array(waypoints), 'mag': np.array(magArr), 'gyro': np.array(gyroArr), 
			 'accel': np.array(accelArr), 'orientSensed': np.array(oriArr), 
			 'initOrient': initOrientationMatrix, 'seqLen': seqLen})

	return traj

# loadTrajectoryData()
开发者ID:noahjepstein,项目名称:Kalman-RNN,代码行数:60,代码来源:preProcessData.py


示例13: test_2d_complex_same

 def test_2d_complex_same(self):
     a = array([[1+2j,3+4j,5+6j],[2+1j,4+3j,6+5j]])
     c = signal.fftconvolve(a,a)
     d = array([[-3+4j,-10+20j,-21+56j,-18+76j,-11+60j],\
                [10j,44j,118j,156j,122j],\
                [3+4j,10+20j,21+56j,18+76j,11+60j]])
     assert_array_almost_equal(c,d)
开发者ID:josef-pkt,项目名称:scipy,代码行数:7,代码来源:test_signaltools.py


示例14: setUp

    def setUp(self):
        x = numpy.array([ 8.375, 7.545, 8.828, 8.5  , 1.757, 5.928,
                          8.43 , 7.78 , 9.865, 5.878, 8.979, 4.732,
                          3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
                          6.04 , 9.63 , 7.712, 3.382, 4.489, 6.479,
                          7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
                          7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
        X = x.reshape(6, 6)
        XX = x.reshape(3, 2, 2, 3)

        m = numpy.array([0, 1, 0, 1, 0, 0,
                         1, 0, 1, 1, 0, 1,
                         0, 0, 0, 1, 0, 1,
                         0, 0, 0, 1, 1, 1,
                         1, 0, 0, 1, 0, 0,
                         0, 0, 1, 0, 1, 0])
        mx = array(data=x, mask=m)
        mX = array(data=X, mask=m.reshape(X.shape))
        mXX = array(data=XX, mask=m.reshape(XX.shape))

        m2 = numpy.array([1, 1, 0, 1, 0, 0,
                          1, 1, 1, 1, 0, 1,
                          0, 0, 1, 1, 0, 1,
                          0, 0, 0, 1, 1, 1,
                          1, 0, 0, 1, 1, 0,
                          0, 0, 1, 0, 1, 1])
        m2x = array(data=x, mask=m2)
        m2X = array(data=X, mask=m2.reshape(X.shape))
        m2XX = array(data=XX, mask=m2.reshape(XX.shape))
        self.d = (x, X, XX, m, mx, mX, mXX)
开发者ID:Sastria,项目名称:Sastria-Project,代码行数:30,代码来源:test_old_ma.py


示例15: lars_regression_noise_ipyparallel

def lars_regression_noise_ipyparallel(pars): 
    import numpy as np
    import os
    import sys
    import gc
        
    
    Y_name,C_name,noise_sn,idxs_C, idxs_Y=pars
    Y=np.load(Y_name,mmap_mode='r')
    Y=np.array(Y[idxs_Y,:])
    C=np.load(C_name,mmap_mode='r')
    C=np.array(C)
    _,T=np.shape(C)
    #sys.stdout = open(str(os.getpid()) + ".out", "w")
    st=time.time()
    As=[]    
    #print "*****************:" + str(idxs_Y[0]) + ',' + str(idxs_Y[-1])
    sys.stdout.flush()    
    for y,px in zip(Y,idxs_Y):  
        #print str(time.time()-st) + ": Pixel" + str(px)
        sys.stdout.flush()    
        c=C[idxs_C[px],:]
        if np.size(c)>0:             
            sn=noise_sn[px]**2*T            
            _,_,a,_,_=lars_regression_noise(y, c.T, 1, sn)
            if not np.isscalar(a):                
                a=a.T  
                 
            As.append((px,idxs_C[px],a))
    
    del Y
    del C
    gc.collect()
    
    return As#As
开发者ID:ninehundred1,项目名称:Constrained_NMF,代码行数:35,代码来源:spatial.py


示例16: test_readXMLBIF

 def test_readXMLBIF(self):
     bn = XMLBIFParser.parse("primo2/tests/slippery.xbif")
     
     nodes = bn.get_all_nodes()        
     self.assertTrue("slippery_road" in nodes)
     self.assertTrue("sprinkler" in nodes)
     self.assertTrue("rain" in nodes)
     self.assertTrue("wet_grass" in nodes)
     self.assertTrue("winter" in nodes)
     self.assertEqual(len(nodes), 5)
     slipperyNode = bn.get_node("slippery_road")
     self.assertTrue("rain" in slipperyNode.parents)
     sprinklerNode = bn.get_node("sprinkler")
     self.assertTrue("winter" in sprinklerNode.parents)
     rainNode = bn.get_node("rain")
     self.assertTrue("winter" in rainNode.parents)
     cpt = np.array([[0.8,0.1],[0.2,0.9]])        
     np.testing.assert_array_almost_equal(rainNode.cpd, cpt)
     
     wetNode = bn.get_node("wet_grass")
     self.assertTrue("sprinkler" in wetNode.parents)
     self.assertTrue("rain" in wetNode.parents)
     self.assertTrue("true" in wetNode.values)
     cpt = np.array([[[0.95, 0.8],[0.1,0.0]], [[0.05, 0.2],[0.9, 1.0]]])
     self.assertEqual(wetNode.get_probability("false", {"rain":["true"], "sprinkler":["false"]}),0.2)
     self.assertEqual(wetNode.get_probability("true", {"rain":["false"], "sprinkler":["true"]}),0.1)
开发者ID:hbuschme,项目名称:PRIMO,代码行数:26,代码来源:IO_test.py


示例17: test3

    def test3(self):
        convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)

        instance = Huayno(convert_nbody)
        instance.initialize_code()
        instance.parameters.epsilon_squared = 0.00001 | units.AU**2
        
        stars = datamodel.Stars(2)
        star1 = stars[0]
        star2 = stars[1]

        star1.mass = units.MSun(1.0)
        star1.position = units.AU(numpy.array((-1.0,0.0,0.0)))
        star1.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star1.radius = units.RSun(1.0)

        star2.mass = units.MSun(1.0)
        star2.position = units.AU(numpy.array((1.0,0.0,0.0)))
        star2.velocity = units.AUd(numpy.array((0.0,0.0,0.0)))
        star2.radius = units.RSun(100.0)
        
        instance.particles.add_particles(stars)
    
        for x in range(1,2000,10):
            instance.evolve_model(x | units.day)
            instance.particles.copy_values_of_all_attributes_to(stars)
            stars.savepoint()
开发者ID:mherkazandjian,项目名称:amuse,代码行数:27,代码来源:test_huayno.py


示例18: measure_objects

 def measure_objects(self, operand, workspace):
     '''Performs the measurements on the requested objects'''
     objects = workspace.get_objects(operand.operand_objects.value)
     if objects.has_parent_image:
         area_occupied = np.sum(objects.segmented[objects.parent_image.mask]>0)
         perimeter = np.sum(outline(np.logical_and(objects.segmented != 0,objects.parent_image.mask)))
         total_area = np.sum(objects.parent_image.mask)
     else:
         area_occupied = np.sum(objects.segmented > 0)
         perimeter = np.sum(outline(objects.segmented) > 0)
         total_area = np.product(objects.segmented.shape)
     m = workspace.measurements
     m.add_image_measurement(F_AREA_OCCUPIED%(operand.operand_objects.value),
                             np.array([area_occupied], dtype=float ))
     m.add_image_measurement(F_PERIMETER%(operand.operand_objects.value),
                             np.array([perimeter], dtype=float ))
     m.add_image_measurement(F_TOTAL_AREA%(operand.operand_objects.value),
                             np.array([total_area], dtype=float))
     if operand.should_save_image.value:
         binary_pixels = objects.segmented > 0
         output_image = cpi.Image(binary_pixels,
                                  parent_image = objects.parent_image)
         workspace.image_set.add(operand.image_name.value,
                                 output_image)
     return[[operand.operand_objects.value,
             str(area_occupied),str(perimeter),str(total_area)]]
开发者ID:anntzer,项目名称:CellProfiler,代码行数:26,代码来源:measureimageareaoccupied.py


示例19: condition_on_grades

def condition_on_grades(user="c6961489"):
	c = new_conn.cursor()
	models = [None, None, None, None, None, None]
	for i in range(6):
		c.execute('SELECT easiness, ret_reps, ret_reps_since_lapse, lapses, pred_grade, acq_reps from discrete_log where user_id="%s" and grade=%d' % (user, i))
		x_train = np.array(c.fetchall())
		c.execute('SELECT interval_bucket from discrete_log where user_id="%s" and grade=%d' % (user, i))
		y_train = np.array(c.fetchall())[:,0]
		clf = SVC()
		clf.fit(x_train, y_train)
		print clf.score(x_train, y_train)
		models[i] = clf
	print "====================="
	c.execute('SELECT user_id from (select user_id, count(distinct grade) as cnt from discrete_log group by user_id) where cnt = 6 limit 5')
	users = [row[0] for row in c.fetchall()]
	scores = [0, 0, 0, 0, 0, 0]
	for user in users:
		for i in range(6):
			c.execute('SELECT easiness, ret_reps, ret_reps_since_lapse, lapses, pred_grade, acq_reps from discrete_log where user_id="%s" and grade=%d' % (user, i))
			x_train = np.array(c.fetchall())
			c.execute('SELECT interval_bucket from discrete_log where user_id="%s" and grade=%d' % (user, i))
			y_train = np.array(c.fetchall())[:,0]
			scores[i] += models[i].score(x_train, y_train)
	for i in range(6):
		scores[i] /= len(users);
		print scores[i]
开发者ID:sramas15,项目名称:Finding-Mnemosyne,代码行数:26,代码来源:rep_user.py


示例20: __init__

    def __init__(self, num_neurons, prev_layer=None):
        """Constructs a layer with given number of neurons.

        Args:
            num_neurons: Number of neurons in this layer.
            prev_layer: Previous layer which acts as input to this
                        layer. None for input layer.
        """

        # x : Activation vector of the neurons.
        # nets : Vector of weighted sum of inputs of the neurons.
        # deltas : Delta error vector, used to adjust the weights.
        self.x = np.array([0] * num_neurons)
        self.nets = np.array([0] * num_neurons)
        self.deltas = np.array([0] * num_neurons)

        self.prev_layer = prev_layer

        # If previous layer exists, create a weight matrix
        # with random values.
        if prev_layer:
            self.weights = []
            for i in range(num_neurons):

                # Each neuron is connected to all neurons of previous layer
                # plus a constant input of '1' (the weight of which is
                # bias). So total number of weights = num_inputs + 1.

                prev_x_len = len(prev_layer.x) + 1
                w = [get_random_weight(prev_x_len) for _ in range(prev_x_len)]
                self.weights.append(w)

            self.weights = np.matrix(self.weights)
开发者ID:coders-circle,项目名称:batss,代码行数:33,代码来源:layer.py



注:本文中的numpy.array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.array2string函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.arr函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap