• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.diag_indices_from函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.diag_indices_from函数的典型用法代码示例。如果您正苦于以下问题:Python diag_indices_from函数的具体用法?Python diag_indices_from怎么用?Python diag_indices_from使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了diag_indices_from函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: moments

 def moments(self):
     """Calculate covariance and correlation matrices,
     trait, genotipic and ontogenetic means"""
     zs = np.array([ind["z"] for ind in self.pop])
     xs = np.array([ind["x"] for ind in self.pop])
     ys = np.array([ind["y"] for ind in self.pop])
     bs = np.array([ind["b"] for ind in self.pop])
     ymean = ys.mean(axis=0)
     zmean = zs.mean(axis=0)
     xmean = xs.mean(axis=0)
     ymean = ys.mean(axis=0)
     bmean = bs.mean(axis=0)
     phenotipic = np.cov(zs, rowvar=0, bias=1)
     genetic = np.cov(xs, rowvar=0, bias=1)
     heridability = genetic[np.diag_indices_from(genetic)] / phenotipic[np.diag_indices_from(phenotipic)]
     corr_phenotipic = np.corrcoef(zs, rowvar=0, bias=1)
     corr_genetic = np.corrcoef(xs, rowvar=0, bias=1)
     avgP = avg_ratio(corr_phenotipic, self.modules)
     avgG = avg_ratio(corr_genetic, self.modules)
     return {
         "y.mean": ymean,
         "b.mean": bmean,
         "z.mean": zmean,
         "x.mean": xmean,
         "P": phenotipic,
         "G": genetic,
         "h2": heridability,
         "avgP": avgP,
         "avgG": avgG,
         "corrP": corr_phenotipic,
         "corrG": corr_genetic,
     }
开发者ID:lem-usp,项目名称:evomod,代码行数:32,代码来源:pop.py


示例2: transform_covars_grad

 def transform_covars_grad(self, internal_grad):
     grad = np.empty((self.num_latent, self.get_covar_size()), dtype=np.float32)
     for j in range(self.num_latent):
         tmp = self._theano_transform_covars_grad(internal_grad[0, j], self.covars_cholesky[j])
         tmp[np.diag_indices_from(tmp)] *= self.covars_cholesky[j][np.diag_indices_from(tmp)]
         grad[j] = tmp[np.tril_indices_from(self.covars_cholesky[j])]
     return grad.flatten()
开发者ID:Karl-Krauth,项目名称:Sparse-GP,代码行数:7,代码来源:full_gaussian_mixture.py


示例3: _get_raw_covars

 def _get_raw_covars(self):
     flattened_covars = np.empty([self.num_latent, self.get_covar_size()], dtype=np.float32)
     for i in xrange(self.num_latent):
         raw_covars = self.covars_cholesky[i].copy()
         raw_covars[np.diag_indices_from(raw_covars)] = np.log(raw_covars[np.diag_indices_from(raw_covars)])
         flattened_covars[i] = raw_covars[np.tril_indices_from(raw_covars)]
     return flattened_covars.flatten()
开发者ID:Karl-Krauth,项目名称:Sparse-GP,代码行数:7,代码来源:full_gaussian_mixture.py


示例4: newCostFunction

	def newCostFunction(self, xs, ys, test=False):
	    xs = np.array(xs)
	    ys = np.array(ys)
	    s1 = xs.dot(ys.T).T
	    s2 = ys.dot(xs.T).T

	    s1 = np.maximum(0, 1 - np.diag(s1) + s1).T
	    s2 = np.maximum(0, 1 - np.diag(s2) + s2).T

	    s1[np.diag_indices_from(s1)] = 0
	    s2[np.diag_indices_from(s2)] = 0
	    ns1 = s1
	    ns2 = s2
	    cost = np.sum(s1)+np.sum(s2)
	    if abs(cost - 2) < 1e-5:
	    	import pdb
	    	pdb.set_trace()
	    if test:
	    	return cost
	    s1t = s1 > 0
	    s2t = s2 > 0
	    tx1 = (ys[:,:,None].T - ys[:,:,None]).transpose([0,2,1])*s1t[:,:,None]
	    ty1 = (xs[:,:,None].T - xs[:,:,None]).transpose([0,2,1])*s2t[:,:,None]
	    tx2 = (ys * np.ones((len(xs),len(xs),xs[0].size))).transpose(1,0,2) * s2t[:,:,None]
	    ty2 = (xs * np.ones((len(xs),len(xs),xs[0].size))).transpose(1,0,2) * s1t[:,:,None]
	    tx3 = (s2t.T)[:,:,None]*ys
	    ty3 = (s1t.T)[:,:,None]*xs
	    xd = np.sum(tx1 - tx2 + tx3, 1)
	    yd = np.sum(ty1 - ty2 + ty3, 1)
	    #print 'xd norm: %.4f, yd norm: %.4f'%(np.linalg.norm(xd), np.linalg.norm(yd))
	    return cost, list(xd), list(yd)
开发者ID:Peratham,项目名称:imgcap,代码行数:31,代码来源:twin.py


示例5: Voigt_6x6_to_cubic

def Voigt_6x6_to_cubic(C):
    """
    Convert the Voigt 6x6 representation into the cubic elastic constants
    C11, C12 and C44.
    """

    tol = 1e-6

    C_check = np.zeros_like(C)
    C_check[np.diag_indices_from(C_check)] = C[np.diag_indices_from(C)]
    C_check[0:3,0:3] = C[0:3,0:3]
    if np.any(np.abs(C-C_check) > tol):
        raise ValueError('"C" does not have cubic symmetry.')

    C11s = np.array([C[0,0], C[1,1], C[2,2]])
    C12s = np.array([C[1,2], C[0,2], C[0,1]])
    C44s = np.array([C[3,3], C[4,4], C[5,5]])

    C11 = np.mean(C11s)
    C12 = np.mean(C12s)
    C44 = np.mean(C44s)

    if np.any(np.abs(C11-C11s) > tol) or np.any(np.abs(C12-C12s) > tol) or \
            np.any(np.abs(C44-C44s) > tol):
        raise ValueError('"C" does not have cubic symmetry.')

    return np.array([C11, C12, C44])
开发者ID:libAtoms,项目名称:matscipy,代码行数:27,代码来源:elasticity.py


示例6: test_cosine_distances

def test_cosine_distances():
    # Check the pairwise Cosine distances computation
    rng = np.random.RandomState(1337)
    x = np.abs(rng.rand(910))
    XA = np.vstack([x, x])
    D = cosine_distances(XA)
    assert_array_almost_equal(D, [[0., 0.], [0., 0.]])
    # check that all elements are in [0, 2]
    assert np.all(D >= 0.)
    assert np.all(D <= 2.)
    # check that diagonal elements are equal to 0
    assert_array_almost_equal(D[np.diag_indices_from(D)], [0., 0.])

    XB = np.vstack([x, -x])
    D2 = cosine_distances(XB)
    # check that all elements are in [0, 2]
    assert np.all(D2 >= 0.)
    assert np.all(D2 <= 2.)
    # check that diagonal elements are equal to 0 and non diagonal to 2
    assert_array_almost_equal(D2, [[0., 2.], [2., 0.]])

    # check large random matrix
    X = np.abs(rng.rand(1000, 5000))
    D = cosine_distances(X)
    # check that diagonal elements are equal to 0
    assert_array_almost_equal(D[np.diag_indices_from(D)], [0.] * D.shape[0])
    assert np.all(D >= 0.)
    assert np.all(D <= 2.)
开发者ID:scikit-learn,项目名称:scikit-learn,代码行数:28,代码来源:test_pairwise.py


示例7: set_covars

 def set_covars(self, raw_covars):
     raw_covars = raw_covars.reshape([self.num_latent, self.get_covar_size()])
     for j in xrange(self.num_latent):
         cholesky = np.zeros([self.num_dim, self.num_dim], dtype=np.float32)
         cholesky[np.tril_indices_from(cholesky)] = raw_covars[j]
         cholesky[np.diag_indices_from(cholesky)] = np.exp(cholesky[np.diag_indices_from(cholesky)])
         self.covars_cholesky[j] = cholesky
         self.covars[j] = mdot(self.covars_cholesky[j], self.covars_cholesky[j].T)
开发者ID:Karl-Krauth,项目名称:Sparse-GP,代码行数:8,代码来源:full_gaussian_mixture.py


示例8: _update

 def _update(self):
     self.parameters = self.get_parameters()
     for k in range(self.num_comp):
         for j in range(self.num_process):
             temp = np.zeros((self.num_dim, self.num_dim))
             temp[np.tril_indices_from(temp)] = self.L_flatten[k,j,:].copy()
             temp[np.diag_indices_from(temp)] = np.exp(temp[np.diag_indices_from(temp)])
             # temp[np.diag_indices_from(temp)] = temp[np.diag_indices_from(temp)] ** 2
             self.L[k,j,:,:] = temp
             self.s[k,j] = mdot(self.L[k,j,:,:], self.L[k,j,:,:].T)
开发者ID:jfutoma,项目名称:savigp,代码行数:10,代码来源:mog_single_comp.py


示例9: update_covariance

 def update_covariance(self, j, Sj):
     Sj = Sj.copy()
     mm = min(Sj[np.diag_indices_from(Sj)])
     if mm < 0:
         Sj[np.diag_indices_from(Sj)] = Sj[np.diag_indices_from(Sj)] - 1.1 * mm
     for k in range(self.num_comp):
         self.s[k,j] = Sj.copy()
         self.L[k,j] = jitchol(Sj,10)
         tmp = self.L[k,j].copy()
         tmp[np.diag_indices_from(tmp)] = np.log(tmp[np.diag_indices_from(tmp)])
         self.L_flatten[k,j] = tmp[np.tril_indices_from(tmp)]
     self._update()
开发者ID:jfutoma,项目名称:savigp,代码行数:12,代码来源:mog_single_comp.py


示例10: getNormDistFluct

    def getNormDistFluct(self, coords):
        """Normalized distance fluctuation
        """
            
        model = self.getModel()
        LOGGER.info('Number of chains: {0}, chains: {1}.'
                     .format(len(list(set(coords.getChids()))), \
                                 list(set(coords.getChids()))))

        try:
            #coords = coords.select('protein and name CA')
            coords = (coords._getCoords() if hasattr(coords, '_getCoords') else
                coords.getCoords())
        except AttributeError:
            try:
                checkCoords(coords)
            except TypeError:
                raise TypeError('coords must be a Numpy array or an object '
                                                'with `getCoords` method')
        
        if not isinstance(model, NMA):
            LOGGER.info('Calculating new model')
            model = GNM('prot analysis')
            model.buildKirchhoff(coords)
            model.calcModes() 
            
        linalg = importLA()
        n_atoms = model.numAtoms()
        n_modes = model.numModes()
        LOGGER.timeit('_ndf')
    
        from .analysis import calcCrossCorr
        from numpy import linalg as LA
        # <dRi, dRi>, <dRj, dRj> = 1
        crossC = 2-2*calcCrossCorr(model)
        r_ij = np.zeros((n_atoms,n_atoms,3))

        for i in range(n_atoms):
           for j in range(i+1,n_atoms):
               r_ij[i][j] = coords[j,:] - coords[i,:]
               r_ij[j][i] = r_ij[i][j]
               r_ij_n = LA.norm(r_ij, axis=2)

        #with np.errstate(divide='ignore'):
        r_ij_n[np.diag_indices_from(r_ij_n)] = 1e-5  # div by 0
        crossC=abs(crossC)
        normdistfluct = np.divide(np.sqrt(crossC),r_ij_n)
        LOGGER.report('NDF calculated in %.2lfs.', label='_ndf')
        normdistfluct[np.diag_indices_from(normdistfluct)] = 0  # div by 0
        return normdistfluct
开发者ID:sixpi,项目名称:ProDy,代码行数:50,代码来源:gnm.py


示例11: ExpandNode

def ExpandNode(fringe,node):
    col_sum = np.sum(node.attacked_cells,0)
    dict_sum = {}
    for i in range(8):
        if col_sum[0,i] == 8:
            continue
        dict_sum[i] = col_sum[0,i]
    sorted_sum = sorted(dict_sum.items(),key=operator.\
                        itemgetter(1),reverse=True)
    for i in range(len(sorted_sum)):
        col = sorted_sum[i][0]
        for row in range(8):
            if node.attacked_cells[row,col]:
                continue
            attacked_cells = copy.deepcopy(node.attacked_cells)
            attacked_cells[:,col] = 1
            attacked_cells[row,:] = 1
            k = row-col
            rows, cols = np.diag_indices_from(attacked_cells)
            if k < 0:
                rows,cols = rows[:k],cols[-k:]
            elif k > 0:
                rows,cols = rows[k:],cols[:-k]
            attacked_cells[rows,cols] = 1

            attacked_cells = np.fliplr(attacked_cells)
            ncol = 7-col
            k = row-ncol
            rows, cols = np.diag_indices_from(attacked_cells)
            if k < 0:
                rows,cols = rows[:k],cols[-k:]
            elif k > 0:
                rows,cols = rows[k:],cols[:-k]
            attacked_cells[rows,cols] = 1
            attacked_cells = np.fliplr(attacked_cells)

            valid = True
            for i in range(node.depth+1,8):
                if np.sum(attacked_cells[i,:]) == 8:
                    valid = False
                    break
            if not valid:
                continue
            
            nstate = copy.deepcopy(node.state)
            nstate[row,col] = 1
            new_node = Node(parent=node,depth=node.depth\
                 +1,state=nstate,attacked_cells=attacked_cells)
            fringe.insert(0,new_node)
开发者ID:harishrithish7,项目名称:aima-python,代码行数:49,代码来源:expand_node.py


示例12: test_map_diag_and_offdiag

    def test_map_diag_and_offdiag(self):

        vars = ["x", "y", "z"]
        g = ag.PairGrid(self.df)
        g.map_offdiag(plt.scatter)
        g.map_diag(plt.hist)

        for ax in g.diag_axes:
            nt.assert_equal(len(ax.patches), 10)

        for i, j in zip(*np.triu_indices_from(g.axes, 1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.tril_indices_from(g.axes, -1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.diag_indices_from(g.axes)):
            ax = g.axes[i, j]
            nt.assert_equal(len(ax.collections), 0)
开发者ID:GeorgeMcIntire,项目名称:seaborn,代码行数:29,代码来源:test_axisgrid.py


示例13: _generate_noise

def _generate_noise(covar_matrix, time=1000, use_inverse=False):
    """
    Generate a multivariate normal distribution using correlated innovations.

    Parameters
    ----------
    covar_matrix : array
        Covariance matrix of the random variables

    time : int
        Sample size

    use_inverse : bool, optional
        Negate the off-diagonal elements and invert the covariance matrix
        before use

    Returns
    -------
    noise : array
        Random noise generated according to covar_matrix
    """
    # Pull out the number of nodes from the shape of the covar_matrix
    n_nodes = covar_matrix.shape[0]
    # Make a deep copy for use in the inverse case
    this_covar = covar_matrix
    # Take the negative inverse if needed
    if use_inverse:
        this_covar = copy.deepcopy(covar_matrix)
        this_covar *= -1
        this_covar[np.diag_indices_from(this_covar)] *= -1
        this_covar = np.linalg.inv(this_covar)
    # Return the noise distribution
    return np.random.multivariate_normal(mean=np.zeros(n_nodes),
                                            cov=this_covar,
                                            size=time)
开发者ID:jakobrunge,项目名称:tigramite,代码行数:35,代码来源:data_processing.py


示例14: report_clustering_dot_product

def report_clustering_dot_product(loci, thresholds_pack, method, feature_labels):

    thr_occ, thr_crisp, cluster_thresholds = thresholds_pack

    M = scores.generate_dot_product_score_matrix(feature_labels, method, loci=loci)
    M += np.transpose(M)
    M = -1 * np.log(M)
    M[np.diag_indices_from(M)] = 0
    M[np.where(M==np.inf)] = 100

    reports_dir_base = os.path.join(gv.project_data_path, 'cas4/reports/')

    cluster2summary_file_path = os.path.join(gv.project_data_path, 'cas4/reports/cluster_summary.tab')

    for threshold in cluster_thresholds:

        repors_dir = reports_dir_base + 'dot_%s_%d_%.2f_%.2f'%(method, thr_occ, thr_crisp, threshold)
        # print "Thresholds:", thr_occ, thr_crisp, threshold
        # print repors_dir
        # if os.path.exists(repors_dir):
        #     sh.rmtree(repors_dir)
        # os.mkdir(repors_dir)

        singles, cluster_packs, entropies = dendrogram.classify_by_scores_cas4(M, threshold, loci)

        _local_thresholds_pack = (thr_occ, thr_crisp, threshold)

        generate_cluster_reports_cas4(cluster_packs,
                                      loci,
                                      repors_dir,
                                      feature_labels,
                                      method,
                                      _local_thresholds_pack)

        generate_cas4_gi_summary_file(singles, cluster_packs, loci, repors_dir, cluster2summary_file_path)
开发者ID:kyrgyzbala,项目名称:NewSystems,代码行数:35,代码来源:reporting.py


示例15: active_passive_collisions

def active_passive_collisions(active_tl, active_br, passive_tl, passive_br):
    '''
    Returns an NxN array, where element at [i, j] says if
    thing i's active hitbox crosses thing j's active hitbox.
    An active hitbox isn't considered if any of its dimensions is not-positive.

    active/passive_tl/br must be arrays of shape (N, 2) - the boxes' corners in
    global coordinates

    See comment for passive_passive_collisions for longer explanation.
    The main difference is that we can't cheat here and do half the checks,
    then transpose, we need to do all checks.
    '''
    passive_tl_3d = passive_tl.reshape(1, -1, 2)
    passive_br_3d = passive_br.reshape(1, -1, 2)

    active_tl_3d = active_tl.reshape(-1, 1, 2)
    active_br_3d = active_br.reshape(-1, 1, 2)

    negcheck = numpy.logical_or(numpy.any(active_tl_3d > passive_br_3d, axis=2),
                                numpy.any(active_br_3d < passive_tl_3d, axis=2))

    legible = numpy.all(active_tl < active_br, axis=1).reshape(-1, 1)

    result = numpy.logical_and(numpy.logical_not(negcheck), legible)

    # Remove self collisions
    result[numpy.diag_indices_from(result)] = False
    return result
开发者ID:moshev,项目名称:project-viking,代码行数:29,代码来源:collisions.py


示例16: compute_distances

        def compute_distances(self, x1, x2):
            """
            The method imputes the missing values as means and calls
            safe_sparse_dot. Imputation simplifies computation at a cost of
            (theoretically) slightly wrong distance between pairs of missing
             values.
            """

            def prepare_data(x):
                if self.discrete.any():
                    data = Cosine.discrete_to_indicators(x, self.discrete)
                else:
                    data = x.copy()
                for col, mean in enumerate(self.means):
                    column = data[:, col]
                    column[np.isnan(column)] = mean
                if self.axis == 0:
                    data = data.T
                data /= row_norms(data)[:, np.newaxis]
                return data

            data1 = prepare_data(x1)
            data2 = data1 if x2 is None else prepare_data(x2)
            dist = safe_sparse_dot(data1, data2.T)
            np.clip(dist, 0, 1, out=dist)
            if x2 is None:
                diag = np.diag_indices_from(dist)
                dist[diag] = np.where(np.isnan(dist[diag]), np.nan, 1.0)
            return 1 - dist
开发者ID:acopar,项目名称:orange3,代码行数:29,代码来源:distance.py


示例17: _pipe_as_flow

    def _pipe_as_flow(self, signal_packet):
        # Get signal_packet details
        hkey = signal_packet.keys()[0]
        adj = signal_packet[hkey]['data']

        # Add 1s along the diagonal to make positive definite
        adj[np.diag_indices_from(adj)] = 1

        # Compute eigenvalues and eigenvectors, ensure they are real
        eigval, eigvec = np.linalg.eig(adj)
        eigval = np.real(eigval)
        eigvec = np.real(eigvec)

        # Sort largest to smallest eigenvalue
        sorted_idx = np.argsort(eigval)[::-1]
        largest_idx = sorted_idx[0]
        centrality = np.abs(eigvec[:, largest_idx])
        centrality = centrality.reshape(-1, 1)

        # Dump into signal_packet
        new_packet = {}
        new_packet[hkey] = {
            'data': centrality,
            'meta': {
                'ax_0': signal_packet[hkey]['meta']['ax_0'],
                'time': signal_packet[hkey]['meta']['time']
            }
        }

        return new_packet
开发者ID:akhambhati,项目名称:dyne,代码行数:30,代码来源:centrality.py


示例18: nwin1_bet_returns

def nwin1_bet_returns(w, odds):
    assert len(w) == len(odds)
    R = w.reshape(1, -1).repeat(len(w), 0)
    R *= eye(R.shape[0]) - 1.0
    ix = diag_indices_from(R)
    R[ix] = w * (odds - 1.0)
    return np.sum(R, 1)
开发者ID:mcobzarenco,项目名称:betfair-trading,代码行数:7,代码来源:risk.py


示例19: _add_relaxation

	def _add_relaxation(self, f_set, J0, J1, J2):
		H0_vecs = self.H0_vecs # cache locally

		J0ab = J0(self.w_diff)
		J1ab = J1(self.w_diff)
		J2ab = J2(self.w_diff)
		# pprint(J1ab)

		f2 = []
		for A, Jq in zip(f_set, (J2ab, J1ab, J0ab, J1ab, J2ab)):
			A = dot(dot(H0_vecs.conj().T, A), H0_vecs)
			A *= A.conj()
			A *= Jq
			A = real_if_close(A)
			f2.append(A)

		f2 = array(f2)
		# pprint(f2)

		Rab = f2.sum(axis=0)
		diag_idx = diag_indices_from(Rab)
		Rab[diag_idx] = 0
		assert allclose(Rab, Rab.T)

		Rab[diag_idx] = -Rab.sum(axis=1)
		self.info("Redfield matrix:")
		self.pprint(Rab)
		self.Rab_list.append(Rab)
开发者ID:ChristianTacke,项目名称:spinlab,代码行数:28,代码来源:relax.py


示例20: test_pairplot

    def test_pairplot(self):

        vars = ["x", "y", "z"]
        g = pairplot(self.df)

        for ax in g.diag_axes:
            nt.assert_equal(len(ax.patches), 10)

        for i, j in zip(*np.triu_indices_from(g.axes, 1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.tril_indices_from(g.axes, -1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.diag_indices_from(g.axes)):
            ax = g.axes[i, j]
            nt.assert_equal(len(ax.collections), 0)

        plt.close("all")
开发者ID:c-wilson,项目名称:seaborn,代码行数:29,代码来源:test_axisgrid.py



注:本文中的numpy.diag_indices_from函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.diagflat函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.diag_indices函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap