• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.bool8函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.bool8函数的典型用法代码示例。如果您正苦于以下问题:Python bool8函数的具体用法?Python bool8怎么用?Python bool8使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了bool8函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_invalid

    def test_invalid(self):
        prop = bcpp.Int()

        assert not prop.is_valid(0.0)
        assert not prop.is_valid(1.0)
        assert not prop.is_valid(1.0+1.0j)
        assert not prop.is_valid("")
        assert not prop.is_valid(())
        assert not prop.is_valid([])
        assert not prop.is_valid({})
        assert not prop.is_valid(_TestHasProps())
        assert not prop.is_valid(_TestModel())

        assert not prop.is_valid(np.bool8(False))
        assert not prop.is_valid(np.bool8(True))
        assert not prop.is_valid(np.float16(0))
        assert not prop.is_valid(np.float16(1))
        assert not prop.is_valid(np.float32(0))
        assert not prop.is_valid(np.float32(1))
        assert not prop.is_valid(np.float64(0))
        assert not prop.is_valid(np.float64(1))
        assert not prop.is_valid(np.complex64(1.0+1.0j))
        assert not prop.is_valid(np.complex128(1.0+1.0j))
        if hasattr(np, "complex256"):
            assert not prop.is_valid(np.complex256(1.0+1.0j))
开发者ID:jakirkham,项目名称:bokeh,代码行数:25,代码来源:test_primitive.py


示例2: test_valid

    def test_valid(self):
        prop = bcpp.Bool()

        assert prop.is_valid(None)

        assert prop.is_valid(False)
        assert prop.is_valid(True)

        assert prop.is_valid(np.bool8(False))
        assert prop.is_valid(np.bool8(True))
开发者ID:jakirkham,项目名称:bokeh,代码行数:10,代码来源:test_primitive.py


示例3: main

def main():
    cap = cv2.VideoCapture(0)
    prev_grey_frame = None
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        grey = np.uint8(np.mean(frame, axis=2))

        ch = 0xFF & cv2.waitKey(5)
        if ch == 27:
            break
        if prev_grey_frame is not None:
            flow = cv2.calcOpticalFlowFarneback(prev_grey_frame, grey,
                    pyr_scale=0.5, levels=3, winsize=15,
                    iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
            mag_flow = np.uint8(np.sum(np.abs(5 * flow), axis=2))
            mask_flow = np.uint8(255 * (mag_flow > 50))
            mask_flow = cv2.dilate(mask_flow,
                            cv2.getStructuringElement(cv2.MORPH_RECT,(15,15)))
            vis_frame = frame.copy()

            fx, fy = flow[:, :, 0], flow[:, :, 1]

            for contour in cv2.findContours(mask_flow,
                                            cv2.cv.CV_RETR_EXTERNAL,
                                            cv2.cv.CV_CHAIN_APPROX_SIMPLE)[0]:
                rect = cv2.minAreaRect(contour)
                center, size, _ = rect
                if np.min(size) < 100:
                    continue

                cur_mask = np.zeros(grey.shape)
                cv2.drawContours(cur_mask, [contour], 0, 255, -1)
                mean_fx = np.mean(fx[np.bool8(cur_mask)])
                mean_fy = np.mean(fy[np.bool8(cur_mask)])
                p2 = (int(center[0] + mean_fx * 10),
                      int(center[1] + mean_fy * 10))
                cv2.line(vis_frame, (int(center[0]), int(center[1])),
                         p2, (0, 255, 0))

                box = cv2.cv.BoxPoints(rect)
                box = np.int0(box)
                for i in xrange(len(box)):
                    cv2.line(vis_frame, tuple(box[i - 1]),
                             tuple(box[i]), (0, 0, 255), 2)



            cv2.imshow('mag_flow', vis_frame)


        prev_grey_frame = grey.copy()
开发者ID:ansgri,项目名称:rsdt-tasks,代码行数:53,代码来源:obj_from_motion.py


示例4: test_Bool

    def test_Bool(self):
        prop = Bool()

        self.assertTrue(prop.is_valid(None))
        self.assertTrue(prop.is_valid(False))
        self.assertTrue(prop.is_valid(True))
        self.assertFalse(prop.is_valid(0))
        self.assertFalse(prop.is_valid(1))
        self.assertFalse(prop.is_valid(0.0))
        self.assertFalse(prop.is_valid(1.0))
        self.assertFalse(prop.is_valid(1.0 + 1.0j))
        self.assertFalse(prop.is_valid(""))
        self.assertFalse(prop.is_valid(()))
        self.assertFalse(prop.is_valid([]))
        self.assertFalse(prop.is_valid({}))
        self.assertFalse(prop.is_valid(Foo()))

        try:
            import numpy as np

            self.assertTrue(prop.is_valid(np.bool8(False)))
            self.assertTrue(prop.is_valid(np.bool8(True)))
            self.assertFalse(prop.is_valid(np.int8(0)))
            self.assertFalse(prop.is_valid(np.int8(1)))
            self.assertFalse(prop.is_valid(np.int16(0)))
            self.assertFalse(prop.is_valid(np.int16(1)))
            self.assertFalse(prop.is_valid(np.int32(0)))
            self.assertFalse(prop.is_valid(np.int32(1)))
            self.assertFalse(prop.is_valid(np.int64(0)))
            self.assertFalse(prop.is_valid(np.int64(1)))
            self.assertFalse(prop.is_valid(np.uint8(0)))
            self.assertFalse(prop.is_valid(np.uint8(1)))
            self.assertFalse(prop.is_valid(np.uint16(0)))
            self.assertFalse(prop.is_valid(np.uint16(1)))
            self.assertFalse(prop.is_valid(np.uint32(0)))
            self.assertFalse(prop.is_valid(np.uint32(1)))
            self.assertFalse(prop.is_valid(np.uint64(0)))
            self.assertFalse(prop.is_valid(np.uint64(1)))
            self.assertFalse(prop.is_valid(np.float16(0)))
            self.assertFalse(prop.is_valid(np.float16(1)))
            self.assertFalse(prop.is_valid(np.float32(0)))
            self.assertFalse(prop.is_valid(np.float32(1)))
            self.assertFalse(prop.is_valid(np.float64(0)))
            self.assertFalse(prop.is_valid(np.float64(1)))
            self.assertFalse(prop.is_valid(np.complex64(1.0 + 1.0j)))
            self.assertFalse(prop.is_valid(np.complex128(1.0 + 1.0j)))
            self.assertFalse(prop.is_valid(np.complex256(1.0 + 1.0j)))
        except ImportError:
            pass
开发者ID:Jessime,项目名称:bokeh,代码行数:49,代码来源:test_properties.py


示例5: regions

def regions(img):
    '''
    CURRENTLY (6pm 8 Aug): 
    
    To fix: ksize (and maybe iterations) based on big image. Need to make it work for resized
            or else adaptive to img size. Maybe compare current ksize to length
            original (non-resized vals ksize1=15, iterations=30, ksize=41)
            #update: reduced values, still not adaptive
            
            #Also: thresh value in threshold also not adaptive but works for now
    
    '''
    img_copy = img[:].copy()
    #eroded = cv2.erode(img, None, iterations=10)
    gam = gamma(img, 2.2)
    blur = cv2.GaussianBlur(src=gam, dst=img_copy, ksize=(3, 3), sigmaX=0, 
                            sigmaY=0)
    eroded = cv2.dilate(blur, None, iterations=1)
    #gam = gamma(eroded, 2)
    blur2 = cv2.GaussianBlur(src=eroded, dst=img_copy, ksize=(9,9), sigmaX=0,
                             sigmaY=0)
    thresh_val = np.int(np.mean(blur2))
    ret, threshold_data = cv2.threshold(blur2, 50, 255, cv2.THRESH_BINARY)
    #threshold_data = cv2.adaptiveThreshold(blur2, 255,
                                           #cv2.ADAPTIVE_THRESH_MEAN_C,
                                           #cv2.THRESH_BINARY, 301, 2)                         
    #Create two masked images, one that masks out darker areas, one masks light
    boole = np.bool8(threshold_data)
    light_img = boole * img
    dark_img = img * np.uint8(boole == 0)

    return light_img, dark_img
开发者ID:polar-computing,项目名称:3DSeals,代码行数:32,代码来源:region_extract.py


示例6: filterPrepare

 def filterPrepare(self, e, data, keys, ndata, events):
     import numpy as np
     import pyopencl as cl
     mf = cl.mem_flags
     
     ndata = data.size
     if keys.size != ndata: raise Exception()
     
     filtbytes = np.bool8(False).nbytes * ndata
     
     if not isinstance(data, cl.Buffer):
         data_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= data)
     else:
         data_buf = data
     
     if not isinstance(keys, cl.Buffer):
         keys_buf = cl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf= keys)
     else:
         keys_buf = keys
     
     filt_buf = cl.Buffer(self.ctx, mf.READ_WRITE, filtbytes)
     
     kernel = self.prg.filterPrepare
     kernel.set_args(data_buf, keys_buf, np.uint64(ndata), np.uint8(33), np.uint8(66), filt_buf)
     global_dims = self.get_global(self.get_grid_dims(ndata))
     
     print "filterPrepare"
     if e is None:
         e  = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims), ]
     else:
         e  = [ cl.enqueue_nd_range_kernel(self.queue, kernel, global_dims, self.localDims, wait_for=e), ]
     events += e
     
     return (e, data_buf, keys_buf, filt_buf)
开发者ID:Kobtul,项目名称:documents,代码行数:34,代码来源:filter.py


示例7: testDefaultFlatAndBackNonIdentical

    def testDefaultFlatAndBackNonIdentical(self):
        """
        Test flattening/unflattening of objects which change type.

        No type requirements are given in these tests. In other words, we allow
        pylabrad to choose a default type for flattening.

        In this test, we do not expect A == unflatten(*flatten(A)). This is
        mostly because list of numbers, both with an without units, should
        unflatten to ndarray or ValueArray, rather than actual python lists.
        """

        def compareValueArrays(a, b):
            """I check near equality of two ValueArrays"""
            self.assertTrue(a.allclose(b))

        tests = [
            ([1, 2, 3], np.array([1, 2, 3], dtype="int32"), np.testing.assert_array_equal),
            ([1.1, 2.2, 3.3], np.array([1.1, 2.2, 3.3], dtype="float64"), np.testing.assert_array_almost_equal),
            (np.array([3, 4], dtype="int32"), np.array([3, 4], dtype="int32"), np.testing.assert_array_equal),
            (np.array([1.2, 3.4]), np.array([1.2, 3.4]), np.testing.assert_array_almost_equal),
            ([Value(1.0, "m"), Value(3.0, "m")], ValueArray([1.0, 3.0], "m"), compareValueArrays),
            ([Value(1.0, "m"), Value(10, "cm")], ValueArray([1.0, 0.1], "m"), compareValueArrays),
            (ValueArray([1, 2], "Hz"), ValueArray([1, 2], "Hz"), compareValueArrays),
            (ValueArray([1.0, 2], ""), np.array([1.0, 2]), np.testing.assert_array_almost_equal),
            # Numpy scalar types
            (np.bool8(True), True, self.assertEqual),
        ]
        for input, expected, comparison_func in tests:
            unflat = T.unflatten(*T.flatten(input))
            if isinstance(unflat, np.ndarray):
                self.assertEqual(unflat.dtype, expected.dtype)
            comparison_func(unflat, expected)
开发者ID:ckometter,项目名称:pylabrad,代码行数:33,代码来源:test_types.py


示例8: test_int

 def test_int(self):
     self.assert_equal_with_lambda_check(_flexible_type(1), 1)
     self.assert_equal_with_lambda_check(_flexible_type(1L), 1)
     self.assert_equal_with_lambda_check(_flexible_type(True), 1)
     self.assert_equal_with_lambda_check(_flexible_type(False), 0)
     # numpy types
     self.assert_equal_with_lambda_check(_flexible_type(np.int_(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int64(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int32(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.int16(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint64(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint32(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.uint16(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool(0)), 0)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool_(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool_(0)), 0)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool8(1)), 1)
     self.assert_equal_with_lambda_check(_flexible_type(np.bool8(0)), 0)
开发者ID:andreacrescini,项目名称:SFrame,代码行数:19,代码来源:test_flexible_type.py


示例9: toNumpyScalar

def toNumpyScalar(num, dtype=None):
  ''' convert a Python number to an equivalent Numpy scalar type '''
  if isinstance(dtype,np.dtype): 
    num = dtype.type(num)
  else:  
    if isinstance(num, float): num = np.float64(num)
    elif isinstance(num, int): num = np.int64(num)
    elif isinstance(num, bool): num = np.bool8(num)
    else: raise NotImplementedError(num)
  return num
开发者ID:xiefengy,项目名称:GeoPy,代码行数:10,代码来源:misc.py


示例10: back_extract

def back_extract (img):

    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    trash = gray_img[:].copy()    
    eq_img = cv2.equalizeHist(src=gray_img, dst=trash)
    gammed = gamma(eq_img, gamma=15)
    blur = gammed
    cv2.GaussianBlur(src=gammed, dst=blur, ksize=(35,35), sigmaX=0, sigmaY=0 )         
    cont = cv2.findContours(blur, cv2.RETR_EXTERNAL,
           cv2.CHAIN_APPROX_SIMPLE)[-2]
    areaArray = []
    for i, c in enumerate(cont):
        area = cv2.contourArea(c)
        areaArray.append(area)
    sorteddata = sorted(zip(areaArray, cont), key = lambda x: x[0], 
                        reverse=True)
    largest1 = sorteddata[0][1]
    points1 = np.array([point[0] for point in largest1])
    points2 = [0,0]
    if len(sorteddata) > 1 : #Some images don't have 2 segments 
        largest2 = sorteddata[1][1]
        points2 = np.array([point[0] for point in largest2])
    else: largest2 = np.asarray((0,0))
    blank = np.zeros(shape = gray_img.shape)
    if len(points2) > 2 : #If there're two segments
        filled = cv2.fillPoly(blank, [points1, points2], 1)
    else:
        filled = cv2.fillPoly(blank, [points1], 1)
    boole = ~np.bool8(filled) #inverts so background is 0
    boole = np.uint8(boole)
    masked = gray_img*boole
        ######## Secondary: GrabCut

    mask = np.zeros(img.shape[:2],np.uint8)
    
    bgdModel = np.zeros((1,65),np.float64)
    fgdModel = np.zeros((1,65),np.float64)
    
    rect = (0,0,img.shape[1]-1, len(img)-1)
    
    cv2.grabCut(img,mask,rect,bgdModel,fgdModel,2,cv2.GC_INIT_WITH_RECT)
    mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
    masked2 = img*mask2[:,:,np.newaxis]
    masked2 = cv2.cvtColor(masked2, cv2.COLOR_BGR2GRAY)
    masked = masked2*boole
    
    # Find how much white there is. Integrates into inversion decision later 
    how_mask = masked.size - np.count_nonzero(masked)
    
    cv2.imshow("masked img", masked)  
    cv2.waitKey(0)
    cv2.destroyAllWindows()    
    return masked, how_mask
开发者ID:polar-computing,项目名称:3DSeals,代码行数:53,代码来源:back_extract.py


示例11: _read_image

 def _read_image(name):
     """Read an image from a file_handle"""
     if name == "image":
         if file_handle["phased"][0]:
             image = _numpy.squeeze(file_handle['real'][...] + 1.j*file_handle['imag'][...])
         else:
             image = _numpy.real(_numpy.squeeze(file_handle['real'][...]))
     elif name == "mask":
         image = _numpy.bool8(_numpy.squeeze(file_handle["mask"][...]))
     else:
         raise ValueError("Can not load {0}.".format(name))
     return image
开发者ID:ekeberg,项目名称:Python-tools,代码行数:12,代码来源:sphelper.py


示例12: execute

def execute(positions, num_particles, num_frames):
    #Get host positions:
    cpuPos = numpy.array(positions, dtype=numpy.float32)
    #Allocate position space on device:
    devPos = cuda.mem_alloc(cpuPos.nbytes)
    #Copy positions:
    cuda.memcpy_htod(devPos, cpuPos)
    
    #Allocate device velocities:
    devVels = cuda.mem_alloc(2 * num_particles * numpy.float32().nbytes)
    cuda.memset_d32(devVels, 0, 2 * num_particles)
    # #Copy velocities:
    # cuda.memcpy_htod(devVels, cpuVels)
    
    #Allocate and initialize device in bounds to false:
    #inBounds = numpy.zeros(num_particles, dtype=bool)
    devInBounds = cuda.mem_alloc(num_particles * numpy.bool8().nbytes)
    cuda.memset_d8(devInBounds, True, num_particles)
    
    # inB = numpy.zeros(num_particles, dtype=numpy.bool)
    # cuda.memcpy_dtoh(inB, devInBounds)
    # print inB
    
    # cuda.memcpy_htod(devInBounds, inBounds)
    # numBlocks = 1#(num_particles // 512) + 1;
    grid_dim = ((num_particles // NUM_THREADS) + 1, 1)
    print grid_dim
    runframe = module.get_function("runframe")
    frames = [None] * num_frames
    for i in range(num_frames):
        runframe(devPos, devVels, devInBounds, 
                 numpy.int32(num_particles),
                 grid=grid_dim,
                 block=(NUM_THREADS, 1, 1))
        #Get the positions from device:
        cuda.memcpy_dtoh(cpuPos, devPos)
        frames[i] = cpuPos.copy()
        #frames[i] = copy(cpuPos)
        #write_frame(out, cpuPos, num_particles)
    
    #Simulation destination file:
    # out = open(OUTPUT_FILE, 'w')
    # write_header(out, num_particles)
    # for frame in frames:
    #     write_frame(out, frame, num_particles)
    
    #clean up...
    #out.close()
    devPos.free()
    devVels.free()
    devInBounds.free()
开发者ID:rbpittman,项目名称:CUDA,代码行数:51,代码来源:gpuSimulator.py


示例13: dft_2d_masked

def dft_2d_masked(y_side, x_side, mask_real, mask_fourier):
    """
    The dft matrix that is returnd works on complex vectors
    and returns a complex vector. Data is stored consistent with
    numpys flatten(). Only the cols and rows corresponding to pixels
    in the real and Fourier mask respectively are calculated.
    """
    o_1 = _numpy.exp(-2.0j * _numpy.pi / y_side)
    o_2 = _numpy.exp(-2.0j * _numpy.pi / x_side)
    i = _numpy.zeros(x_side * y_side)
    j = _numpy.zeros(x_side * y_side)
    for k in xrange(y_side):
        j[x_side * k : x_side * (k + 1)] = _numpy.arange(x_side)
    for k in xrange(x_side):
        i[k::x_side] = _numpy.arange(y_side)
    i_mask_real = i[_numpy.bool8(mask_real.flatten())]
    i_mask_fourier = i[_numpy.bool8(mask_fourier.flatten())]
    j_mask_real = j[_numpy.bool8(mask_real.flatten())]
    j_mask_fourier = j[_numpy.bool8(mask_fourier.flatten())]
    dft = o_1 ** (i_mask_real[:, _numpy.newaxis] * i_mask_fourier[_numpy.newaxis, :]) * o_2 ** (
        j_mask_real[:, _numpy.newaxis] * j_mask_fourier[_numpy.newaxis, :]
    )
    return dft
开发者ID:ekeberg,项目名称:Python-tools,代码行数:23,代码来源:dft.py


示例14: process

    def process(self, src, **kwargs):
        sw = SW('Optical Flow')
        
        frame_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
        p0 = self.p0

        # calculate optical flow
        p1, st, err = cv2.calcOpticalFlowPyrLK(self.old_gray, frame_gray, p0, None, 
                                               winSize  = (15,15),
                                               maxLevel = 2,
                                               criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
        
        # Select good points
        good_new = p1[st==1]
        good_old = p0[st==1]
        rstmsk = np.zeros(good_new.shape[0], dtype=np.bool8)

        for i,pt in enumerate(good_new):
            rstmsk[i] = np.bool8(math.sqrt((pt[0]-self.center.x)**2+(pt[1]-self.center.y)**2)<=(self.radius+SELECTPADDING))
        
        good_new = good_new[rstmsk]
        good_old = good_old[rstmsk]
        
        if (good_new.shape[0]*2)<self.nump0:
            raise OpticalFlow.ObjectMissError
        
        tmp = np.average(good_new, axis=0)
        self.center = util.Point(int(tmp[0]),int(tmp[1]))
        
        dst = src.copy()
        
        try:
            self.oflines # 光流轨迹线
        except AttributeError:
            self.oflines = np.zeros_like(src, dtype=np.uint8)
        
        for n,o in zip(good_new, good_old):
            cv2.circle(dst,tuple(n),3,OBJECT_MATCH_COLOR,-1)# filled circle
            cv2.line(self.oflines,tuple(n),tuple(o),OBJECT_MATCH_COLOR,3)# line
        self.old_gray = frame_gray
        self.p0 = good_new.reshape(-1,1,2)
        
        sw.stop()
        return dst, [self.center], cv2.add(self.oflines,src)
开发者ID:dalinhuang,项目名称:GroundStation,代码行数:44,代码来源:ObjectTracking.py


示例15: radial_average

def radial_average(image, mask=None):
    """Calculates the radial average of an array of any shape,
    the center is assumed to be at the physical center."""
    if mask is None:
        mask = _numpy.ones(image.shape, dtype="bool8")
    else:
        mask = _numpy.bool8(mask)
    axis_values = [_numpy.arange(l) - l / 2.0 + 0.5 for l in image.shape]
    radius = _numpy.zeros((image.shape[-1]))
    for i in range(len(image.shape)):
        radius = radius + (axis_values[-(1 + i)][(slice(0, None),) + (_numpy.newaxis,) * i]) ** 2
    radius = _numpy.int32(_numpy.sqrt(radius))
    number_of_bins = radius[mask].max() + 1
    radial_sum = _numpy.zeros(number_of_bins)
    weight = _numpy.zeros(number_of_bins)
    for value, this_radius in zip(image[mask], radius[mask]):
        radial_sum[this_radius] += value
        weight[this_radius] += 1.0
    radial_sum[weight > 0] /= weight[weight > 0]
    radial_sum[weight == 0] = _numpy.nan
    return radial_sum
开发者ID:ekeberg,项目名称:Python-tools,代码行数:21,代码来源:tools.py


示例16: cluster_withsubsets

def cluster_withsubsets(spike_table, reorder_clus=True):
    if reorder_clus:
        print "Cluster reordering not implemented!"
    ST_nc = np.bool8(spike_table.cols.channel_mask[:])
    Fet_nc3 = spike_table.cols.fet[:]

    # TODO: implement this and remove the raise exception
    raise NotImplementedError(
        "To use cluster_withsubsets you will need to implement some code to find the groups from the probe graph.")
    # m these are all 4-channel subsets to be computed (based on probe's
    # topology)
    ChSubsets = probes.SORT_GROUPS

    # m for each subset  - the consecutive numbers of spikes that are relevant
    # (?)
    SpkSubsets = spike_subsets(ST_nc, ChSubsets)
    print "%i subsets total" % len(SpkSubsets)
    # m _FPC is no. of features per channel
    n_spikes, n_ch, _FPC = Fet_nc3.shape

# for i_subset,ChHere,SpkHere in zip(it.count(), ChSubsets, SpkSubsets):   #m SpkHere - the consecutive numbers of spikes belonging to this subset
#        print("Sorting channels %s"%ChHere.__repr__())
# FetHere_nc3 = Fet_nc3[np.ix_(SpkHere, ChHere)] #m features of spikes in this subset
# m FetHere_nc3 is a 3D array of size (no. of spikes in this subset) x 4(subsets are of 4 channels) x 3 (no. of features per channel)
#        CluArr = klustakwik_cluster(FetHere_nc3, i_subset, ChHere, SpkHere)
#        print 'KlustaKwik returned', max(CluArr), 'clusters.'

    args = []
    # m SpkHere - the consecutive numbers of spikes belonging to this subset
    for i_subset, ChHere, SpkHere in zip(it.count(), ChSubsets, SpkSubsets):
        print("Sorting channels %s" % ChHere.__repr__())
        # m features of spikes in this subset
        FetHere_nc3 = Fet_nc3[np.ix_(SpkHere, ChHere)]
        # m FetHere_nc3 is a 3D array of size (no. of spikes in this subset) x
        # 4(subsets are of 4 channels) x 3 (no. of features per channel)
        args.append((FetHere_nc3, i_subset, ChHere, SpkHere))
        #CluArr = klustakwik_cluster(FetHere_nc3, i_subset, ChHere, SpkHere)
        # print 'KlustaKwik returned', max(CluArr), 'clusters.'
    pool = multiprocessing.Pool(NUMPROCESSES)
    pool.map(klustakwik_cluster_args, args)
开发者ID:kylerbrown,项目名称:spikedetekt,代码行数:40,代码来源:subsets.py


示例17: back_extract

def back_extract (img):
    '''
    Attempts to find the background and turn it black. Equalizes the histogram,
    boosts gamma way up to 15 such that the only contour is the seal (usually),
    blurs, then finds that contour, builds a filled polygon from the point, 
    and then multiplies the (inverted) boolean values by the original image 
    such that the background (black, 0) turns all corresponding background 
    pixels in the original black as well.
    
    Requires: cv2, numpy as np
    '''
    trash = img[:].copy()    
    eq_img = cv2.equalizeHist(src=img, dst=trash)
    gammed = gamma(eq_img, gamma=15)
    blur = gammed
    cv2.GaussianBlur(src=gammed, dst=blur, ksize=(35,35), sigmaX=0, sigmaY=0 )         
    cont = cv2.findContours(blur, cv2.RETR_EXTERNAL,
           cv2.CHAIN_APPROX_SIMPLE)[-2]
    areaArray = []
    for i, c in enumerate(cont):
        area = cv2.contourArea(c)
        areaArray.append(area)
    sorteddata = sorted(zip(areaArray, cont), key = lambda x: x[0], 
                        reverse=True)
    largest1 = sorteddata[0][1]
    points1 = np.array([point[0] for point in largest1])
    points2 = [0,0]
    if len(sorteddata) > 1 : #Some images don't have 2 segments 
        largest2 = sorteddata[1][1]
        points2 = np.array([point[0] for point in largest2])
    else: largest2 = np.asarray((0,0))
    blank = np.zeros(shape = img.shape)
    if len(points2) > 2 : #If there're two segments
        filled = cv2.fillPoly(blank, [points1, points2], 1)
    else:
        filled = cv2.fillPoly(blank, [points1], 1)
    boole = -np.bool8(filled) #inverts so background is 0
    boole = np.uint8(boole)
    masked = img*boole
    return masked    
开发者ID:polar-computing,项目名称:3DSeals,代码行数:40,代码来源:Watershed+segmentation.py


示例18: svmPlotExtrRep

def svmPlotExtrRep(event=0,plot=True,suf=''):
    from Pixel import initPath
    if plot: plt.close()
    P=32;F=34
    dat=[]
    for vp in range(1,5):
        path,inpath,figpath=initPath(vp,event)
        fn= inpath+'svm%s/hc/hcWorker'%suf
        dat.append([])
        for g in range(2):
            for k in range(4):
                try:temp=np.load(fn+'%d.npy'%(k*2+g))
                except IOError:
                    print 'File missing: ',vp,event,suf
                    temp=np.zeros(P*P*F,dtype=np.bool8)
                temp=np.reshape(temp,[P,P,F])
                dat[-1].append(np.bool8(g-1**g *temp))
    lbl=[]
    for i in range(4):lbl.append([FIG[7][0]+str(i+1),20,18+i*40,FIG[7][1]])
    lbl.append([FIG[7][2],20,-10,70]);lbl.append([FIG[7][3],20,-10,245])
    if plot: plotGifGrid(dat,fn=figpath+'svm%sExtremaE%d'%(suf,event)+FMT,
                         F=34,P=32,text=lbl,bcgclr=0.5)
    return dat
开发者ID:simkovic,项目名称:Chase,代码行数:23,代码来源:FiguresMoviesTables.py


示例19: cluster_withsubsets

def cluster_withsubsets(spike_table,clusterdir,reorder_clus=True):
    "TODO: write docstring"
    
    if reorder_clus: print "Cluster reordering not implemented!"
    ST_nc = np.bool8(spike_table.cols.st[:])
    Fet_nc3 = spike_table.cols.fet[:]    
    
    ChSubsets = probe_stuff.SORT_GROUPS
    SpkSubsets = spike_subsets(ST_nc,ChSubsets)    
    print("%i subsets total"%len(SpkSubsets))
    n_spikes,n_ch,_FPC = Fet_nc3.shape
    
    key2subset, key2members, key2spkmean, key2mag = {},{},{},{}
    for i_subset,ChHere,SpkHere in zip(it.count(),ChSubsets,SpkSubsets):        
        print("Sorting channels %s"%ChHere.__repr__())
        FetHere_nc3 = Fet_nc3[np.ix_(SpkHere,ChHere)] # features of spikes in this subset
        CluArr = klustakwik_cluster(FetHere_nc3,'/'.join((clusterdir,"cluster_%i" % i_subset)))
        CluMembersList = [(SpkHere[inds]) for inds in subset_inds(CluArr)] #go back to original indices
        # We are ignoring cluster 0 here, because of [1:] above. No not now
        for (i_clu,Members) in enumerate(CluMembersList):
            if len(Members) > MIN_CLU_SIZE:
                SpkMean = np.array([spike_table[member]["wave"][:,ChHere] for member in Members]).mean(axis=0)
                key = (i_subset,i_clu)
                key2subset[key]=ChHere
                key2members[key] = Members
                key2spkmean[key] = SpkMean
                key2mag[key] = SpkMean.ptp(axis=0).sum()
        
    ImprovingKeys = sorted(key2mag.keys(),key = lambda key: key2mag[key])    
    #problem: most spikes aren't members of any cluster?!
    
    key2oldcount = dict((key,len(members)) for key,members in key2members.items())
    FinalClu = np.zeros(n_spikes,dtype=np.dtype([("subset",int),("clu",int)]))

    # maybe i should have a key2int kind of function?
    fromto2stolen = collections.defaultdict(int)
    for key in ImprovingKeys:
        if DEBUG: 
            for oldkey in FinalClu[key2members[key]]: fromto2stolen[tuple(oldkey),key] += 1
        FinalClu[key2members[key]] = key
    for fromkey,tokey in fromto2stolen.keys(): 
        if DEBUG:
            if fromkey == (0,0): del fromto2stolen[(fromkey,tokey)]
        
    key2newcount = dict((key,((FinalClu["subset"] == key[0]) & (FinalClu["clu"] == key[1])).sum()) for key in ImprovingKeys)    
    key2good = dict((key,
                     key2newcount[key]/key2oldcount[key] > ACCEPTABLE_FRAC and
                     key2oldcount[key] > MIN_CLU_SIZE)
                    for key in ImprovingKeys)

    good_keys = filter(lambda key: key2good[key],reversed(ImprovingKeys))
    
    #with open("counts.txt","w") as fd:
    #    for i_clu,(new,old) in enumerate(zip(NewCount,OrigCount)):
    #        fd.write("%i: %i/%i\n"%(i_clu,new,old) if new/old < .8 else "%i: %i/%i ==> %i\n"%(i_clu,new,old,RelabelArr[i_clu]))

    # problem: relabel cluster indices so they're in the right order
    
    key2rank = dict((key,rank) for (rank,key) in enumerate(reversed(ImprovingKeys)))
    key2left = dict((key,len(members)) for key,members in key2members.items())
    
    if DEBUG: 
        merge_diagnostics(n_ch,key2subset,key2rank,key2left,key2good,key2spkmean,fromto2stolen)
    key2ind = dict((key,ind) for (ind,key) in enumerate(sorted(good_keys,key=lambda key: np.mean(key2subset[key]))))
    FinalCluInd = np.array([key2ind.get(tuple(key),0) for key in FinalClu],dtype=np.int32)
    return FinalCluInd
开发者ID:braingram,项目名称:caton,代码行数:66,代码来源:subset_sorting.py


示例20: len

    fnames.sort()
    fnames = [f for f in fnames if f.find('image_') >= 0]
    n = len(fnames)/2

    # Store some values in order to keep track of FPS
    if (showFPS):
        startTime = time()
        FPS = 0
        lastI = 0

    # Get our plot points ready
    timePoints = [[], []]
    plotPoints = [[[], [], []], [[], [], []]]

    # Create the mask and table model
    mask = ~np.bool8(cv2.imread(os.path.join(folder, 'mask.png'), -1))
    tablemodel = util.buildMinMap(os.path.join(folder, 'table'))

    i = 0
    waitAmount = 5
    
    handList = None
    camShifter = None
    colors = None

    # Loop until we are out of images
    while (i < n):
        
        print "Processing Frame ", i

        # Show the FPS if desired
开发者ID:erichare,项目名称:Hand-Tracking,代码行数:31,代码来源:handTrack.py



注:本文中的numpy.bool8函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.bool_函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.bool函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap