• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.array_equiv函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.array_equiv函数的典型用法代码示例。如果您正苦于以下问题:Python array_equiv函数的具体用法?Python array_equiv怎么用?Python array_equiv使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了array_equiv函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_copy

 def test_copy(self):
     g = self.Grid
     h = g.copy()
     npt.assert_(np.array_equiv(g.domain[-1] - h.domain[-1], 0))
     g.domain[-1] += 1
     npt.assert_(not np.array_equiv(g.domain[-1] - h.domain[-1], 0))
     return 0
开发者ID:johntyree,项目名称:fd_adi,代码行数:7,代码来源:test_Grid.py


示例2: test_RGB

def test_RGB():
    """
    Test multi channel light class
    """
    position = 10, 10
    size = 50, 50
    channels = 3
    light = pylights.MultiLight('single_test', position, size, channels=channels)
    old_value = np.array([0.8, 0.3, 0.6])
    new_value = np.array([0.1, 0.1, 0.1])
    light.set(old_value, False)
    assert np.array_equiv(light.value_current, old_value)
    assert np.array_equiv(light.value_target, old_value)
    assert np.array_equiv(light.value_output, np.array([0, 0, 0]))
    light.set(new_value)
    assert np.array_equiv(light.value_current, old_value)
    assert np.array_equiv(light.value_target, new_value)
    assert np.array_equiv(light.value_output, np.array([0, 0, 0]))
    light.update()
    temp = (old_value + light.damping * (new_value - old_value))
    assert np.array_equiv(light.value_current, temp)
    assert np.array_equiv(light.value_target, new_value)
    assert np.array_equiv(light.value_output, (old_value * 255.0).astype(int))
    light.update()
    assert np.array_equiv(light.value_output, (temp * 255.0).astype(int))
开发者ID:Denzo77,项目名称:PyLightShow,代码行数:25,代码来源:pylights_tests.py


示例3: __testSequences

  def __testSequences(self, device, module):
    module = str(module)
    # Basic Interface: Currently supports read of all sequences only
    #device.write("", "WORD_ADC_ENA", 1)
    # Arrange the data on the card:
    predefinedSequence = numpy.array([0x00010000,
                                      0x00030002,
                                      0x00050004,
                                      0x00070006,
                                      0x00090008,
                                      0x000b000a,
                                      0x000d000c,
                                      0x000f000e,
                                      0x00110010,
                                      0x00130012,
                                      0x00150014,
                                      0x00170016,
                                      0x00ff0018], dtype=numpy.int32)
    device.write_raw(module, 'AREA_DMAABLE', predefinedSequence)

    expectedMatrix = numpy.array([[0,  1,  2,  3],
                                  [4,  5,  6,  7],
                                  [8, 9, 10, 11],
                                  [12, 13, 14, 15],
                                  [16, 17, 18, 19],
                                  [20, 21, 22, 23]], dtype=numpy.float32)
    readInMatrix = device.read_sequences(module, 'DMA')
    self.assertTrue(numpy.array_equiv(readInMatrix, expectedMatrix))
    self.assertTrue(readInMatrix.dtype == numpy.float32)
    readInMatrix = device.read_sequences(registerPath = '/' + str(module)+ '/DMA')
    self.assertTrue(numpy.array_equiv(readInMatrix, expectedMatrix))
    self.assertTrue(readInMatrix.dtype == numpy.float32)
开发者ID:ChimeraTK,项目名称:DeviceAccess-PythonBindings,代码行数:32,代码来源:testMtca4upy.py


示例4: bin2d_cvt_equal_mass

    def bin2d_cvt_equal_mass(self, wvt=None, verbose=1) :
        """
        Produce a CV Tesselation

        wvt: default is None (will use preset value, see self.wvt)
        """

        ## Reset the status and statusnode for all nodes
        self.status = np.zeros(self.npix, dtype=Nint)
        self.statusnode = np.arange(self.xnode.size) + 1

        if wvt is not None : self.wvt = wvt
        if self.wvt : self.weight = np.ones_like(self.data)
        else : self.weight = self.data**4

        self.scale = 1.0

        self.niter = 0
        ## WHILE LOOP: stop when the nodes do not move anymore ============
        Oldxnode, Oldynode = copy.copy(self.xnode[-1]), copy.copy(self.ynode[-1])
        while (not np.array_equiv(self.xnode, Oldxnode)) | (not np.array_equiv(self.ynode, Oldynode)):
            Oldxnode, Oldynode = copy.copy(self.xnode), copy.copy(self.ynode)
            ## Assign the closest centroid to each bin
            self.bin2d_assign_bins()

            ## New nodes weighted centroids
            self.bin2d_weighted_centroid()

            ## Eq. (4) of Diehl & Statler (2006)
            if self.wvt : self.scale = sqrt(self.Areanode/self.flux_node)
            self.niter += 1
开发者ID:tammojan,项目名称:LSMTool,代码行数:31,代码来源:_tessellate.py


示例5: equiv

    def equiv(self, other):
        """Test if other is an equivalent weighting.

        Returns
        -------
        equivalent : `bool`
            `True` if other is a `WeightingBase` instance with the same
            `WeightingBase.impl`, which yields the same result as this
            weighting for any input, `False` otherwise. This is checked
            by entry-wise comparison of matrices/vectors/constants.
        """
        # Optimization for equality
        if self == other:
            return True

        elif self.exponent != getattr(other, 'exponent', -1):
            return False

        elif isinstance(other, MatrixWeightingBase):
            if self.matrix.shape != other.matrix.shape:
                return False

            if self.matrix_issparse:
                if other.matrix_issparse:
                    # Optimization for different number of nonzero elements
                    if self.matrix.nnz != other.matrix.nnz:
                        return False
                    else:
                        # Most efficient out-of-the-box comparison
                        return (self.matrix != other.matrix).nnz == 0
                else:  # Worst case: compare against dense matrix
                    return np.array_equal(self.matrix.todense(), other.matrix)

            else:  # matrix of `self` is dense
                if other.matrix_issparse:
                    return np.array_equal(self.matrix, other.matrix.todense())
                else:
                    return np.array_equal(self.matrix, other.matrix)

        elif isinstance(other, VectorWeightingBase):
            if self.matrix_issparse:
                return (np.array_equiv(self.matrix.diagonal(),
                                       other.vector) and
                        np.array_equal(self.matrix.asformat('dia').offsets,
                                       np.array([0])))
            else:
                return np.array_equal(
                    self.matrix, other.vector * np.eye(self.matrix.shape[0]))

        elif isinstance(other, ConstWeightingBase):
            if self.matrix_issparse:
                return (np.array_equiv(self.matrix.diagonal(), other.const) and
                        np.array_equal(self.matrix.asformat('dia').offsets,
                                       np.array([0])))
            else:
                return np.array_equal(
                    self.matrix, other.const * np.eye(self.matrix.shape[0]))
        else:
            return False
开发者ID:NikEfth,项目名称:odl,代码行数:59,代码来源:weighting.py


示例6: test_xls_contents

def test_xls_contents():
    sample = Sample.from_file(from_current_dir('sample2.xlsx'))
    expected_attributes = array([[1], [2], [3], [4], [5]])
    expected_categories = array([1, 2, 3, 4, 5])
    expected_columns = ["Age"]
    assert array_equiv(sample.attributes, expected_attributes)
    assert array_equiv(sample.categories, expected_categories)
    assert sample.columns == expected_columns
开发者ID:tolkjen,项目名称:Degree,代码行数:8,代码来源:test_sample.py


示例7: test_from_file_with_indices

def test_from_file_with_indices():
    sample = Sample.from_file(from_current_dir('sample2.xlsx'), [0, 4])
    expected_attributes = array([[1], [5]])
    expected_categories = array([1, 5])
    expected_columns = ["Age"]
    assert array_equiv(sample.attributes, expected_attributes)
    assert array_equiv(sample.categories, expected_categories)
    assert sample.columns == expected_columns
开发者ID:tolkjen,项目名称:Degree,代码行数:8,代码来源:test_sample.py


示例8: test_equivalent

 def test_equivalent(self):
     """
     Returns True if input arrays are shape consistent and all elements equal.
     Shape consistent means they are either the same shape, 
     or one input array can be broadcasted to create the same shape as the other one.
     """
     a = [1,2]
     b = np.asarray(a)
     self.assertTrue(np.array_equiv(a, b))
     self.assertTrue(np.array_equiv(a,[a,a]))
开发者ID:stasi009,项目名称:TestDrivenLearn,代码行数:10,代码来源:test_ndarray_compare.py


示例9: test_transform

def test_transform():
    sample = Sample.from_file(from_current_dir('sample3.xlsx'))
    sample.merge_columns(['One', 'Three'], TestClusterer(), 'New')

    expected_attributes = array([[2, 0], [2, 0]])
    expected_categories = array([0, 0])
    expected_columns = ['Two', 'New']
    assert array_equiv(sample.attributes, expected_attributes)
    assert array_equiv(sample.categories, expected_categories)
    assert sample.columns == expected_columns
开发者ID:tolkjen,项目名称:Degree,代码行数:10,代码来源:test_sample.py


示例10: test_remove_existing_column

def test_remove_existing_column():
    sample = Sample.from_file(from_current_dir('sample3.xlsx'))
    sample.remove_column('Two')

    expected_attributes = array([[1, 3], [1, 3]])
    expected_categories = array([0, 0])
    expected_columns = ['One', 'Three']
    assert array_equiv(sample.attributes, expected_attributes)
    assert array_equiv(sample.categories, expected_categories)
    assert sample.columns == expected_columns
开发者ID:tolkjen,项目名称:Degree,代码行数:10,代码来源:test_sample.py


示例11: test_normalize_existing_column

def test_normalize_existing_column():
    sample = Sample.from_file(from_current_dir('sample2.xlsx'))
    normalizer = sample.get_normalizer((0.0, 1.0))
    sample.normalize(normalizer, ["Age"])

    expected_attributes = array([[0.0], [0.25], [0.5], [0.75], [1.0]])
    expected_categories = array([1, 2, 3, 4, 5])
    expected_columns = ["Age"]
    assert array_equiv(sample.attributes, expected_attributes)
    assert array_equiv(sample.categories, expected_categories)
    assert sample.columns == expected_columns
开发者ID:tolkjen,项目名称:Degree,代码行数:11,代码来源:test_sample.py


示例12: _checkSameExperimentResults

def _checkSameExperimentResults(exp1, exp2):
    """ Returns False if experiments gave same results, true if they match. """
    if not np.array_equiv(exp1.result["learning_steps"], exp2.result["learning_steps"]):
        # Same number of steps before failure (where applicable)
        return False
    if not np.array_equiv(exp1.result["return"], exp2.result["return"]):
        # Same return on each test episode
        return False
    if not np.array_equiv(exp1.result["steps"], exp2.result["steps"]):
        # Same number of steps taken on each training episode
        return False
    return True
开发者ID:okkhoy,项目名称:rlpy,代码行数:12,代码来源:test_SystemAdministrator.py


示例13: _equal

def _equal(a, b):
    #recursion on subclasses of types: tuple, list, dict
    #specifically checks             : float, ndarray
    if type(a) is float and type(b) is float:#float
        return(numpy.allclose(a, b))
    elif type(a) is numpy.ndarray and type(b) is numpy.ndarray:#ndarray
        return(numpy.array_equiv(a, b))#alternative for float-arrays: numpy.allclose(a, b[, rtol, atol])
    elif isinstance(a, dict) and isinstance(b, dict):#dict
        if len(a) != len(b):
            return(False)
        t = True
        for key, val in a.items():
            if key not in b:
                return(False)
            t = _equal(val, b[key])
            if not t:
                return(False)
        return(t)
    elif (isinstance(a, list) and isinstance(b, list)) or (isinstance(a, tuple) and isinstance(b, tuple)):#list, tuples
        if len(a) != len(b):
            return(False)
        t = True
        for vala, valb in zip(a, b):
            t = _equal(vala, valb)
            if not t:
                return(False)
        return(t)
    else:#fallback
        return(a == b)
开发者ID:esampson,项目名称:worldengine,代码行数:29,代码来源:common.py


示例14: test_agglomerative_clustering_with_distance_threshold

def test_agglomerative_clustering_with_distance_threshold(linkage):
    # Check that we obtain the correct number of clusters with
    # agglomerative clustering with distance_threshold.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)
    # test when distance threshold is set to 10
    distance_threshold = 10
    for conn in [None, connectivity]:
        clustering = AgglomerativeClustering(
            n_clusters=None,
            distance_threshold=distance_threshold,
            connectivity=conn, linkage=linkage)
        clustering.fit(X)
        clusters_produced = clustering.labels_
        num_clusters_produced = len(np.unique(clustering.labels_))
        # test if the clusters produced match the point in the linkage tree
        # where the distance exceeds the threshold
        tree_builder = _TREE_BUILDERS[linkage]
        children, n_components, n_leaves, parent, distances = \
            tree_builder(X, connectivity=conn, n_clusters=None,
                         return_distance=True)
        num_clusters_at_threshold = np.count_nonzero(
            distances >= distance_threshold) + 1
        # test number of clusters produced
        assert num_clusters_at_threshold == num_clusters_produced
        # test clusters produced
        clusters_at_threshold = _hc_cut(n_clusters=num_clusters_produced,
                                        children=children,
                                        n_leaves=n_leaves)
        assert np.array_equiv(clusters_produced,
                              clusters_at_threshold)
开发者ID:kevin-coder,项目名称:scikit-learn-fork,代码行数:34,代码来源:test_hierarchical.py


示例15: exp

 def exp(xi,tau=None):
     #given a 6x1 vector returns a SE3 object
     #may output garbage if matrix not invertible
     c=np.zeros((3,1))
     xiHat=SE3.hat(xi)
     v=np.array([[xiHat[0,3]],
                 [xiHat[1,3]],
                 [xiHat[2,3]]])
     w=np.array([[xiHat[2,1]],
                 [xiHat[0,2]],
                 [xiHat[1,0]]])
     wtrans=w.T
     what=xiHat[0:3,0:3]
     normw=np.linalg.norm(w)
     w2=w.dot(wtrans)-math.pow(normw,2)*np.eye(3)
     if tau==None:
         tau=1
         print tau
     if np.array_equiv(w,c)==False:
         ewt=np.eye(3)+(what/normw)*math.sin(tau*normw)+w2*(1-math.cos(normw*tau))/math.pow(normw,2)
         d1=np.eye(3)-ewt
         d2=d1.dot(what)/math.pow(normw,2)
         d3=d2.dot(v)
         d32=(w.dot(wtrans).dot(v)*tau)/math.pow(normw,2)
         d=d3+d32
     else:
         ewt=np.eye(3)
         d=v*tau
     expXi=np.concatenate((np.concatenate((ewt,d),axis=1),np.array([[0,0,0,1]])),axis=0)
     omegatau=SE3()
     omegatau.__M=expXi
     return omegatau
开发者ID:rtull3,项目名称:Terrabots-Work,代码行数:32,代码来源:SE3.py


示例16: test_coverage_recovery

    def test_coverage_recovery(self):
        # Create the coverage
        cov, dset = self.get_cov()
        if cov._persistence_layer.master_manager.storage_type() != 'hdf':
            # TODO: Check for something Cassandra related
            self.assertTrue(True)
        else:
            cov_pth = cov.persistence_dir
            cov.close()

            # Analyze the valid coverage
            dr = CoverageDoctor(cov_pth, 'dprod', dset)

            dr_result = dr.analyze()

            # TODO: Turn these into meaningful Asserts
            self.assertEqual(len(dr_result.get_brick_corruptions()), 0)
            self.assertEqual(len(dr_result.get_brick_size_ratios()), 6)
            self.assertEqual(len(dr_result.get_corruptions()), 0)
            self.assertEqual(len(dr_result.get_master_corruption()), 0)
            self.assertEqual(len(dr_result.get_param_corruptions()), 0)
            self.assertEqual(len(dr_result.get_param_size_ratios()), 3)
            self.assertEqual(len(dr_result.get_master_size_ratio()), 1)
            self.assertEqual(len(dr_result.get_size_ratios()), 10)
            self.assertEqual(dr_result.master_status[1], 'NORMAL')

            self.assertFalse(dr_result.is_corrupt)
            self.assertEqual(dr_result.param_file_count, 3)
            self.assertEqual(dr_result.brick_file_count, 6)
            self.assertEqual(dr_result.total_file_count, 10)

            # Get original values (mock)
            orig_cov = AbstractCoverage.load(cov_pth)
            time_vals_orig = orig_cov.get_time_values()
            orig_cov.close()

            # Corrupt the Master File
            fo = open(cov._persistence_layer.master_manager.file_path, "wb")
            fo.write('Junk')
            fo.close()
            # Corrupt the lon Parameter file
            fo = open(cov._persistence_layer.parameter_metadata['lon'].file_path, "wb")
            fo.write('Junk')
            fo.close()

            corrupt_res = dr.analyze(reanalyze=True)
            self.assertTrue(corrupt_res.is_corrupt)

            # Repair the metadata files
            dr.repair(reanalyze=True)

            fixed_res = dr.analyze(reanalyze=True)
            self.assertFalse(fixed_res.is_corrupt)

            fixed_cov = AbstractCoverage.load(cov_pth)
            self.assertIsInstance(fixed_cov, AbstractCoverage)

            time_vals_fixed = fixed_cov.get_time_values()
            fixed_cov.close()
            self.assertTrue(np.array_equiv(time_vals_orig, time_vals_fixed))
开发者ID:ooici,项目名称:coverage-model,代码行数:60,代码来源:test_recovery.py


示例17: test_every_iteration_model_updater_with_cost

def test_every_iteration_model_updater_with_cost():
    """
    Tests that the model updater can use a different attribute from loop_state as the training targets
    """

    class MockModel(IModel):
        def optimize(self):
            pass

        def set_data(self, X: np.ndarray, Y: np.ndarray):
            self._X = X
            self._Y = Y

        @property
        def X(self):
            return self._X

        @property
        def Y(self):
            return self._Y

    mock_model = MockModel()
    updater = FixedIntervalUpdater(mock_model, 1, lambda loop_state: loop_state.cost)

    loop_state_mock = mock.create_autospec(LoopState)
    loop_state_mock.iteration = 1
    loop_state_mock.X.return_value(np.random.rand(5, 1))
    loop_state_mock.cost.return_value(np.random.rand(5, 1))

    cost = np.random.rand(5, 1)
    loop_state_mock.cost.return_value(cost)
    updater.update(loop_state_mock)
    assert np.array_equiv(mock_model.X, cost)
开发者ID:JRetza,项目名称:emukit,代码行数:33,代码来源:test_loop_steps.py


示例18: _compute_alpha

 def _compute_alpha(self, y):
     # Recalculate alpha only if y is not the same as the previous y.
     if self._alpha is None or not np.array_equiv(y, self._y):
         self._y = y
         r = np.ascontiguousarray(self._check_dimensions(y)[self.inds]
                                  - self.mean(self._x), dtype=np.float64)
         self._alpha = self.solver.apply_inverse(r, in_place=True)
开发者ID:DiNAi,项目名称:george,代码行数:7,代码来源:gp.py


示例19: test_impute

def test_impute():
    d = PreprocessingDescriptor("mean", [], [], [])
    sample = Sample.from_file(from_current_dir("sample6.xlsx"))
    impute_model = d.impute(sample)
    sample.impute_nan(impute_model)

    assert array_equiv(sample.attributes, [[3], [3], [3], [3], [3]])
开发者ID:tolkjen,项目名称:Degree,代码行数:7,代码来源:test_descriptors.py


示例20: _test_patch_at

def _test_patch_at():
    size = (101, 101)
    orig = cv2.imread(os.path.abspath('tests/patch_at/test.tiff'))
    image = img2np(cv2.copyMakeBorder(orig, top=size[1], bottom=size[1], left=size[0], right=size[0],
                                      borderType=cv2.BORDER_DEFAULT))
    patch_0_0 = img2np(cv2.imread(os.path.abspath('tests/patch_at/patch_0_0.tiff')))
    patch_300_500 = img2np(cv2.imread(os.path.abspath('tests/patch_at/patch_300_500.tiff')))
    patch_500_300 = img2np(cv2.imread(os.path.abspath('tests/patch_at/patch_500_300.tiff')))
    pixels = [(51, 51), (351, 551), (551, 351)]
    outputs = (patch_0_0, patch_300_500, patch_500_300)
    for (x, y), expected in zip(pixels, outputs):
        actual = patch_at(image=image, x=x, y=y, size=size)
        actual = normalize(actual)
        expected = normalize(expected)
        try:
            assert np.array_equiv(expected, actual)
        except AssertionError:
            print "Failed: ", (x, y), expected.shape, actual.shape
            import pylab
            f = pylab.figure()
            f.add_subplot(3, 1, 1)
            pylab.imshow(np2img(actual))
            f.add_subplot(3, 1, 2)
            pylab.imshow(np2img(expected))
            f.add_subplot(3, 1, 3)
            diff = expected - actual
            pylab.imshow(np2img(diff))
            from scipy.linalg import norm
            print "Norms: ", np.sum(np.abs(diff)), norm(diff.ravel(), 0)
            pylab.show()
开发者ID:DeeperCS,项目名称:mitosis-detection,代码行数:30,代码来源:helpers.py



注:本文中的numpy.array_equiv函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.array_repr函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.array_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap