本文整理汇总了Python中numpy.asanyarray函数的典型用法代码示例。如果您正苦于以下问题:Python asanyarray函数的具体用法?Python asanyarray怎么用?Python asanyarray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了asanyarray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: ravel_indices
def ravel_indices(indices, shape):
"""
Convert nD to 1D indices for an array of given shape.
flat_indices = ravel_indices(indices, size)
:Input:
indices: array of indices. Should be integer and have shape=([S],D),
for S the "subshape" of indices array, pointing to a D dimensional array.
shape: shape of the nd-array these indices are pointing to (a tuple/list/ of length D)
:Output:
flat_indices: an array of shape S
:Note:
This is the opposite of unravel_indices: for any tuple 'shape'
ind is equal to ravel_indices(unravel_indices(ind,shape),shape)
and to unravel_indices( ravel_indices(ind,shape),shape)
"""
dim_prod = _np.cumprod([1] + list(shape)[:0:-1])[_np.newaxis,::-1]
ind = _np.asanyarray(indices)
S = ind.shape[:-1]
K = _np.asanyarray(shape).size
ind.shape = S + (K,)
return _np.sum(ind*dim_prod,-1)
开发者ID:julien-diener,项目名称:ndarray,代码行数:25,代码来源:__init__.py
示例2: fit
def fit(self, X, y, **params):
"""
Fit Ridge regression model
Parameters
----------
X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
Returns
-------
self : returns an instance of self.
"""
self._set_params(**params)
X = np.asanyarray(X, dtype=np.float)
y = np.asanyarray(y, dtype=np.float)
n_samples, n_features = X.shape
X, y, Xmean, ymean = self._center_data(X, y)
if n_samples > n_features:
# w = inv(X^t X + alpha*Id) * X.T y
self.coef_ = linalg.solve(np.dot(X.T, X) + self.alpha * np.eye(n_features), np.dot(X.T, y))
else:
# w = X.T * inv(X X^t + alpha*Id) y
self.coef_ = np.dot(X.T, linalg.solve(np.dot(X, X.T) + self.alpha * np.eye(n_samples), y))
self._set_intercept(Xmean, ymean)
return self
开发者ID:kurtosis-zz,项目名称:scikit-learn,代码行数:33,代码来源:ridge.py
示例3: eval
def eval(self, x, y):
"""Evaluate model at a given position ``(x, y)`` position.
"""
x = np.asanyarray(x, dtype=float)
y = np.asanyarray(y, dtype=float)
parvals = self.parvals(x)
return self._eval_y(y, parvals)
开发者ID:ellisowen,项目名称:gammapy,代码行数:7,代码来源:models.py
示例4: __call__
def __call__(self, projectables, **info):
if len(projectables) != 2:
raise ValueError("Expected 2 datasets, got %d" %
(len(projectables), ))
# TODO: support datasets with palette to delegate this to the image
# writer.
data, palette = projectables
palette = np.asanyarray(palette).squeeze() / 255.0
colormap = self.build_colormap(palette, data.dtype, data.attrs)
channels, colors = colormap.palettize(np.asanyarray(data.squeeze()))
channels = palette[channels]
fill_value = data.attrs.get('_FillValue', np.nan)
if np.isnan(fill_value):
mask = data.notnull()
else:
mask = data != data.attrs['_FillValue']
r = xr.DataArray(channels[:, :, 0].reshape(data.shape),
dims=data.dims, coords=data.coords,
attrs=data.attrs).where(mask)
g = xr.DataArray(channels[:, :, 1].reshape(data.shape),
dims=data.dims, coords=data.coords,
attrs=data.attrs).where(mask)
b = xr.DataArray(channels[:, :, 2].reshape(data.shape),
dims=data.dims, coords=data.coords,
attrs=data.attrs).where(mask)
res = super(PaletteCompositor, self).__call__((r, g, b), **data.attrs)
res.attrs['_FillValue'] = np.nan
return res
开发者ID:davidh-ssec,项目名称:satpy,代码行数:32,代码来源:__init__.py
示例5: fit
def fit(self, X, y):
"""
Fit linear model.
Parameters
----------
X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
Returns
-------
self : returns an instance of self.
"""
X = np.asanyarray(X)
y = np.asanyarray(y)
X, y, X_mean, y_mean, X_std = self._center_data(X, y,
self.fit_intercept, self.normalize, self.copy_X)
self.coef_, self.residues_, self.rank_, self.singular_ = \
np.linalg.lstsq(X, y)
self._set_intercept(X_mean, y_mean, X_std)
return self
开发者ID:lymantc,项目名称:scikit-learn,代码行数:32,代码来源:base.py
示例6: __init__
def __init__(self, points, inside=None):
r"""
Parameters
----------
points : An Nx3 array of (*x*, *y*, *z*) triples in vector space
These points define the boundary of the polygon. It must
be "closed", i.e., the last point is the same as the first.
It may contain zero points, in which it defines the null
polygon. It may not contain one, two or three points.
Four points are needed to define a triangle, since the
polygon must be closed.
inside : An (*x*, *y*, *z*) triple, optional
This point must be inside the polygon. If not provided, the
mean of the points will be used.
"""
if len(points) == 0:
# handle special case of initializing with an empty list of
# vertices (ticket #1079).
self._inside = np.zeros(3)
self._points = np.asanyarray(points)
return
elif len(points) < 3:
raise ValueError("Polygon made of too few points")
else:
assert np.array_equal(points[0], points[-1]), 'Polygon is not closed'
self._points = points = np.asanyarray(points)
if inside is None:
self._inside = self._find_new_inside(points)
else:
self._inside = np.asanyarray(inside)
开发者ID:jhunkeler,项目名称:stsci.sphere,代码行数:34,代码来源:polygon.py
示例7: chi2
def chi2(N_S, B, S, sigma2):
r"""Chi-square statistic with user-specified variance.
.. math::
\chi^2 = \frac{(N_S - B - S) ^ 2}{\sigma ^ 2}
Parameters
----------
N_S : array_like
Number of observed counts
B : array_like
Model background
S : array_like
Model signal
sigma2 : array_like
Variance
Returns
-------
stat : ndarray
Statistic per bin
References
----------
* Sherpa stats page (http://cxc.cfa.harvard.edu/sherpa/statistics/#chisq)
"""
N_S = np.asanyarray(N_S, dtype=np.float64)
B = np.asanyarray(B, dtype=np.float64)
S = np.asanyarray(S, dtype=np.float64)
sigma2 = np.asanyarray(sigma2, dtype=np.float64)
stat = (N_S - B - S) ** 2 / sigma2
return stat
开发者ID:mahmoud-lsw,项目名称:gammapy,代码行数:35,代码来源:fit_statistics.py
示例8: fit
def fit(self, X, y, **params):
"""
Fit linear model.
Parameters
----------
X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
Returns
-------
self : returns an instance of self.
"""
self._set_params(**params)
X = np.asanyarray(X)
y = np.asanyarray(y)
X, y, Xmean, ymean = LinearModel._center_data(X, y, self.fit_intercept)
self.coef_, self.residues_, self.rank_, self.singular_ = \
np.linalg.lstsq(X, y)
self._set_intercept(Xmean, ymean)
return self
开发者ID:aayushsaxena15,项目名称:projects,代码行数:30,代码来源:base.py
示例9: predict
def predict(self, X, copy=True):
"""Apply the dimension reduction learned on the train data.
Parameters
----------
X: array-like of predictors, shape (n_samples, p)
Training vectors, where n_samples in the number of samples and
p is the number of predictors.
copy: X has to be normalize, do it on a copy or in place
with side effect!
Notes
-----
This call require the estimation of a p x q matrix, which may
be an issue in high dimensional space.
"""
# Normalize
if copy:
Xc = (np.asanyarray(X) - self.x_mean_)
else:
X = np.asanyarray(X)
Xc -= self.x_mean_
Xc /= self.x_std_
Ypred = np.dot(Xc, self.coefs)
return Ypred + self.y_mean_
开发者ID:dattanchu,项目名称:scikit-learn,代码行数:25,代码来源:pls.py
示例10: background_error
def background_error(n_off, alpha):
r"""Estimate standard error on background
in the on region from an off-region observation.
.. math::
\Delta\mu_{bkg} = \alpha \times \sqrt{n_{off}}
Parameters
----------
n_off : array_like
Observed number of counts in the off region
alpha : array_like
On / off region exposure ratio for background events
Returns
-------
background : ndarray
Background estimate for the on region
Examples
--------
>>> background_error(n_off=4, alpha=0.1)
0.2
>>> background_error(n_off=9, alpha=0.2)
0.6
"""
n_off = np.asanyarray(n_off, dtype=np.float64)
alpha = np.asanyarray(alpha, dtype=np.float64)
return alpha * sqrt(n_off)
开发者ID:registerrier,项目名称:gammapy,代码行数:31,代码来源:poisson.py
示例11: excess
def excess(n_on, n_off, alpha):
r"""Estimate excess in the on region for an on-off observation.
.. math::
\mu_{excess} = n_{on} - \alpha \times n_{off}
Parameters
----------
n_on : array_like
Observed number of counts in the on region
n_off : array_like
Observed number of counts in the off region
alpha : array_like
On / off region exposure ratio for background events
Returns
-------
excess : ndarray
Excess estimate for the on region
Examples
--------
>>> excess(n_on=10, n_off=20, alpha=0.1)
8.0
>>> excess(n_on=4, n_off=9, alpha=0.5)
-0.5
"""
n_on = np.asanyarray(n_on, dtype=np.float64)
n_off = np.asanyarray(n_off, dtype=np.float64)
alpha = np.asanyarray(alpha, dtype=np.float64)
return n_on - alpha * n_off
开发者ID:registerrier,项目名称:gammapy,代码行数:33,代码来源:poisson.py
示例12: background
def background(n_off, alpha):
r"""Estimate background in the on-region from an off-region observation.
.. math::
\mu_{background} = \alpha \times n_{off}
Parameters
----------
n_off : array_like
Observed number of counts in the off region
alpha : array_like
On / off region exposure ratio for background events
Returns
-------
background : ndarray
Background estimate for the on region
Examples
--------
>>> background(n_off=4, alpha=0.1)
0.4
>>> background(n_off=9, alpha=0.2)
1.8
"""
n_off = np.asanyarray(n_off, dtype=np.float64)
alpha = np.asanyarray(alpha, dtype=np.float64)
return alpha * n_off
开发者ID:registerrier,项目名称:gammapy,代码行数:30,代码来源:poisson.py
示例13: fit
def fit(self, X, y, **params):
"""Fit the model using X, y as training data
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values, array of integer values.
params : list of keyword, optional
Overwrite keywords from __init__
"""
X = np.asanyarray(X)
if y is None:
raise ValueError("y must not be None")
self._y = np.asanyarray(y)
self._set_params(**params)
if self.algorithm == 'ball_tree' or \
(self.algorithm == 'auto' and X.shape[1] < 20):
self.ball_tree = BallTree(X, self.window_size)
else:
self.ball_tree = None
self._fit_X = X
return self
开发者ID:scollis,项目名称:scikit-learn,代码行数:27,代码来源:neighbors.py
示例14: unravel_indices
def unravel_indices(indices,shape):
"""
Convert indices in a flatten array to nD indices of the array with given shape.
nd_indices = unravel_indices(indices, shape)
:Input:
indices: array/list/tuple of flat indices. Should be integer, of any shape S
shape: nD shape of the array these indices are pointing to
:Output:
nd_indices: a nd-array of shape [S]xK, where
[S] is the shape of indices input argument
and K the size (number of element) of shape
:Note:
The algorithm has been inspired from numpy.unravel_index
and can be seen as a generalization that manage set of indices
However, it does not return tuples and no assertion is done on
the input indices before convertion:
The output indices might be negative or bigger than the array size
This is the opposite of ravel_indices: for any tuple 'shape'
ind is equal to ravel_indices(unravel_indices(ind,shape),shape)
and to unravel_indices( ravel_indices(ind,shape),shape)
"""
dim_prod = _np.cumprod([1] + list(shape)[:0:-1])[::-1]
ind = _np.asanyarray(indices)
S = ind.shape
K = _np.asanyarray(shape).size
ndInd = ind.ravel()[:,_np.newaxis]/dim_prod % shape
ndInd.shape = S + (K,)
return ndInd
开发者ID:julien-diener,项目名称:ndarray,代码行数:34,代码来源:__init__.py
示例15: interp
def interp(x, xp, fp, left=None, right=None):
"""
Like numpy.interp except for handling of running sequences of
same values in `xp`.
"""
x = numpy.asanyarray(x)
xp = numpy.asanyarray(xp)
fp = numpy.asanyarray(fp)
if xp.shape != fp.shape:
raise ValueError("xp and fp must have the same shape")
ind = numpy.searchsorted(xp, x, side="right")
fx = numpy.zeros(len(x))
under = ind == 0
over = ind == len(xp)
between = ~under & ~over
fx[under] = left if left is not None else fp[0]
fx[over] = right if right is not None else fp[-1]
if right is not None:
# Fix points exactly on the right boundary.
fx[x == xp[-1]] = fp[-1]
ind = ind[between]
df = (fp[ind] - fp[ind - 1]) / (xp[ind] - xp[ind - 1])
fx[between] = df * (x[between] - xp[ind]) + fp[ind]
return fx
开发者ID:randxie,项目名称:orange3,代码行数:33,代码来源:owrocanalysis.py
示例16: fit
def fit(self, X, y):
X = np.asanyarray(X, dtype='d')
y = np.asanyarray(y, dtype='d')
n = X.shape[0]
num_dists = self.num_dists
if self.num_dists > n:
raise ParameterException('Number of distances is greater than ' + \
'num rows in X')
if self.num_dists <= 0:
self.R = None
else:
rand_idx = np.random.choice(X.shape[0], int(num_dists), replace=False)
self.R = X[rand_idx]
D = np.exp(-1.0 * ((cdist(X, self.R) ** 2) / (2 * (self.sigma ** 2))))
X = np.hstack((X, D))
#Un-comment for mrse code
#X, y = mrse_transform(X, y)
self.model = self.base_learner.fit(X, y)
return self
开发者ID:flaviovdf,项目名称:ecmlpkdd-analytics-challenge-2014,代码行数:25,代码来源:rbf.py
示例17: get_loss
def get_loss(self, state, action, reward, state_prime, episode_end):
s = Variable(cuda.to_gpu(state))
s_dash = Variable(cuda.to_gpu(state_prime))
q = self.model.q_function(s) # Get Q-value
# Generate Target Signals
tmp = self.model_target.q_function(s_dash) # Q(s',*)
tmp = list(map(np.max, tmp.data)) # max_a Q(s',a)
max_q_prime = np.asanyarray(tmp, dtype=np.float32)
target = np.asanyarray(copy.deepcopy(q.data.get()), dtype=np.float32)
for i in range(self.replay_size):
if episode_end[i][0] is True:
tmp_ = np.sign(reward[i])
else:
# The sign of reward is used as the reward of DQN!
tmp_ = np.sign(reward[i]) + self.gamma * max_q_prime[i]
target[i, action[i]] = tmp_
# TD-error clipping
td = Variable(cuda.to_gpu(target)) - q # TD error
td_tmp = td.data + 1000.0 * (abs(td.data) <= 1) # Avoid zero division
td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)
zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.n_act), dtype=np.float32)))
loss = F.mean_squared_error(td_clip, zero_val)
return loss, q
开发者ID:aaronzhudp,项目名称:DQN-chainer,代码行数:29,代码来源:dqn_agent.py
示例18: rv2coe
def rv2coe(k, r, v):
"""Converts r, v to classical orbital elements.
This is a wrapper around rv2coe from ast2body.for.
Parameters
----------
k : float
Standard gravitational parameter (km^3 / s^2).
r : array
Position vector (km).
v : array
Velocity vector (km / s).
Examples
--------
Vallado 2001, example 2-5
>>> r = [6524.834, 6862.875, 6448.296]
>>> v = [4.901327, 5.533756, -1.976341]
>>> k = 3.986e5
>>> rv2coe(k, r, v)
(36127.55012131963, 0.83285427644495158, 1.5336055626394494,
3.9775750028016947, 0.93174413995595795, 1.6115511711293014)
"""
# TODO: Extend for additional arguments arglat, truelon, lonper
r = np.asanyarray(r).astype(np.float)
v = np.asanyarray(v).astype(np.float)
_, a, ecc, inc, omega, argp, nu, _, _, _, _ = _ast2body.rv2coe(r, v, k)
coe = np.vstack((a, ecc, inc, omega, argp, nu))
if coe.shape[-1] == 1:
coe = coe[:, 0]
return coe
开发者ID:Jorge-C,项目名称:poliastro,代码行数:33,代码来源:twobody.py
示例19: set_value
def set_value(self, value, force=False):
# Record new value and increment counter
# Value can't be updated if observed=True
if self.observed and not force:
raise AttributeError('Stochastic '+self.__name__+'\'s value cannot be updated if observed flag is set')
if self.verbose > 0:
print_('\t' + self.__name__ + ': value set to ', value)
# Save current value as last_value
# Don't copy because caching depends on the object's reference.
self.last_value = self._value
if self.mask is None:
if self.dtype.kind != 'O':
self._value = asanyarray(value, dtype=self.dtype)
self._value.flags['W']=False
else:
self._value = value
else:
new_value = self.value.copy()
new_value[self.mask] = asanyarray(value, dtype=self.dtype)[self.mask]
self._value = new_value
self.counter.click()
开发者ID:DanieloNicolo,项目名称:pymc,代码行数:30,代码来源:PyMCObjects.py
示例20: kepler
def kepler(k, r0, v0, tof):
"""Propagates orbit.
This is a wrapper around kepler from ast2body.for.
Parameters
----------
k : float
Gravitational constant of main attractor (km^3 / s^2).
r0 : array
Initial position (km).
v0 : array
Initial velocity (km).
tof : float
Time of flight (s).
Raises
------
RuntimeError
If the status of the subroutine is not 'ok'.
"""
r0 = np.asanyarray(r0).astype(np.float)
v0 = np.asanyarray(v0).astype(np.float)
tof = float(tof)
assert r0.shape == (3,)
assert v0.shape == (3,)
r, v, error = _ast2body.kepler(r0, v0, tof, k)
error = error.strip().decode('ascii')
if error != 'ok':
raise RuntimeError("There was an error: {}".format(error))
return r, v
开发者ID:Jorge-C,项目名称:poliastro,代码行数:32,代码来源:twobody.py
注:本文中的numpy.asanyarray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论