本文整理汇总了Python中numpy.atleast_3d函数的典型用法代码示例。如果您正苦于以下问题:Python atleast_3d函数的具体用法?Python atleast_3d怎么用?Python atleast_3d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了atleast_3d函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: getAvgAmplitudes
def getAvgAmplitudes(event_array, trace_array, time_range=None):
"""This routine takes an event_array (time x cells) and
corresponding trace array and returns the average amplitudes of
events in each cell.
:param: event_array - 2 or 3d numpy event array (time x cells, or time x cells x trials)
:param: time_range - optional list of 2 numbers limiting the time range to count events
:returns: 2d masked numpy array of event average amplitudes. size is cells x largest number of events.
masked entries are account for variable number of events
"""
event_array = np.atleast_3d(event_array)
trace_array= np.atleast_3d(trace_array)
max_num_events = getCounts(event_array).max()
time, cells, trials = event_array.shape
amps = np.zeros((cells, trials, int(max_num_events)))
amps[:] = np.nan
for cell in range(cells):
for trial in range(trials):
event_ids = np.unique(event_array[:,cell,trial])[1:]
for i, event_id in enumerate(event_ids):
amps[cell, trial, i] = trace_array[event_array == event_id].mean()
amps = np.ma.array(amps, mask=np.isnan(amps))
amps = np.squeeze(amps)
return np.ma.masked_array(amps, np.isnan(amps))
开发者ID:BCJongbloets,项目名称:d_code,代码行数:28,代码来源:eventRoutines.py
示例2: hausdorffnorm
def hausdorffnorm(A, B):
'''
Finds the hausdorff norm between two matrices A and B.
INPUTS:
A: numpy array
B : numpy array
OUTPUTS:
Housdorff norm between matrices A and B
'''
# ensure matrices are 3 dimensional, and shaped conformably
if len(A.shape) == 1:
A = np.atleast_2d(A)
if len(B.shape) == 1:
B = np.atleast_2d(B)
A = np.atleast_3d(A)
B = np.atleast_3d(B)
x, y, z = B.shape
A = np.reshape(A, (z, x, y))
B = np.reshape(B, (z, x, y))
# find hausdorff norm: starting from A to B
z, x, y = B.shape
temp1 = np.tile(np.reshape(B.T, (y, z, x)), (max(A.shape), 1))
temp2 = np.tile(np.reshape(A.T, (y, x, z)), (1, max(B.shape)))
D1 = np.min(np.sqrt(np.sum((temp1-temp2)**2, 0)), axis=0)
# starting from B to A
temp1 = np.tile(np.reshape(A.T, (y, z, x)), (max(B.shape), 1))
temp2 = np.tile(np.reshape(B.T, (y, x, z)), (1, max(A.shape)))
D2 = np.min(np.sqrt(np.sum((temp1-temp2)**2, 0)), axis=0)
return np.max([D1, D2])
开发者ID:btengels,项目名称:supergametools,代码行数:35,代码来源:supergametools.py
示例3: _viewStatesNGL
def _viewStatesNGL(self, states, statetype, protein, ligand, mols, numsamples):
if states is None:
states = range(self.macronum)
if isinstance(states, int):
states = [states]
if mols is None:
mols = self.getStates(states, statetype, numsamples=min(numsamples, 15))
colors = [0, 1, 3, 4, 5, 6, 7, 9]
if protein is None and ligand is None:
raise NameError('Please provide either the "protein" or "ligand" parameter for viewStates.')
if protein:
mol = Molecule()
if ligand:
mol = mols[0].copy()
mol.remove(ligand, _logger=False)
mol.coords = np.atleast_3d(mol.coords[:, :, 0])
mol.reps.add(sel='protein', style='NewCartoon', color='Secondary Structure')
for i, s in enumerate(states):
if protein:
mol.reps.add(sel='segid ST{}'.format(s), style='NewCartoon', color='Index')
if ligand:
mol.reps.add(sel='segid ST{}'.format(s), style='Licorice', color=colors[np.mod(i, len(colors))])
mols[i].filter(ligand, _logger=False)
mols[i].set('segid', 'ST{}'.format(s))
tmpcoo = mols[i].coords
for j in range(mols[i].numFrames):
mols[i].coords = np.atleast_3d(tmpcoo[:, :, j])
mol.append(mols[i])
w = mol.view(viewer='ngl')
self._nglButtons(w, statetype, states)
return w
开发者ID:PabloHN,项目名称:htmd,代码行数:33,代码来源:model.py
示例4: convertRotMatToRisoeU
def convertRotMatToRisoeU(rMats, U0, symTag='Oh'):
"""
Makes GrainSpotter gff ouput
U11 U12 U13 U21 U22 U23 U13 U23 U33
and takes it into the LLNL/APS frame of reference
Urows comes from grainspotter's gff output
U0 comes from XRD.crystallography.latticeVectors.U0
"""
R = hexrd.XRD.Rotations # formerly import
numU = num.shape(num.atleast_3d(rMats))[0]
Rsamp = num.dot( R.rotMatOfExpMap(piby2*Zl), R.rotMatOfExpMap(piby2*Yl) )
qin = R.quatOfRotMat(num.atleast_3d(rMats))
print "quaternions in (LLNL convention):"
print qin.T
qout = num.dot( R.quatProductMatrix( R.quatOfRotMat(Rsamp.T), mult='left' ), \
num.dot( R.quatProductMatrix( R.quatOfRotMat(U0), mult='right'), \
qin ).squeeze() ).squeeze()
if qout.ndim == 1:
qout = toFundamentalRegion(qout.reshape(4, 1), crysSym=symTag, sampSym=None)
else:
qout = toFundamentalRegion(qout, crysSym=symTag, sampSym=None)
print "quaternions out (Risoe convention, symmetrically reduced)"
print qout.T
Uout = R.rotMatOfQuat(qout)
return Uout
开发者ID:jschuren,项目名称:hexrd,代码行数:30,代码来源:indexer.py
示例5: depth_image
def depth_image(self):
self._call_on_changed()
gl = self.glb
gl.Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
gl.PolygonMode(GL_FRONT_AND_BACK, GL_FILL)
draw_noncolored_verts(gl, self.camera.v.r, self.f)
result = np.asarray(deepcopy(gl.getDepth()), np.float64)
if self.overdraw:
gl.PolygonMode(GL_FRONT_AND_BACK, GL_LINE)
draw_noncolored_verts(gl, self.camera.v.r, self.f)
overdraw = np.asarray(deepcopy(gl.getDepth()), np.float64)
gl.PolygonMode(GL_FRONT_AND_BACK, GL_FILL)
boundarybool_image = self.boundarybool_image
result = overdraw*boundarybool_image + result*(1-boundarybool_image)
if hasattr(self, 'background_image'):
if False: # has problems at boundaries, not sure why yet
bg_px = self.visibility_image == 4294967295
fg_px = 1 - bg_px
result = bg_px * self.background_image + fg_px * result
else:
tmp = np.concatenate((np.atleast_3d(result), np.atleast_3d(self.background_image)), axis=2)
result = np.min(tmp, axis=2)
return result
开发者ID:cadik,项目名称:opendr,代码行数:28,代码来源:renderer.py
示例6: GetPSF
def GetPSF(self, vshint = None):
psfKey = (self.psfType, self.psfFilename, self.lorentzianFWHM, self.beadDiameter)
if not psfKey in self._psfCache.keys():
if self.psfType == 'file':
psf, vs = np.load(self.psfFilename)
psf = np.atleast_3d(psf)
self._psfCache[psfKey] = (psf, vs)
elif (self.psfType == 'Laplace'):
from scipy import stats
sc = self.lorentzianFWHM/2.0
X, Y = np.mgrid[-30.:31., -30.:31.]
R = np.sqrt(X*X + Y*Y)
if not vshint is None:
vx = vshint[0]
else:
vx = sc/2.
vs = type('vs', (object,), dict(x=vx/1e3, y=vx/1e3))
psf = np.atleast_3d(stats.cauchy.pdf(vx*R, scale=sc))
self._psfCache[psfKey] = (psf/psf.sum(), vs)
elif (self.psfType == 'bead'):
from PYME.Deconv import beadGen
psf = beadGen.genBeadImage(self.beadDiameter/2, vshint)
vs = type('vs', (object,), dict(x=vshint[0]/1e3, y=vshint[1]/1e3))
self._psfCache[psfKey] = (psf/psf.sum(), vs)
return self._psfCache[psfKey]
开发者ID:RuralCat,项目名称:CLipPYME,代码行数:35,代码来源:filters.py
示例7: convertRotMatToFableU
def convertRotMatToFableU(rMats, U0=num.eye(3), symTag='Oh', display=False):
"""
Makes GrainSpotter gff ouput
U11 U12 U13 U21 U22 U23 U13 U23 U33
and takes it into the hexrd/APS frame of reference
Urows comes from grainspotter's gff output
U0 comes from xrd.crystallography.latticeVectors.U0
"""
numU = num.shape(num.atleast_3d(rMats))[0]
qin = quatOfRotMat(num.atleast_3d(rMats))
qout = num.dot( quatProductMatrix( quatOfRotMat(fableSampCOB.T), mult='left' ), \
num.dot( quatProductMatrix( quatOfRotMat(U0), mult='right'), \
qin ).squeeze() ).squeeze()
if qout.ndim == 1:
qout = toFundamentalRegion(qout.reshape(4, 1), crysSym=symTag, sampSym=None)
else:
qout = toFundamentalRegion(qout, crysSym=symTag, sampSym=None)
if display:
print "quaternions in (hexrd convention):"
print qin.T
print "quaternions out (Fable convention, symmetrically reduced)"
print qout.T
pass
Uout = rotMatOfQuat(qout)
return Uout
开发者ID:B-Rich,项目名称:hexrd,代码行数:29,代码来源:indexer.py
示例8: _raw_predict
def _raw_predict(self, Xnew, full_cov=False, kern=None):
"""
Make a prediction for the latent function values
"""
if kern is None: kern = self.kern
if not isinstance(Xnew, VariationalPosterior):
Kx = kern.K(self.Z, Xnew)
mu = np.dot(Kx.T, self.posterior.woodbury_vector)
if full_cov:
Kxx = kern.K(Xnew)
if self.posterior.woodbury_inv.ndim == 2:
var = Kxx - np.dot(Kx.T, np.dot(self.posterior.woodbury_inv, Kx))
elif self.posterior.woodbury_inv.ndim == 3:
var = Kxx[:,:,None] - np.tensordot(np.dot(np.atleast_3d(self.posterior.woodbury_inv).T, Kx).T, Kx, [1,0]).swapaxes(1,2)
var = var
else:
Kxx = kern.Kdiag(Xnew)
var = (Kxx - np.sum(np.dot(np.atleast_3d(self.posterior.woodbury_inv).T, Kx) * Kx[None,:,:], 1)).T
else:
Kx = kern.psi1(self.Z, Xnew)
mu = np.dot(Kx, self.posterior.woodbury_vector)
if full_cov:
raise NotImplementedError, "TODO"
else:
Kxx = kern.psi0(self.Z, Xnew)
psi2 = kern.psi2(self.Z, Xnew)
var = Kxx - np.sum(np.sum(psi2 * Kmmi_LmiBLmi[None, :, :], 1), 1)
return mu, var
开发者ID:dshah244,项目名称:GPy,代码行数:30,代码来源:sparse_gp_minibatch.py
示例9: Project
def Project(self, projType):
import numpy as np
from PYME.DSView.image import ImageStack
from PYME.DSView import ViewIm3D
import os
if projType == 'mean':
filt_ims = [np.atleast_3d(self.image.data[:,:,:,chanNum].mean(2)) for chanNum in range(self.image.data.shape[3])]
elif projType == 'max':
filt_ims = [np.atleast_3d(self.image.data[:,:,:,chanNum].max(2)) for chanNum in range(self.image.data.shape[3])]
fns = os.path.split(self.image.filename)[1]
im = ImageStack(filt_ims, titleStub = '%s - %s' %(fns, projType))
im.mdh.copyEntriesFrom(self.image.mdh)
im.mdh['Parent'] = self.image.filename
im.mdh['Processing.Projection'] = projType
if self.dsviewer.mode == 'visGUI':
mode = 'visGUI'
else:
mode = 'lite'
dv = ViewIm3D(im, mode=mode, glCanvas=self.dsviewer.glCanvas)
#set scaling to (0,1)
for i in range(im.data.shape[3]):
dv.do.Gains[i] = 1.0
开发者ID:RuralCat,项目名称:CLipPYME,代码行数:28,代码来源:filtering.py
示例10: getXYZ
def getXYZ(self):
""" Get XYZ values in world coordinates for each pixel.
Usage: XYZ = self.getXYZ()
Input:
-NONE-
Output:
XYZ - M-by-N-by-3 matrix of [X Y Z] world coordinates for each pixel
"""
if self.XY is not None:
return np.c_[np.atleast_3d(self.XY), np.atleast_3d(self)]
else:
x = np.arange(0, self.width)
y = np.arange(0, self.height)
xx, yy = np.meshgrid(x, y)
XY = np.zeros((self.height, self.width, 2))
# From depth map to Point Cloud --> use focal distance
XY[:, :, 0] = (xx - self.K[0, 2]) / self.K[0, 0]
XY[:, :, 1] = (yy - self.K[1, 2]) / self.K[1, 1]
XY = XY * np.atleast_3d(self)
return np.c_[np.atleast_3d(self.XY), np.atleast_3d(self)]
开发者ID:DavidB-CMU,项目名称:moped,代码行数:26,代码来源:PCloud.py
示例11: append
def append(self, *args):
if len(args)<1:
pass
else:
smp=self.mapped_parameters
print args
for arg in args:
#object parameters
mp=arg.mapped_parameters
if mp.original_filename not in smp.original_files.keys():
smp.original_files[mp.original_filename]=arg
# add the data to the aggregate array
if self.data==None:
self.data=np.atleast_3d(arg.data)
else:
self.data=np.append(self.data,np.atleast_3d(arg.data),axis=2)
print "File %s added to aggregate."%mp.original_filename
else:
print "Data from file %s already in this aggregate. \n \
Delete it first if you want to update it."%mp.original_filename
# refresh the axes for the new sized data
self.axes_manager=AxesManager(self._get_undefined_axes_list())
smp.original_filename="Aggregate Image: %s"%smp.original_files.keys()
self.summary()
开发者ID:keflavich,项目名称:hyperspy,代码行数:25,代码来源:aggregate.py
示例12: GetPSF
def GetPSF(self, vshint = None):
import numpy as np
from scipy import stats
PSFMode = self.nb2.GetCurrentPage().PSFMode
#get PSF from file
if PSFMode == 'File':
psf, vs = np.load(self.GetPSFFilename())
psf = np.atleast_3d(psf)
return (self.GetPSFFilename(), psf, vs)
elif (PSFMode == 'Laplace'):
sc = float(self.tLaplaceFWHM.GetValue())/2.0
X, Y = np.mgrid[-30.:31., -30.:31.]
R = np.sqrt(X*X + Y*Y)
if not vshint == None:
vx = vshint*1e3
else:
vx = sc/2.
vs = type('vs', (object,), dict(x=vx/1e3, y=vx/1e3))
psf = np.atleast_3d(stats.cauchy.pdf(vx*R, scale=sc))
return 'Generated Laplacian, FWHM=%f' % (2*sc), psf/psf.sum(), vs
开发者ID:RuralCat,项目名称:CLipPYME,代码行数:26,代码来源:deconvDialogs.py
示例13: __init__
def __init__(self, root, noise, option):
self.root = root
self.nFeatures = 4
self.kernelSize = 3
self.poolLength = 2
self.nLambda = 112
self.batchSize = 64
self.nClasses = [50] * 12
self.noise = noise
self.option = option
self.labels = ['T0', 'T1', 'T2', 'vmic', 'B0', 'B1', 'v0', 'v1', 'thB0', 'thB1', 'chiB0', 'chiB1']
self.n_pars = len(self.labels)
# BField, theta, chi, vmac, damping, B0, B1, doppler, kl
self.lower = np.asarray([-3000.0, -1500.0, -3000.0, 0.0, 0.0, 0.0, -7.0, -7.0, 0.0, 0.0, 0.0, 0.0], dtype='float32')
self.upper = np.asarray([3000.0, 3000.0, 5000.0, 4.0, 3000.0, 3000.0, 7.0, 7.0, 180.0, 180.0, 180.0, 180.0], dtype='float32')
self.dataFile = "../database/database_sir.h5"
f = h5py.File(self.dataFile, 'r')
pars = f.get("parameters")
stokes = f.get("stokes")
self.nModels, _ = pars.shape
self.nTraining = int(self.nModels * 0.9)
self.nValidation = int(self.nModels * 0.1)
# Standardize Stokes parameters
std_values = np.std(np.abs(stokes[0:self.nTraining,:,:]),axis=0)
stokes /= std_values[None,:,:]
# Save normalization values
np.save('{0}_normalization.npy'.format(self.root), std_values)
print("Training set: {0}".format(self.nTraining))
print("Validation set: {0}".format(self.nValidation))
self.inTrain = []
for i in range(4):
self.inTrain.append(np.atleast_3d(stokes[0:self.nTraining,i,:]).astype('float32'))
self.inTest = []
for i in range(4):
self.inTest.append(np.atleast_3d(stokes[self.nTraining:,i,:]).astype('float32'))
self.outTrain = []
for i in range(self.n_pars):
outTrain = np.floor((pars[0:self.nTraining, i] - self.lower[i]) / (self.upper[i] - self.lower[i]) * self.nClasses[i]).astype('int32')
self.outTrain.append(np_utils.to_categorical(outTrain, self.nClasses[i]))
self.outTest = []
for i in range(self.n_pars):
outTest = np.floor((pars[self.nTraining:, i] - self.lower[i]) / (self.upper[i] - self.lower[i]) * self.nClasses[i]).astype('int32')
self.outTest.append(np_utils.to_categorical(outTest, self.nClasses[i]))
f.close()
开发者ID:aasensio,项目名称:DNHazel,代码行数:59,代码来源:train.py
示例14: regression_plot
def regression_plot(Z,X,band_names=None,visible_only=True,figsize=(12,7)):
"""
Produce a figure with a plot for each image band that displays the
relationship between depth and radiance and gives a visual representation
of the regression carried out in the `slopes` and `regressions` methods.
Notes
-----
This method doesn't come directly from Lyzenga 1978 but the author of this
code found it helpful.
Parameters
----------
Z : np.ma.MaskedArray
Array of depth values repeated for each band so that Z.shape==X.shape.
The mask needs to be the same too so that Z.mask==X.mask for all the
bands.
X : np.ma.MaskedArray
The array of log transformed radiance values from equation B1 of
Lyzenga 1978.
Returns
-------
figure
A matplotlib figure.
"""
if band_names is None:
band_names = ['Band'+str(i+1) for i in range(X.shape[-1])]
nbands = X.shape[-1]
if np.atleast_3d(Z).shape[-1] == 1:
Z = np.repeat(np.atleast_3d(Z), nbands, 2)
if visible_only:
fig, axs = plt.subplots( 2, 3, figsize=figsize)
else:
fig, axs = plt.subplots( 2, 4, figsize=figsize )
regs = regressions(Z,X)
for i, ax in enumerate(axs.flatten()):
if i > nbands-1:
continue
slp, incpt, rval = regs[:,i]
# print X.shape, Z.shape
x, y = equalize_array_masks(Z[...,i], X[...,i])
if x.count() < 2:
continue
x, y = x.compressed(), y.compressed()
# print "i = {}, x.shape = {}, y.shape = {}".format(i, x.shape, y.shape)
ax.scatter( x, y, alpha=0.1, edgecolor='none', c='gold' )
smth = lowess(y,x,frac=0.2)
# ax.plot(smth.T[0],smth.T[1],c='black',alpha=0.5)
ax.plot(smth.T[0],smth.T[1],c='black',alpha=0.5,linestyle='--')
reglabel = "m=%.2f, r=%.2f" % (slp,rval)
f = lambda x: incpt + slp * x
ax.plot( x, f(x), c='brown', label=reglabel, alpha=1.0 )
ax.set_title( band_names[i] )
ax.set_xlabel( r'Depth (m)' )
ax.set_ylabel( r'$X_i$' )
ax.legend(fancybox=True, framealpha=0.5)
plt.tight_layout()
return fig
开发者ID:jkibele,项目名称:OpticalRS,代码行数:59,代码来源:Lyzenga1978.py
示例15: load_texture
def load_texture(self, filename, gray=False, blur=False):
print "Loading texture from " + filename
self.pixels = np.atleast_3d(scipy.misc.imread(filename, flatten=gray))
if blur:
self.pixels = \
np.atleast_3d(scipy.misc.imfilter(self.pixels.squeeze(),
'blur'))
print "Done loading texture"
开发者ID:azgo14,项目名称:CS283,代码行数:8,代码来源:texture.py
示例16: update
def update(fig):
"""Fit new pointing model and update plots."""
# Perform early redraw to improve interactivity of clicks (which typically change state of target dots)
# Target state: 0 = flagged, 1 = unflagged, 2 = highlighted
target_state = keep * ((target_index == fig.highlighted_target) + 1)
# Specify colours of flagged, unflagged and highlighted dots, respectively, as RGBA tuples
dot_colors = np.choose(target_state, np.atleast_3d(np.vstack([(1,1,1,1), (0,0,1,1), (1,0,0,1)]))).T
for ax in fig.axes[:7]:
ax.dots.set_facecolors(dot_colors)
fig.canvas.draw()
# Fit new pointing model and update results
params, sigma_params = new_model.fit(az[keep], el[keep], measured_delta_az[keep], measured_delta_el[keep],
std_delta_az[keep], std_delta_el[keep], enabled_params)
new.update(new_model)
# Update rest of figure
fig.texts[3].set_text("$\chi^2$ = %.1f" % new.chi2)
fig.texts[4].set_text("all sky rms = %.3f' (robust %.3f')" % (new.sky_rms, new.robust_sky_rms))
new.metrics(target_index == fig.highlighted_target)
fig.texts[5].set_text("target sky rms = %.3f' (robust %.3f')" % (new.sky_rms, new.robust_sky_rms))
new.metrics(keep)
fig.texts[-1].set_text(unique_targets[fig.highlighted_target])
# Update model parameter strings
for p, param in enumerate(display_params):
fig.texts[2*p + 6].set_text(param_to_str(new_model, param) if enabled_params[param] else '')
# HACK to convert sigmas to arcminutes, but not for P9 and P12 (which are scale factors)
# This functionality should really reside inside the PointingModel class
std_param = rad2deg(sigma_params[param]) * 60. if param not in [8, 11] else sigma_params[param]
std_param_str = ("%.2f'" % std_param) if param not in [8, 11] else ("%.0e" % std_param)
fig.texts[2*p + 7].set_text(std_param_str if enabled_params[param] and opts.use_stats else '')
# Turn parameter string bold if it changed significantly from old value
if np.abs(params[param] - old_model.values()[param]) > 3.0 * sigma_params[param]:
fig.texts[2*p + 6].set_weight('bold')
fig.texts[2*p + 7].set_weight('bold')
else:
fig.texts[2*p + 6].set_weight('normal')
fig.texts[2*p + 7].set_weight('normal')
daz_az, del_az, daz_el, del_el, quiver, before, after = fig.axes[:7]
# Update quiver plot
quiver_scale = 0.1 * fig.quiver_scale_slider.val * np.pi / 6 / deg2rad(old.robust_sky_rms / 60.)
quiver.quiv.set_segments(quiver_segments(new.residual_az, new.residual_el, quiver_scale))
quiver.quiv.set_color(np.choose(keep, np.atleast_3d(np.vstack([(0.3,0.3,0.3,0.2), (0.3,0.3,0.3,1)]))).T)
# Update residual plots
daz_az.dots.set_offsets(np.c_[rad2deg(az), rad2deg(new.residual_xel) * 60.])
del_az.dots.set_offsets(np.c_[rad2deg(az), rad2deg(new.residual_el) * 60.])
daz_el.dots.set_offsets(np.c_[rad2deg(el), rad2deg(new.residual_xel) * 60.])
del_el.dots.set_offsets(np.c_[rad2deg(el), rad2deg(new.residual_el) * 60.])
after.dots.set_offsets(np.c_[np.arctan2(new.residual_el, new.residual_xel), new.abs_sky_error])
resid_lim = 1.2 * max(new.abs_sky_error.max(), old.abs_sky_error.max())
daz_az.set_ylim(-resid_lim, resid_lim)
del_az.set_ylim(-resid_lim, resid_lim)
daz_el.set_ylim(-resid_lim, resid_lim)
del_el.set_ylim(-resid_lim, resid_lim)
before.set_ylim(0, resid_lim)
after.set_ylim(0, resid_lim)
# Redraw the figure
fig.canvas.draw()
开发者ID:tony2heads,项目名称:reduction,代码行数:58,代码来源:fit_pointing_model.py
示例17: __init__
def __init__(self, root, noise, option):
self.root = root
self.nFeatures = 100
self.kernelSize = 3
self.poolLength = 2
self.nLambda = 50
self.batchSize = 256
self.nClasses = [50, 50, 50, 50, 10, 20, 20, 20, 20]
self.noise = noise
self.option = option
# BField, theta, chi, vmac, damping, B0, B1, doppler, kl
self.lower = np.asarray([0.0, 0.0, 0.0, -7.0, 0.0, 0.15, 0.15, 0.20, 1.0], dtype='float32')
self.upper = np.asarray([3000.0, 180.0, 180.0, 7.0, 0.5, 1.2, 1.2, 0.80, 5.0], dtype='float32')
self.dataFile = "/net/duna/scratch1/aasensio/deepLearning/milne/database/database_6301_hinode_1component.h5"
f = h5py.File(self.dataFile, 'r')
pars = f.get("parameters")
stokes = f.get("stokes")
self.nModels, _ = pars.shape
std_values = np.std(np.abs(stokes),axis=0)
stokes /= std_values[None,:,:]
self.sigma_noise = 1e-3 / np.mean(std_values, axis=0)
# Save normalization values
np.save('{0}_normalization.npy'.format(self.root), std_values)
self.nTraining = int(self.nModels * 0.9)
self.nValidation = int(self.nModels * 0.1)
print("Training set: {0}".format(self.nTraining))
print("Validation set: {0}".format(self.nValidation))
self.inTrain = []
for i in range(4):
self.inTrain.append(np.atleast_3d(stokes[0:self.nTraining,:,i]).astype('float32'))
self.inTest = []
for i in range(4):
self.inTest.append(np.atleast_3d(stokes[self.nTraining:,:,i]).astype('float32'))
self.outTrain = []
for i in range(9):
outTrain = np.floor((pars[0:self.nTraining, i] - self.lower[i]) / (self.upper[i] - self.lower[i]) * self.nClasses[i]).astype('int32')
self.outTrain.append(np_utils.to_categorical(outTrain, self.nClasses[i]))
self.outTest = []
for i in range(9):
outTest = np.floor((pars[self.nTraining:, i] - self.lower[i]) / (self.upper[i] - self.lower[i]) * self.nClasses[i]).astype('int32')
self.outTest.append(np_utils.to_categorical(outTest, self.nClasses[i]))
f.close()
开发者ID:aasensio,项目名称:DNHazel,代码行数:56,代码来源:train_6301_hinode_1component_noise.py
示例18: merge3D
def merge3D(A, B, position):
A = np.atleast_3d(A)
B = np.atleast_3d(B)
mat_temp = np.nan * np.ones([max(A.shape[0] + position[0], B.shape[0]), max(position[1] + A.shape[1], B.shape[1]),
max(position[2] + A.shape[2], B.shape[2])])
mat_temp[0:B.shape[0], 0:B.shape[1], 0:B.shape[2]] = B
mat_temp[position[0]:position[0] + A.shape[0], position[1]:position[1] + A.shape[1],
position[2]:position[2] + A.shape[2]] = A
return mat_temp
开发者ID:megavolts,项目名称:sea_ice,代码行数:11,代码来源:toolbox.py
示例19: covariance
def covariance(self):
"""
Posterior covariance
$$
K_{xx} - K_{xx}W_{xx}^{-1}K_{xx}
W_{xx} := \texttt{Woodbury inv}
$$
"""
if self._covariance is None:
#LiK, _ = dtrtrs(self.woodbury_chol, self._K, lower=1)
self._covariance = (np.atleast_3d(self._K) - np.tensordot(np.dot(np.atleast_3d(self.woodbury_inv).T, self._K), self._K, [1,0]).T).squeeze()
#self._covariance = self._K - self._K.dot(self.woodbury_inv).dot(self._K)
return self._covariance
开发者ID:Arthurkorn,项目名称:GPy,代码行数:13,代码来源:posterior.py
示例20: get_transparent_item_heights_and_mask
def get_transparent_item_heights_and_mask(self, low_limit, high_limit):
low_limit_3d = numpy.atleast_3d(low_limit)
high_limit_3d = numpy.atleast_3d(high_limit)
max_height = self.blocks.shape[2]
shape = self.blocks.shape
trimmed_shape = (shape[0], shape[1], shape[2]-1)
cell_depth = numpy.indices(trimmed_shape)[2]
cell_is_selected = numpy.logical_and(cell_depth>=low_limit_3d, cell_depth<high_limit_3d)
selectable_substance = numpy.logical_and(tileid_is_transparent[self.blocks[:,:,:-1]], self.blocks[:,:,:-1] != 0)
potential_blocks = numpy.logical_and(selectable_substance, cell_is_selected)
floor_heights = (max_height-2)-numpy.argmax(potential_blocks[:,:,::-1], axis=2)
mask = get_cells_using_heightmap(potential_blocks, floor_heights)
return numpy.clip(floor_heights, low_limit, high_limit), mask
开发者ID:weeble,项目名称:clockworkcodex_minemap,代码行数:13,代码来源:mapfun.py
注:本文中的numpy.atleast_3d函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论