• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.bitwise_not函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.bitwise_not函数的典型用法代码示例。如果您正苦于以下问题:Python bitwise_not函数的具体用法?Python bitwise_not怎么用?Python bitwise_not使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了bitwise_not函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_corresponding_points

def get_corresponding_points(points1, points2, guess_tfm, rows=None, cols=None):
    """
    Returns two lists of points such that the transform explains the relation between
    pointsets the most. Also, returns the norm of the difference between point sets.
    tfm is from cam1 -> cam2
    """
    if not rows: rows = cb_rows
    if not cols: cols = cb_cols

    
    points1 = np.asarray(points1)
    points2 = np.asarray(points2)
    
    p12 = np.c_[points1,points2]
    p12 = p12[np.bitwise_not(np.isnan(p12).any(axis=1)),:]
    p1 = p12[:,0:3]
    p2 = p12[:,3:6]
    est = np.c_[p2,np.ones((p2.shape[0],1))].dot(guess_tfm.T)[:,0:3]
    dist = nlg.norm(p1-est,ord=np.inf)
    
    corr = range(rows*cols-1,-1,-1)
    p12r = np.c_[points1,points2[corr,:]]
    p12r = p12r[np.bitwise_not(np.isnan(p12r).any(axis=1)),:]
    p1r = p12r[:,0:3]
    p2r = p12r[:,3:6]
    est = np.c_[p2r,np.ones((p2r.shape[0],1))].dot(guess_tfm.T)[:,0:3]
    dist_new = nlg.norm(p1r-est, ord=np.inf)
    if dist_new < dist:
        points1, points2, dist = p1, p2, dist_new
    else:
        points1, points2 = p1, p2

    return points1, points2, dist
开发者ID:rishabh-battulwar,项目名称:human_demos,代码行数:33,代码来源:chessboard_utils.py


示例2: computeState

def computeState(isFix,md):
    ''' generic function that determines event start and end
        isFix - 1d array, time series with one element for each
            gaze data point, 1 indicates the event is on, 0 - off
        md - minimum event duration
        returns
            list with tuples with start and end for each
                event (values in frames)
            timeseries analogue to isFix but the values
                correspond to the list
    '''
    fixations=[]
    if isFix.sum()==0: return np.int32(isFix),[]
    fixon = np.bitwise_and(isFix,
        np.bitwise_not(np.roll(isFix,1))).nonzero()[0].tolist()
    fixoff=np.bitwise_and(np.roll(isFix,1),
        np.bitwise_not(isFix)).nonzero()[0].tolist()
    if len(fixon)==0 and len(fixoff)==0: fixon=[0]; fixoff=[isFix.size-1]
    if fixon[-1]>fixoff[-1]:fixoff.append(isFix.shape[0]-1)
    if fixon[0]>fixoff[0]:fixon.insert(0,0)
    if len(fixon)!=len(fixoff): print 'invalid fixonoff';raise TypeError
    for f in range(len(fixon)):
        fs=fixon[f];fe=(fixoff[f]+1);dur=fe-fs
        if  dur<md[0] or dur>md[1]:
            isFix[fs:fe]=False
        else: fixations.append([fs,fe-1])
    #fixations=np.array(fixations)
    return isFix,fixations
开发者ID:simkovic,项目名称:GoalDirectedMotionPsychoexperiments,代码行数:28,代码来源:ETData.py


示例3: plot

    def plot():

        py.plot(x[mask],
                y[mask],'bo')
        ylim = py.ylim()
        xlim = py.xlim()
        print xlim
        py.plot(x[np.bitwise_not(mask)],
                y[np.bitwise_not(mask)],'o',markerfacecolor='w')

        py.plot(xx,
                newFit(xx),'r-')

        # ylim = py.ylim()


        if xlim[0] < root < xlim[1]:
            py.plot([root,root],ylim,'r--')
        py.ylim(ylim)
        py.xlim(xlim)

        mean = np.mean(y[mask])
        py.plot(xlim,[mean,mean],
                'b--')

        py.grid()

        return
开发者ID:WIYN-ODI,项目名称:donut,代码行数:28,代码来源:test2.py


示例4: trayImage

	def trayImage(self,tray):

		xx = self._ii.max()+1
		yy = self._jj.max()+1

		map = np.zeros(xx*yy).reshape(yy,xx)
		
		for i in range(len(self._ii)):
			map[self._jj[i]][self._ii[i]] = 1.0

		xjj = self._jj[np.bitwise_not(self.obs[tray])]
		xii = self._ii[np.bitwise_not(self.obs[tray])]

		for i in range(len(xii)):
			map[xjj[i]][xii[i]] = 2.0
			
		if tray == self._repeatTray:
			maskRep = self.repeatInfo['nobs'] > 0
			idx = np.arange(len(maskRep))[maskRep]
			xjj = self._jj[maskRep]
			xii = self._ii[maskRep]
			
			for i in range(len(xii)):
				map[xjj[i]][xii[i]] += self.repeatInfo['nobs'][idx[i]]
		else:
			xjj = self._jj[np.bitwise_not(self.obs[tray])]
			xii = self._ii[np.bitwise_not(self.obs[tray])]

			for i in range(len(xii)):
				map[xjj[i]][xii[i]] = 2.0+self._nrepeat

		return map
开发者ID:tribeiro,项目名称:SMAPS,代码行数:32,代码来源:surveysimF.py


示例5: removeShortEvs

def removeShortEvs(tsin,md):
    """ >>> ts=np.array([1,1,1,0,1,1,1,0,0,1,1,1,0,0,0,1,1,1,
                0,0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1])
        >>> print ts
        >>> print removeShortEvs(ts==1,2,3) 
    """
    evs=[]
    if not np.any(tsin): return np.int32(tsin)
    if np.all(tsin): return np.int32(tsin)
    tser=np.copy(tsin)
    ton = np.bitwise_and(tser,
        np.bitwise_not(np.roll(tser,1))).nonzero()[0].tolist()
    toff=np.bitwise_and(np.roll(tser,1),
        np.bitwise_not(tser)).nonzero()[0].tolist()
    if ton[-1]>toff[-1]:toff.append(tser.shape[0])
    if ton[0]>toff[0]:ton.insert(0,0)
    assert len(ton)==len(toff)
    #print np.int32(np.bitwise_and(tser,np.bitwise_not(np.roll(tser,1))))
    #print np.int32(np.bitwise_and(np.roll(tser,1),np.bitwise_not(tser)))
    for f in range(len(ton)):
        ts=ton[f];te=toff[f];dur=te-ts
        #print ts, te,dur
        if  dur<md: tsin[ts:te]-=1
    #tsin -= temp[:,val]
    return np.int32(tsin)
开发者ID:simkovic,项目名称:GazeContingentChaseBaby,代码行数:25,代码来源:AnalysisBaby.py


示例6: draw_path

 def draw_path(self, path, color=(0.7, 0.5, 0.3)):
     points, vectors, processes = [], [], []
     for k in range(len(path)-1):
         points.append(path[k][0])
         vectors.append(path[k+1][0] - path[k][0])
         processes.append(path[k][2])
     points, vectors = np.array(points), np.array(vectors)
     processes = np.array(processes)
     pnts, vctrs = points[processes], vectors[processes]
     mlab.quiver3d(pnts[:, 0], pnts[:, 1], pnts[:, 2],
                   vctrs[:, 0], vctrs[:, 1], vctrs[:, 2],
                   color=color, mode='2ddash',
                   scale_factor=1, line_width=5.0)
     mlab.quiver3d(pnts[:, 0], pnts[:, 1], pnts[:, 2],
                   vctrs[:, 0], vctrs[:, 1], vctrs[:, 2],
                   color=color, mode='arrow',
                   scale_factor=3, scale_mode='scalar', line_width=5.0)
     pnts = points[np.bitwise_not(processes)]
     vctrs = vectors[np.bitwise_not(processes)]
     mlab.quiver3d(pnts[:, 0], pnts[:, 1], pnts[:, 2],
                   vctrs[:, 0], vctrs[:, 1], vctrs[:, 2],
                   color=(0.6, 0.6, 0.6), mode='2ddash',
                   scale_factor=1, line_width=2.0)
     mlab.quiver3d(pnts[:, 0], pnts[:, 1], pnts[:, 2],
                   vctrs[:, 0], vctrs[:, 1], vctrs[:, 2],
                   color=(0.6, 0.6, 0.6), mode='arrow',
                   scale_factor=2, scale_mode='scalar', line_width=2.0)
开发者ID:openlmd,项目名称:robpath,代码行数:27,代码来源:mlabplot.py


示例7: _numpy

    def _numpy(self, data, weights, shape):
        q = self.quantity(data)
        self._checkNPQuantity(q, shape)
        self._checkNPWeights(weights, shape)
        weights = self._makeNPWeights(weights, shape)
        newentries = weights.sum()

        import numpy

        selection = numpy.isnan(q)
        numpy.bitwise_not(selection, selection)
        subweights = weights.copy()
        subweights[selection] = 0.0
        self.nanflow._numpy(data, subweights, shape)

        # avoid nan warning in calculations by flinging the nans elsewhere
        numpy.bitwise_not(selection, selection)
        q = numpy.array(q, dtype=numpy.float64)
        q[selection] = float("-inf")
        weights = weights.copy()
        weights[selection] = 0.0

        selection = numpy.empty(q.shape, dtype=numpy.bool)
        for threshold, sub in self.bins:
            numpy.less(q, threshold, selection)
            subweights[:] = weights
            subweights[selection] = 0.0

            sub._numpy(data, subweights, shape)

        # no possibility of exception from here on out (for rollback)
        self.entries += float(newentries)
开发者ID:histogrammar,项目名称:histogrammar-python,代码行数:32,代码来源:stack.py


示例8: interpolateBlinks

def interpolateBlinks(t,d,hz):
    ''' Interpolate short missing intervals
        d - 1d array, time series with gaze data, np.nan indicates blink
        hz - gaze data recording rate
    '''
    isblink= np.isnan(d)
    if isblink.sum()<2 or isblink.sum()>(isblink.size-2): return d
    blinkon = np.bitwise_and(isblink,np.bitwise_not(
        np.roll(isblink,1))).nonzero()[0].tolist()
    blinkoff=np.bitwise_and(np.roll(isblink,1),
        np.bitwise_not(isblink)).nonzero()[0].tolist()
    if len(blinkon)==0 and len(blinkoff)==0: return d
    #print 'bla',len(blinkon), len(blinkoff)
    if blinkon[-1]>blinkoff[-1]: blinkoff.append(t.size-1)
    if blinkon[0]>blinkoff[0]: blinkon.insert(0,0)
    if len(blinkon)!=len(blinkoff):
        print 'Blink Interpolation Failed'
        raise TypeError
    f=interp1d(t[~isblink],d[~isblink],bounds_error=False)
    for b in range(len(blinkon)):
        bs=blinkon[b]-1
        be=(blinkoff[b])
        if (be-bs)<INTERPMD*hz:
            d[bs:be]=f(t[bs:be])
            #for c in [7,8]: tser[bs:be,c]=np.nan
    return d
开发者ID:simkovic,项目名称:GoalDirectedMotionPsychoexperiments,代码行数:26,代码来源:ETData.py


示例9: projectVecs2Depth

    def projectVecs2Depth(self, T, vA, vB):
        shape = vB.shape
        if len(shape) == 2:
            vC = vA + vB
            A = np.linalg.norm(vA)
            B = np.linalg.norm(vB)
            C = np.linalg.norm(vC)

            vADotvB = (vA * vB).sum()
            vBDotvC = (vB * -vC).sum()
            vADotvC = (-vC * vA).sum()
            alpha = np.arccos(vADotvB / (A * B))
            beta = np.arccos(vBDotvC / (B * C))
            gamma = np.arccos(vADotvC / (A * C))

            if alpha == PI:
                return vA / A * T
            if alpha == 0:
                return vA / A * -T
            if alpha + beta + gamma != PI:
                alpha = PI - alpha

            beta = np.arcsin(A * np.sin(alpha) / T)
            gamma = PI - alpha - beta
            B_new = np.sin(gamma) * T / np.sin(alpha)
            vB = vB / B * B_new
            vC = vA + vB
            return vC
        if len(shape) == 3:
            h, w, d = shape

            vA = vA.reshape((1, 1, 3))
            vC = vA + vB
            A = self.normVec(vA)
            B = self.normVec(vB)
            C = self.normVec(vC)

            vADotvB = (vA * vB).sum(axis=2)
            vBDotvC = (vB * -vC).sum(axis=2)
            vADotvC = (-vC * vA).sum(axis=2)
            alpha = np.arccos(vADotvB / (A * B))
            beta = np.arccos(vBDotvC / (B * C))
            gamma = np.arccos(vADotvC / (A * C))

            mask1 = alpha == 0
            mask2 = alpha + beta + gamma != PI
            alpha = alpha * np.bitwise_not(mask2) + \
                PI - alpha * mask2
            # Avoid division by zero
            alpha += 1 * mask1
            beta = np.arcsin(A * np.sin(alpha) / T)
            gamma = PI - alpha - beta
            B_new = np.sin(gamma) * T / np.sin(alpha)
            vB = vB * (B_new / B).reshape((h, w, 1))
            vC = vA + vB
            vC = vC * np.bitwise_not(mask1).reshape((h, w, 1)) + \
                (vA / A * T * mask1.reshape((h, w, 1)))
            return vC
开发者ID:sakharin,项目名称:Plot,代码行数:58,代码来源:Geometry.py


示例10: _numpy

    def _numpy(self, data, weights, shape):
        q = self.quantity(data)
        self._checkNPQuantity(q, shape)
        self._checkNPWeights(weights, shape)
        weights = self._makeNPWeights(weights, shape)
        newentries = weights.sum()

        import numpy

        selection = numpy.isnan(q)
        numpy.bitwise_not(selection, selection)
        subweights = weights.copy()
        subweights[selection] = 0.0
        self.nanflow._numpy(data, subweights, shape)

        # avoid nan warning in calculations by flinging the nans elsewhere
        numpy.bitwise_not(selection, selection)
        q = numpy.array(q, dtype=numpy.float64)
        q[selection] = self.high
        weights = weights.copy()
        weights[selection] = 0.0

        numpy.greater_equal(q, self.low, selection)
        subweights[:] = weights
        subweights[selection] = 0.0
        self.underflow._numpy(data, subweights, shape)

        numpy.less(q, self.high, selection)
        subweights[:] = weights
        subweights[selection] = 0.0
        self.overflow._numpy(data, subweights, shape)

        if all(isinstance(value, Count) and value.transform is identity for value in self.values) and numpy.all(numpy.isfinite(q)) and numpy.all(numpy.isfinite(weights)):
            # Numpy defines histograms as including the upper edge of the last bin only, so drop that
            weights[q == self.high] == 0.0

            h, _ = numpy.histogram(q, self.num, (self.low, self.high), weights=weights)

            for hi, value in zip(h, self.values):
                value.fill(None, float(hi))

        else:
            q = numpy.array(q, dtype=numpy.float64)
            numpy.subtract(q, self.low, q)
            numpy.multiply(q, self.num, q)
            numpy.divide(q, self.high - self.low, q)
            numpy.floor(q, q)
            q = numpy.array(q, dtype=int)

            for index, value in enumerate(self.values):
                numpy.not_equal(q, index, selection)
                subweights[:] = weights
                subweights[selection] = 0.0
                value._numpy(data, subweights, shape)

        # no possibility of exception from here on out (for rollback)
        self.entries += float(newentries)
开发者ID:histogrammar,项目名称:histogrammar-python,代码行数:57,代码来源:bin.py


示例11: _numpy

    def _numpy(self, data, weights, shape):
        q = self.quantity(data)
        self._checkNPQuantity(q, shape)
        self._checkNPWeights(weights, shape)
        weights = self._makeNPWeights(weights, shape)
        newentries = weights.sum()

        import numpy

        selection = numpy.isnan(q)
        numpy.bitwise_not(selection, selection)
        subweights = weights.copy()
        subweights[selection] = 0.0
        self.nanflow._numpy(data, subweights, shape)

        # avoid nan warning in calculations by flinging the nans elsewhere
        numpy.bitwise_not(selection, selection)
        q = numpy.array(q, dtype=numpy.float64)
        q[selection] = 0.0
        weights = weights.copy()
        weights[selection] = 0.0

        if all(isinstance(v, Count) and v.transform is identity for c, v in self.bins) and numpy.all(numpy.isfinite(q)) and numpy.all(numpy.isfinite(weights)):

            h, _ = numpy.histogram(q, [float("-inf")] + [(c1 + c2)/2.0 for (c1, v1), (c2, v2) in zip(self.bins[:-1], self.bins[1:])] + [float("inf")], weights=weights)

            for hi, (c, v) in zip(h, self.bins):
                v.fill(None, float(hi))

        else:
            selection = numpy.empty(q.shape, dtype=numpy.bool)
            selection2 = numpy.empty(q.shape, dtype=numpy.bool)

            for index in xrange(len(self.bins)):
                if index == 0:
                    high = (self.bins[index][0] + self.bins[index + 1][0])/2.0
                    numpy.greater_equal(q, high, selection)

                elif index == len(self.bins) - 1:
                    low = (self.bins[index - 1][0] + self.bins[index][0])/2.0
                    numpy.less(q, low, selection)

                else:
                    low = (self.bins[index - 1][0] + self.bins[index][0])/2.0
                    high = (self.bins[index][0] + self.bins[index + 1][0])/2.0
                    numpy.less(q, low, selection)
                    numpy.greater_equal(q, high, selection2)
                    numpy.bitwise_or(selection, selection2, selection)

                subweights[:] = weights
                subweights[selection] = 0.0
                self.bins[index][1]._numpy(data, subweights, shape)

        # no possibility of exception from here on out (for rollback)
        self.entries += float(newentries)
开发者ID:histogrammar,项目名称:histogrammar-python,代码行数:55,代码来源:centrallybin.py


示例12: calnewpat

def calnewpat(pat,slnroi,tabroipat,tabroi):
    print 'new pattern : ',pat

    if pat=='HCpret':
        pat1='HC'
        pat2='reticulation'

    elif pat=='HCpbro':
        pat1='HC'
        pat2='bronchiectasis'

    elif pat=='GGpbro':
        pat1='ground_glass'
        pat2='bronchiectasis'

    elif pat == 'GGpret':
        pat1='ground_glass'
        pat2='reticulation'

    elif pat=='bropret':
        pat1='bronchiectasis'
        pat2='reticulation'

    for i in slnroi:
        tab1=np.copy(tabroipat[pat1][i])
        np.putmask(tab1,tab1>0, 255)
        tab2=np.copy(tabroipat[pat2][i])
        np.putmask(tab2,tab2>0, 255)
        tab3=np.copy(tabroipat[pat][i])
        np.putmask(tab3,tab3>0, 255)
        taball=np.bitwise_or(tab2,tab1) 
        taball=np.bitwise_or(taball,tab3)
        np.putmask(taball, taball> 0, 255) 
        taballnot=np.bitwise_not(taball)


        tab=np.bitwise_and(tab1,tab2)        
        if tab.max()>0:     
            tab3=np.bitwise_or(tab3,tab)
            tabn=np.bitwise_not(tab3)      
            tab1=np.bitwise_and(tab1,tabn)
            np.putmask(tab1, tab1> 0, classif[pat1]+1)
            
            tab2=np.bitwise_and(tab2,tabn)
            np.putmask(tab2, tab2> 0, classif[pat2]+1)  
            
            np.putmask(tab, tab> 0, classif[pat]+1)            

            tabroi[i]=np.bitwise_and(tabroi[i],taballnot)             
            tabroi[i]=np.bitwise_or(tabroi[i],tab1) 
            tabroi[i]=np.bitwise_or(tabroi[i],tab2) 
            tabroi[i]=np.bitwise_or(tabroi[i],tab) 

    return tabroi
开发者ID:skconsulting,项目名称:ild,代码行数:54,代码来源:comparecalc.py


示例13: tseries2eventlist

def tseries2eventlist(tser):
    tser=np.int32(tser)
    if tser.sum()==0: return []
    d=np.bitwise_and(tser,np.bitwise_not(np.roll(tser,1)))
    on = (d[1:].nonzero()[0]+1).tolist()
    d=np.bitwise_and(np.roll(tser,1),np.bitwise_not(tser))
    off=d[1:].nonzero()[0].tolist()
    if len(off)==0:off.append(tser.shape[0]-1)
    if len(on)==0: on.insert(0,0)
    if on[-1]>off[-1]: off.append(tser.shape[0]-1)
    if on[0]>off[0]: on.insert(0,0)
    if len(on)!=len(off): print 'invalid fixonoff';raise TypeError
    out=np.array([on,off]).T
    return out.tolist()
开发者ID:gestaltrevision,项目名称:Chase,代码行数:14,代码来源:ETData.py


示例14: _numpy

    def _numpy(self, data, weights, shape):
        q = self.quantity(data)
        self._checkNPQuantity(q, shape)
        self._checkNPWeights(weights, shape)
        weights = self._makeNPWeights(weights, shape)
        newentries = weights.sum()

        import numpy

        selection = numpy.isnan(q)
        numpy.bitwise_not(selection, selection)
        subweights = weights.copy()
        subweights[selection] = 0.0
        self.nanflow._numpy(data, subweights, shape)

        # switch to float here like in bin.py else numpy throws
        # TypeError on trivial integer cases such as:
        # >>> q = numpy.array([1,2,3,4])
        # >>> np.divide(q,1,q)
        # >>> np.floor(q,q)
        q = numpy.array(q, dtype=numpy.float64)
        neginfs = numpy.isneginf(q)
        posinfs = numpy.isposinf(q)

        numpy.subtract(q, self.origin, q)
        numpy.divide(q, self.binWidth, q)
        numpy.floor(q, q)
        q = numpy.array(q, dtype=numpy.int64)
        q[neginfs] = LONG_MINUSINF
        q[posinfs] = LONG_PLUSINF

        selected = q[weights > 0.0]

        selection = numpy.empty(q.shape, dtype=numpy.bool)
        for index in numpy.unique(selected):
            if index != LONG_NAN:
                bin = self.bins.get(index)
                if bin is None:
                    bin = self.value.zero()
                    self.bins[index] = bin

                numpy.not_equal(q, index, selection)
                subweights[:] = weights
                subweights[selection] = 0.0
                bin._numpy(data, subweights, shape)

        # no possibility of exception from here on out (for rollback)
        self.entries += float(newentries)
开发者ID:histogrammar,项目名称:histogrammar-python,代码行数:48,代码来源:sparselybin.py


示例15: create_qtable

def create_qtable(gtab, origin):
    """ create a normalized version of gradients

    Parameters
    ----------
    gtab : GradientTable
    origin : (3,) ndarray
        center of qspace

    Returns
    -------
    qtable : ndarray
    """

    bv = gtab.bvals
    bsorted = np.sort(bv[np.bitwise_not(gtab.b0s_mask)])
    for i in range(len(bsorted)):
        bmin = bsorted[i]
        try:
            if np.sqrt(bv.max() / bmin) > origin + 1:
                continue
            else:
                break
        except ZeroDivisionError:
            continue

    bv = np.sqrt(bv / bmin)
    qtable = np.vstack((bv, bv, bv)).T * gtab.bvecs
    return np.floor(qtable + .5)
开发者ID:StongeEtienne,项目名称:dipy,代码行数:29,代码来源:dsi.py


示例16: _mask_trigs

def _mask_trigs(events, mask, mask_type):
    """Helper function for masking digital trigger values"""
    if mask is not None:
        if not isinstance(mask, int):
            raise TypeError('You provided a(n) %s.' % type(mask) +
                            'Mask must be an int or None.')
    n_events = len(events)
    if n_events == 0:
        return events.copy()

    if mask is not None:
        if mask_type is None:
            warn("The default setting will change from 'not_and' "
                 "to 'and' in v0.14.", DeprecationWarning)
            mask_type = 'not_and'
        if mask_type == 'not_and':
            mask = np.bitwise_not(mask)
        elif mask_type != 'and':
            if mask_type is not None:
                raise ValueError("'mask_type' should be either 'and'"
                                 " or 'not_and', instead of '%s'" % mask_type)
        events[:, 1:] = np.bitwise_and(events[:, 1:], mask)
    events = events[events[:, 1] != events[:, 2]]

    return events
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:25,代码来源:event.py


示例17: dirtnalysis

def dirtnalysis (img, res, MaskEdges=True, retSizes=False, verbose=False):
    """
    Runs molybdenum analysis on a given image. 
        Inputs: 
        - img - image as a numpy.ndarray
        - res - resolution of the image in square microns/pixel
        Key-Word Arguments:
        - MaskEdges = True - option to automatically mask off the background if 
            set to True
        - retSizes = False - option to returnt the dirt size data if set to True
        - verbose = False - prints verbose output if set to True.
        Returns a tuple containing:
            num - number of dirt particles
            area - area of the dirt in the image in square microns
            threshed - the dirt thresholded image (white dirt on black background) 
                as a numpy ndarray
            sizes[optional] -  a 1-dimensional numpy ndarray listing out the sizes
               (area) of each dirt particle in pixels 
    """
    
    # Dirt analysis
    threshed, masked = isolateDirt(img, verbose=verbose)
    area,num,sizes,labelled = meas.calcDirt(threshed, 
                                            res, 
                                            returnSizes=True,
                                            returnLabelled=True,
                                            getAreaInSquaremm=True)
    area = round(area,5)
    threshed = (masked/255)*np.bitwise_not(threshed)

    # put all results into return tuples
    if retSizes:
        return num, area, threshed, sizes
    else:
        return num, area, threshed
开发者ID:adussault,项目名称:GenesisSEMImgProc,代码行数:35,代码来源:dirt.py


示例18: fieldMask

 def fieldMask(self, field, numberOfFieldsPerCircle):
     """
     Returns a square matrix of size 3 * self.markerSizePixels, where the elements corresponding to the given field are 1, and all other elements are 0.
     """
     
     if (field, numberOfFieldsPerCircle) in self.fieldMaskCache:
         return self.fieldMaskCache[(field, numberOfFieldsPerCircle)]
     else:
         halfSize = 3 * self.markerSizePixels // 2
         result = np.zeros((halfSize * 2, halfSize * 2), dtype = np.uint8)
         fillColor = 255
         if field == 0: # Background field, return a rectangle around the circles 
             result = np.bitwise_not(self.markerMask())
         elif 0 < field and field <= 2 * numberOfFieldsPerCircle:
             if field <= numberOfFieldsPerCircle:
                 # First circle
                 y = - 3 * self.markerSizePixels // 4
                 rotationAngle = (-90 + (field - 1) * 360 // numberOfFieldsPerCircle) % 360
             else:
                 # Second circle
                 y = 3 * self.markerSizePixels // 4
                 rotationAngle = (90 - (field - numberOfFieldsPerCircle) * 360 // numberOfFieldsPerCircle) % 360
             cv2.ellipse(result, (halfSize, halfSize + y), (self.markerSizePixels // 2, self.markerSizePixels // 2), 
                         rotationAngle, 0, 360 // numberOfFieldsPerCircle, fillColor, cv2.FILLED)
         else:
             raise Exception("MarkerCandidate.fieldMask: invalid field: " + str(field))
         self.fieldMaskCache[(field, numberOfFieldsPerCircle)] = result
         return result
开发者ID:heathzj,项目名称:moped,代码行数:28,代码来源:OptiposLib.py


示例19: genebackground

def genebackground(namedir,listroi):
    for sln in listroi:
        tabpbac=np.copy(tabslung[sln])
#        
        patok=False
        for pat in usedclassifall:
            if pat !=fidclass(0,classifall):
#                print sln,pat
                tabpat=tabroipat[pat][sln]

                if tabpat.max()>0:
                    patok=True
#                    tabp=cv2.cvtColor(tabpat,cv2.COLOR_BGR2GRAY)
                    np.putmask(tabpat,tabpat>0,255)
                    mask=np.bitwise_not(tabpat)
                    tabpbac=np.bitwise_and(tabpbac,mask)
#                    print tabroipat[fidclass(0,classif)][sln].shape
                    tabroipat[fidclass(0,classifall)][sln]=tabpbac

        if patok:
            labeldir=os.path.join(namedir,fidclass(0,classifall))
            if not os.path.exists(labeldir):
               os.mkdir(labeldir)
            namepat=tabscanName[sln]+'.'+typei1
            imgcoreScan=os.path.join(labeldir,namepat)
    #                imgcoreScan=os.path.join(locadir,namepat)
            tabtowrite=colorimage(tabroipat[fidclass(0,classifall)][sln],classifc[fidclass(0,classifall)])
#            tabtowrite=colorimage(tabroipat[fidclass(0,classifall)][sln],(100,100,100))

#            tabtowrite=cv2.cvtColor(tabtowrite,cv2.COLOR_BGR2RGB)
            cv2.imwrite(imgcoreScan,tabtowrite)    
开发者ID:skconsulting,项目名称:ild,代码行数:31,代码来源:genePGre.py


示例20: highlightedImage

    def highlightedImage(self,background,motion,number):
		redChannel = background[:,:,2]
		#highlight motion
		background[:,:,2] = np.bitwise_and(np.bitwise_not(motion), redChannel) +  np.bitwise_and(motion, redChannel//3 + 168)
		cv2.putText(background,'motion!',(self.frame_size[1]-50,self.frame_size[0]//2), self.font, 1, (0,0,255), 2)
		cv2.putText(background,str(number),(self.frame_size[1]//2-100,self.frame_size[0]//2-100), self.font, 2, (0,255,0), 2)
		return background
开发者ID:domwoe,项目名称:experiments,代码行数:7,代码来源:motion.py



注:本文中的numpy.bitwise_not函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.bitwise_or函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.bitwise_and函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap