本文整理汇总了Python中numpy.ascontiguousarray函数的典型用法代码示例。如果您正苦于以下问题:Python ascontiguousarray函数的具体用法?Python ascontiguousarray怎么用?Python ascontiguousarray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ascontiguousarray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: getPeakProperty
def getPeakProperty(self, p_name):
"""
Return a numpy array containing the requested property.
"""
if not p_name in self.peak_properties:
raise MultiFitterException("No such property '" + p_name + "'")
# Properties that are calculated from other properties.
if(self.peak_properties[p_name] == "compound"):
# Return 0 length array if there are no localizations.
if(self.getNFit() == 0):
return numpy.zeros(0, dtype = numpy.float64)
# Peak significance calculation.
if(p_name == "significance"):
bg_sum = self.getPeakProperty("bg_sum")
fg_sum = self.getPeakProperty("fg_sum")
return fg_sum/numpy.sqrt(bg_sum)
# Floating point properties.
elif(self.peak_properties[p_name] == "float"):
values = numpy.ascontiguousarray(numpy.zeros(self.getNFit(), dtype = numpy.float64))
self.clib.mFitGetPeakPropertyDouble(self.mfit,
values,
ctypes.c_char_p(p_name.encode()))
return values
# Integer properties.
elif(self.peak_properties[p_name] == "int"):
values = numpy.ascontiguousarray(numpy.zeros(self.getNFit(), dtype = numpy.int32))
self.clib.mFitGetPeakPropertyInt(self.mfit,
values,
ctypes.c_char_p(p_name.encode()))
return values
开发者ID:ZhuangLab,项目名称:storm-analysis,代码行数:35,代码来源:dao_fit_c.py
示例2: test_mem_layout
def test_mem_layout():
# Test with different memory layouts of X and y
X_ = np.asfortranarray(X)
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X_, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
X_ = np.ascontiguousarray(X)
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X_, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
y_ = np.asarray(y, dtype=np.int32)
y_ = np.ascontiguousarray(y_)
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X, y_)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
y_ = np.asarray(y, dtype=np.int32)
y_ = np.asfortranarray(y_)
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
clf.fit(X, y_)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
开发者ID:amueller,项目名称:scikit-learn,代码行数:27,代码来源:test_gradient_boosting.py
示例3: __init__
def __init__(self,tracks,colors=None, line_width=2.,affine=None):
if affine==None:
self.affine=np.eye(4)
else: self.affine=affine
self.tracks_no=len(tracks)
self.tracks_len=[len(t) for t in tracks]
self.tracks=tracks
self.vertices = np.ascontiguousarray(np.concatenate(self.tracks).astype('f4'))
if colors==None:
self.colors = np.ascontiguousarray(np.ones((len(self.vertices),4)).astype('f4'))
else:
if isinstance(colors, (list, tuple)):
self.colors = np.tile(colors,(np.sum(self.tracks_len),1))
self.colors = np.ascontiguousarray(colors.astype('f4'))
self.vptr=self.vertices.ctypes.data
self.cptr=self.colors.ctypes.data
self.count=np.array(self.tracks_len, dtype=np.int32)
self.first=np.r_[0,np.cumsum(self.count)[:-1]].astype(np.int32)
self.firstptr=self.first.ctypes.data
self.countptr=self.count.ctypes.data
self.line_width=line_width
self.items=self.tracks_no
self.show_aabb = False
mn=self.vertices.min()
mx=self.vertices.max()
self.make_aabb((np.array([mn,mn,mn]),np.array([mx,mx,mx])),margin = 0)
开发者ID:fos,项目名称:fos-legacy,代码行数:26,代码来源:line.py
示例4: sorted_points_and_ids
def sorted_points_and_ids(xin, yin, zin, xperiod, yperiod, zperiod,
approx_xcell_size, approx_ycell_size, approx_zcell_size):
""" Determine the cell_id of every point, sort the points
according to cell_id, and return the sorted points as well as
the cell id indexing array.
Notes
-----
The x-coordinates of points with cell_id = icell are given by
xout[cell_id_indices[icell]:cell_id_indices[icell+1]].
"""
npts = len(xin)
num_xdivs, xcell_size = determine_cell_size(xperiod, approx_xcell_size)
num_ydivs, ycell_size = determine_cell_size(yperiod, approx_ycell_size)
num_zdivs, zcell_size = determine_cell_size(zperiod, approx_zcell_size)
ncells = num_xdivs*num_ydivs*num_zdivs
ix = digitized_position(xin, xcell_size, num_xdivs)
iy = digitized_position(yin, ycell_size, num_ydivs)
iz = digitized_position(zin, zcell_size, num_zdivs)
cell_ids = cell_id_from_cell_tuple(ix, iy, iz, num_ydivs, num_zdivs)
cell_id_sorting_indices = np.argsort(cell_ids)
cell_id_indices = np.searchsorted(cell_ids, np.arange(ncells),
sorter = cell_id_sorting_indices)
cell_id_indices = np.append(cell_id_indices, npts)
xout = np.ascontiguousarray(xin[cell_id_sorting_indices], dtype=np.float64)
yout = np.ascontiguousarray(yin[cell_id_sorting_indices], dtype=np.float64)
zout = np.ascontiguousarray(zin[cell_id_sorting_indices], dtype=np.float64)
cell_id_indices = np.ascontiguousarray(cell_id_indices, dtype=np.int64)
return xout, yout, zout, cell_id_indices
开发者ID:aphearin,项目名称:cython_periodic_pair_counters,代码行数:35,代码来源:tree_module.py
示例5: _compute_targets
def _compute_targets(rois, overlaps, labels):
"""Compute bounding-box regression targets for an image."""
# Indices of ground-truth ROIs
gt_inds = np.where(overlaps == 1)[0]
if len(gt_inds) == 0:
# Bail if the image has no ground-truth ROIs
return np.zeros((rois.shape[0], 5), dtype=np.float32)
# Indices of examples for which we try to make predictions
ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]
# Get IoU overlap between each ex ROI and gt ROI
ex_gt_overlaps = bbox_overlaps(
np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))
# Find which gt ROI each ex ROI has max overlap with:
# this will be the ex ROI's gt target
gt_assignment = ex_gt_overlaps.argmax(axis=1)
gt_rois = rois[gt_inds[gt_assignment], :]
ex_rois = rois[ex_inds, :]
targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
targets[ex_inds, 0] = labels[ex_inds]
targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
return targets
开发者ID:minimrbanana,项目名称:py-faster-rcnn-train,代码行数:25,代码来源:roidb.py
示例6: __iter__
def __iter__(self):
''' This is were all the fun starts '''
x, y, z, g = self.a.shape
# for all seeds
for i in range(self.seed_no):
if self.seed_list == None:
rx = (x - 1) * np.random.rand()
ry = (y - 1) * np.random.rand()
rz = (z - 1) * np.random.rand()
seed = np.ascontiguousarray(
np.array([rx, ry, rz]), dtype=np.float64)
else:
seed = np.ascontiguousarray(
self.seed_list[i], dtype=np.float64)
# for all peaks
for ref in range(g):
track = eudx_both_directions(seed.copy(),
ref,
self.a,
self.ind,
self.odf_vertices,
self.a_low,
self.ang_thr,
self.step_sz,
self.total_weight,
self.max_points)
if track == None:
pass
else:
if track.shape[0] > 1:
yield track + self.voxel_shift
开发者ID:gsangui,项目名称:dipy,代码行数:32,代码来源:eudx.py
示例7: _handle_input
def _handle_input(image, selem, out, mask, out_dtype=None):
if image.dtype not in (np.uint8, np.uint16):
image = img_as_ubyte(image)
selem = np.ascontiguousarray(img_as_ubyte(selem > 0))
image = np.ascontiguousarray(image)
if mask is None:
mask = np.ones(image.shape, dtype=np.uint8)
else:
mask = img_as_ubyte(mask)
mask = np.ascontiguousarray(mask)
if out is None:
if out_dtype is None:
out_dtype = image.dtype
out = np.empty_like(image, dtype=out_dtype)
if image is out:
raise NotImplementedError("Cannot perform rank operation in place.")
is_8bit = image.dtype in (np.uint8, np.int8)
if is_8bit:
max_bin = 255
else:
max_bin = max(4, image.max())
bitdepth = int(np.log2(max_bin))
if bitdepth > 10:
warnings.warn("Bitdepth of %d may result in bad rank filter "
"performance due to large number of bins." % bitdepth)
return image, selem, out, mask, max_bin
开发者ID:gmnamra,项目名称:scikit-image,代码行数:35,代码来源:generic.py
示例8: __init__
def __init__(self, x, y, z, Lbox, cell_size):
"""
Initialize the grid.
Parameters
----------
x, y, z : arrays
Length-Npts arrays containing the spatial position of the Npts points.
Lbox : float
Length scale defining the periodic boundary conditions
cell_size : float
The approximate cell size into which the box will be divided.
"""
self.cell_size = cell_size.astype(np.float)
self.Lbox = Lbox.astype(np.float)
self.num_divs = np.floor(Lbox/cell_size).astype(int)
self.dL = Lbox/self.num_divs
#build grid tree
idx_sorted, slice_array = self.compute_cell_structure(x, y, z)
self.x = np.ascontiguousarray(x[idx_sorted],dtype=np.float64)
self.y = np.ascontiguousarray(y[idx_sorted],dtype=np.float64)
self.z = np.ascontiguousarray(z[idx_sorted],dtype=np.float64)
self.slice_array = slice_array
self.idx_sorted = idx_sorted
开发者ID:lanakurdi,项目名称:halotools,代码行数:28,代码来源:rect_cuboid.py
示例9: optimum_reparam_pair
def optimum_reparam_pair(q, time, q1, q2, lam=0.0):
"""
calculates the warping to align srsf pair q1 and q2 to q
:param q: vector of size N or array of NxM samples of first SRSF
:param time: vector of size N describing the sample points
:param q1: vector of size N or array of NxM samples samples of second SRSF
:param q2: vector of size N or array of NxM samples samples of second SRSF
:param lam: controls the amount of elasticity (default = 0.0)
:rtype: vector
:return gam: describing the warping function used to align q2 with q1
"""
if q1.ndim == 1 and q2.ndim == 1:
q_c = column_stack((q1, q2))
gam = orN.coptimum_reparam_pair(ascontiguousarray(q), time,
ascontiguousarray(q_c), lam)
if q1.ndim == 2 and q2.ndim == 2:
gam = orN.coptimum_reparamN2_pair(ascontiguousarray(q), time,
ascontiguousarray(q1),
ascontiguousarray(q2), lam)
return gam
开发者ID:glemaitre,项目名称:fdasrsf,代码行数:25,代码来源:utility_functions.py
示例10: do_parameter_selection
def do_parameter_selection(argv):
path, test_path = argv;
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,
'min_samples_leaf':1, 'random_state':None, 'do_consider_correct':1,
'learn_rate': 0.2, 'n1': 2000, 'n2': 1, 'tau': 0.01};
print 'loading data...'
X, dr, sr, groups = load_dataset(path)
test_X, test_rd, test_rs, test_groups = load_dataset(test_path);
# test_X = np.asfortranarray(test_X, dtype=DTYPE);
test_rd = np.ascontiguousarray(test_rd);
test_rs = np.ascontiguousarray(test_rs);
test_docpair_samples = DocPairSampler(np.random.RandomState()).sample(test_rd, test_groups, 20000);
from sklearn.grid_search import IterGrid;
param_grid = IterGrid({'n_estimators':[200,400,600,800,1000], 'n1':[1000,2000,5000], 'learn_rate':[.1,.2,.3] });
for param in param_grid:
print param;
params.update(param);
ranker = GradientBoostingRanker(**params);
ranker.fit(X, dr, sr, groups);
test_y_pred = ranker.predict(test_X);
test_pred_sort_groups = PredictSortGroups(test_y_pred, test_groups);
test_loss = ranker.loss_(test_rd, test_rs, test_y_pred, test_groups, test_pred_sort_groups, ranker.random_state, test_docpair_samples);
print ranker.train_score_[-1], test_loss;
开发者ID:jinghe,项目名称:window_shopper,代码行数:25,代码来源:gradient_boosting_ranker.py
示例11: read
def read(self):
"""Read the visibilities and return as a (data,weight) tuple. """
print "Reading " + str(self.data_size()) + " samples..."
data = numpy.ascontiguousarray(numpy.zeros(self._imagingdata.dataSize, dtype=numpy.complex128))
weights = numpy.ascontiguousarray(numpy.zeros(self._imagingdata.dataSize, dtype=numpy.float64))
_wsclean.read(self._userdata, data, weights)
return data, weights
开发者ID:o-smirnov,项目名称:wsclean-1.9,代码行数:7,代码来源:pywsclean.py
示例12: tucker_als
def tucker_als(idx, val, shape, core_shape, iters=25, growth_tol=0.01, batch_run=False):
'''
The function computes Tucker ALS decomposition of sparse tensor
provided in COO format. Usage:
u0, u1, u2, g = newtuck(idx, val, shape, core_shape)
'''
def log_status(msg):
if not batch_run:
print msg
if not (idx.flags.c_contiguous and val.flags.c_contiguous):
raise ValueError('Warning! Imput arrays must be C-contigous.')
#TODO: it's better to implement check for future
#if np.any(idx[1:, 0]-idx[:-1, 0]) < 0):
# print 'Warning! Index array must be sorted by first column in ascending order.'
r0, r1, r2 = core_shape
u1 = np.random.rand(shape[1], r1)
u1 = np.linalg.qr(u1, mode='reduced')[0]
u2 = np.random.rand(shape[2], r2)
u2 = np.linalg.qr(u2, mode='reduced')[0]
u1 = np.ascontiguousarray(u1)
u2 = np.ascontiguousarray(u2)
g_norm_old = 0
for i in xrange(iters):
log_status('Step %i of %i' % (i+1, iters))
u0 = tensordot2(idx, val, shape, u2, u1, ((2, 0), (1, 0)))\
.reshape(shape[0], r1*r2)
uu = np.linalg.svd(u0, full_matrices=0)[0]
u0 = np.ascontiguousarray(uu[:, :r0])
u1 = tensordot2(idx, val, shape, u2, u0, ((2, 0), (0, 0)))\
.reshape(shape[1], r0*r2)
uu = np.linalg.svd(u1, full_matrices=0)[0]
u1 = np.ascontiguousarray(uu[:, :r1])
u2 = tensordot2(idx, val, shape, u1, u0, ((1, 0), (0, 0)))\
.reshape(shape[2], r0*r1)
uu, ss, vv = np.linalg.svd(u2, full_matrices=0)
u2 = np.ascontiguousarray(uu[:, :r2])
g_norm_new = np.linalg.norm(np.diag(ss[:r2]))
g_growth = (g_norm_new - g_norm_old) / g_norm_new
g_norm_old = g_norm_new
log_status('growth of the core: %f' % g_growth)
if g_growth < growth_tol:
log_status('Core is no longer growing. Norm of the core: %f' % g_norm_old)
break
g = np.diag(ss[:r2]).dot(vv[:r2, :])
g = g.reshape(r2, r1, r0).transpose(2, 1, 0)
log_status('Done')
return u0, u1, u2, g
开发者ID:Evfro,项目名称:fifty-shades,代码行数:60,代码来源:hosvd.py
示例13: initializeC
def initializeC(self, image):
super(MultiFitterZ, self).initializeC(image)
self.clib.daoInitializeZ(self.mfit,
numpy.ascontiguousarray(self.wx_params),
numpy.ascontiguousarray(self.wy_params),
self.min_z,
self.max_z)
开发者ID:ZhuangLab,项目名称:storm-analysis,代码行数:7,代码来源:dao_fit_c.py
示例14: read_sparse_array
def read_sparse_array(self, hdr):
''' Read sparse matrix type
Matlab (TM) 4 real sparse arrays are saved in a N+1 by 3 array
format, where N is the number of non-zero values. Column 1 values
[0:N] are the (1-based) row indices of the each non-zero value,
column 2 [0:N] are the column indices, column 3 [0:N] are the
(real) values. The last values [-1,0:2] of the rows, column
indices are shape[0] and shape[1] respectively of the output
matrix. The last value for the values column is a padding 0. mrows
and ncols values from the header give the shape of the stored
matrix, here [N+1, 3]. Complex data is saved as a 4 column
matrix, where the fourth column contains the imaginary component;
the last value is again 0. Complex sparse data do _not_ have the
header imagf field set to True; the fact that the data are complex
is only detectable because there are 4 storage columns
'''
res = self.read_sub_array(hdr)
tmp = res[:-1,:]
dims = res[-1,0:2]
I = np.ascontiguousarray(tmp[:,0],dtype='intc') #fixes byte order also
J = np.ascontiguousarray(tmp[:,1],dtype='intc')
I -= 1 # for 1-based indexing
J -= 1
if res.shape[1] == 3:
V = np.ascontiguousarray(tmp[:,2],dtype='float')
else:
V = np.ascontiguousarray(tmp[:,2],dtype='complex')
V.imag = tmp[:,3]
return scipy.sparse.coo_matrix((V,(I,J)), dims)
开发者ID:BeeRad-Johnson,项目名称:scipy-refactor,代码行数:30,代码来源:mio4.py
示例15: hist_3d_index
def hist_3d_index(x, y, z, shape):
"""
Fast 3d histogram of 3D indices with C++ inner loop optimization.
Is more than 2 orders faster than np.histogramdd() and uses less RAM.
The indices are given in x, y, z coordinates and have to fit into a histogram of the dimensions shape.
Parameters
----------
x : array like
y : array like
z : array like
shape : tuple
tuple with x,y,z dimensions: (x, y, z)
Returns
-------
np.ndarray with given shape
"""
if len(shape) != 3:
raise ValueError('The shape has to describe a 3-d histogram')
# change memory alignment for c++ library
x = np.ascontiguousarray(x.astype(np.int32))
y = np.ascontiguousarray(y.astype(np.int32))
z = np.ascontiguousarray(z.astype(np.int32))
result = np.zeros(shape=shape, dtype=np.uint32).ravel() # ravel hist in c-style, 3D --> 1D
compiled_analysis_functions.hist_3d(x, y, z, shape[0], shape[1], shape[2], result)
return np.reshape(result, shape) # rebuilt 3D hist from 1D hist
开发者ID:SiLab-Bonn,项目名称:silab_utils,代码行数:28,代码来源:analysis_utils.py
示例16: _set_data
def _set_data(self, coors, ngroups, conns, mat_ids, descs, nodal_bcs=None):
"""
Set mesh data.
Parameters
----------
coors : array
Coordinates of mesh nodes.
ngroups : array
Node groups.
conns : list of arrays
The array of mesh elements (connectivities) for each element group.
mat_ids : list of arrays
The array of material ids for each element group.
descs: list of strings
The element type for each element group.
nodal_bcs : dict of arrays, optional
The nodes defining regions for boundary conditions referred
to by the dict keys in problem description files.
"""
self.coors = nm.ascontiguousarray(coors)
if ngroups is None:
self.ngroups = nm.zeros((self.coors.shape[0],), dtype=nm.int32)
else:
self.ngroups = nm.ascontiguousarray(ngroups)
self.conns = [nm.asarray(conn, dtype=nm.int32) for conn in conns]
self.mat_ids = [nm.asarray(mat_id, dtype=nm.int32)
for mat_id in mat_ids]
self.descs = descs
self.nodal_bcs = get_default(nodal_bcs, {})
开发者ID:LeiDai,项目名称:sfepy,代码行数:33,代码来源:mesh.py
示例17: lasso
def lasso(X, Y, B=None, lam=1., max_iter=None, tol=None):
'''
B = lasso(X, Y, B={np.zeros()}, lam=1. max_iter={1024}, tol={1e-5})
Solve LASSO Optimisation
B* = arg min_B ½/n || Y - BX ||₂² + λ||B||₁
where $n$ is the number of samples.
Milk uses coordinate descent, looping through the coordinates in order
(with an active set strategy to update only non-zero βs, if possible). The
problem is convex and the solution is guaranteed to be optimal (within
floating point accuracy).
Parameters
----------
X : ndarray
Design matrix
Y : ndarray
Matrix of outputs
B : ndarray, optional
Starting values for approximation. This can be used for a warm start if
you have an estimate of where the solution should be. If used, the
solution might be written in-place (if the array has the right format).
lam : float, optional
λ (default: 1.0)
max_iter : int, optional
Maximum nr of iterations (default: 1024)
tol : float, optional
Tolerance. Whenever a parameter is to be updated by a value smaller
than ``tolerance``, that is considered a null update. Be careful that
if the value is too small, performance will degrade horribly.
(default: 1e-5)
Returns
-------
B : ndarray
'''
X = np.ascontiguousarray(X, dtype=np.float32)
Y = np.ascontiguousarray(Y, dtype=np.float32)
if B is None:
B = np.zeros((Y.shape[0],X.shape[0]), np.float32)
else:
B = np.ascontiguousarray(B, dtype=np.float32)
if max_iter is None:
max_iter = 1024
if tol is None:
tol = 1e-5
if X.shape[0] != B.shape[1] or \
Y.shape[0] != B.shape[0] or \
X.shape[1] != Y.shape[1]:
raise ValueError('milk.supervised.lasso: Dimensions do not match')
if np.any(np.isnan(X)) or np.any(np.isnan(B)):
raise ValueError('milk.supervised.lasso: NaNs are only supported in the ``Y`` matrix')
W = np.ascontiguousarray(~np.isnan(Y), dtype=np.float32)
Y = np.nan_to_num(Y)
n = Y.size
_lasso.lasso(X, Y, W, B, max_iter, float(2*n*lam), float(tol))
return B
开发者ID:takesxi-shimada,项目名称:milk,代码行数:60,代码来源:lasso.py
示例18: fit
def fit(self,X,y,k=None,sorted=False):
"""
:param sorted:
:param X:
:param y:
:param k:
"""
X = np.asarray(X)
y = np.asarray(y)
if not X.flags['C_CONTIGUOUS']:
X = np.ascontiguousarray(X)
if not y.flags['C_CONTIGUOUS']:
y = np.ascontiguousarray(y)
assert y.ndim == 1
if X.ndim > 1:
assert X.ndim==2 and (X.shape[0] == y.shape[0] or X.shape[1] == y.shape[0])
if(X.shape[0] != y.shape[0]):
X = X.transpose()
self.N = X.shape[1]
else:
assert X.shape[0] == y.shape[0]
self.N = 1
if k == None:
k = []
for i in range(0,self.N):
k.append(3)
k = list(k)
assert len(k) == self.N
self.f.fit(X,y,k,sorted)
开发者ID:dgevans,项目名称:SplinePython,代码行数:33,代码来源:Spline.py
示例19: propagate
def propagate(image, labels, mask, weight):
"""Propagate the labels to the nearest pixels
image - gives the Z height when computing distance
labels - the labeled image pixels
mask - only label pixels within the mask
weight - the weighting of x/y distance vs z distance
high numbers favor x/y, low favor z
returns a label matrix and the computed distances
"""
if image.shape != labels.shape:
raise ValueError("Image shape %s != label shape %s"%(repr(image.shape),repr(labels.shape)))
if image.shape != mask.shape:
raise ValueError("Image shape %s != mask shape %s"%(repr(image.shape),repr(mask.shape)))
labels_out = np.zeros(labels.shape, np.int32)
distances = -np.ones(labels.shape,np.float64)
distances[labels > 0] = 0
labels_and_mask = np.logical_and(labels != 0, mask)
coords = np.argwhere(labels_and_mask)
i1,i2 = _propagate.convert_to_ints(0.0)
ncoords = coords.shape[0]
pq = np.column_stack((np.ones((ncoords,),int) * i1,
np.ones((ncoords,),int) * i2,
labels[labels_and_mask],
coords))
_propagate.propagate(np.ascontiguousarray(image,np.float64),
np.ascontiguousarray(pq,np.int32),
np.ascontiguousarray(mask,np.int8),
labels_out, distances, float(weight))
labels_out[labels > 0] = labels[labels > 0]
return labels_out,distances
开发者ID:jsilter,项目名称:CellProfiler,代码行数:32,代码来源:propagate.py
示例20: DoubleInPointerFilter_assign_fail_test
def DoubleInPointerFilter_assign_fail_test():
import numpy as np
from ATK.Core import DoubleInPointerFilter
d = np.ascontiguousarray(np.arange(1000, dtype=np.float64)[None,:])
filter = DoubleInPointerFilter(d, False)
d = np.ascontiguousarray(np.arange(1000, dtype=np.float64).reshape(2,-1))
filter.set_pointer(d)
开发者ID:mbrucher,项目名称:AudioTK,代码行数:7,代码来源:PyATKPointer_test.py
注:本文中的numpy.ascontiguousarray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论