• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.exp函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.exp函数的典型用法代码示例。如果您正苦于以下问题:Python exp函数的具体用法?Python exp怎么用?Python exp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了exp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plot_open_close

    def plot_open_close(self, fig = None, savefig = True):
        '''
        Plot the open period versus shut periods.
        '''

        stretch_list = self.cluster_data.compute_open_close()
        mode_num = len(stretch_list)


        if fig is None:
            fig = plt.figure()
        ax = fig.add_subplot(111)
        cmap = np.linspace(0,1,mode_num)

        for index, stretch in enumerate(stretch_list):
            ax.scatter(stretch['open_period'], stretch['shut_period'],
                       facecolors='none',
                       edgecolors=plt.cm.spectral(cmap[index]),
                       s=1, label = str(index + 1))
            #ax.scatter(stretch['mean_open'], stretch['mean_shut'],
            #           color=plt.cm.spectral(cmap[index]),
             #          s=50, label = str(index + 1))
    
        ax.legend()
        ax.set_xscale('log')
        ax.set_yscale('log')
        ax.set_ylim([0.3, np.exp(7)])
        ax.set_xlim([0.3, np.exp(5)])
        ax.set_xlabel('Open period (ms in log scale)')
        ax.set_ylabel('Shut period (ms in log scale)')
        ax.set_title('Open/Shut')
        if savefig:
            fig.savefig(os.path.join(self.filepath,self.name+'Open_Shut.png'),dpi=150)
开发者ID:xiki-tempula,项目名称:sc_py,代码行数:33,代码来源:PlotAnalysis.py


示例2: sample

def sample(scores, temperature=1.0):
    """
    Sampling words (each sample is drawn from a categorical distribution).

    In:
        scores - array of size #samples x #classes; 
            every entry determines a score for sample i having class j
        temperature - temperature for the predictions;
            the higher the flatter probabilities and hence more random answers

    Out:
        set of indices chosen as output, a vector of size #samples
    """
    logscores = np.log(scores) / temperature

    # numerically stable version
    normalized_logscores= logscores - np.max(logscores, axis=-1)[:, np.newaxis]
    margin_logscores = np.sum(np.exp(normalized_logscores),axis=-1)
    probs = np.exp(normalized_logscores) / margin_logscores[:,np.newaxis]

    draws = np.zeros_like(probs)
    num_samples = probs.shape[0]
    # we use 1 trial to mimic categorical distributions using multinomial
    for k in xrange(num_samples):
        draws[k,:] = np.random.multinomial(1,probs[k,:],1)
    return np.argmax(draws, axis=-1)
开发者ID:Peratham,项目名称:visual_turing_test-tutorial,代码行数:26,代码来源:model_zoo.py


示例3: mean_quadratic_weighted_kappa

def mean_quadratic_weighted_kappa(kappas, weights=None):
    """
    Calculates the mean of the quadratic
    weighted kappas after applying Fisher's r-to-z transform, which is
    approximately a variance-stabilizing transformation.  This
    transformation is undefined if one of the kappas is 1.0, so all kappa
    values are capped in the range (-0.999, 0.999).  The reverse
    transformation is then applied before returning the result.

    mean_quadratic_weighted_kappa(kappas), where kappas is a vector of
    kappa values

    mean_quadratic_weighted_kappa(kappas, weights), where weights is a vector
    of weights that is the same size as kappas.  Weights are applied in the
    z-space
    """
    kappas = np.array(kappas, dtype=float)
    if weights is None:
        weights = np.ones(np.shape(kappas))
    else:
        weights = weights / np.mean(weights)

    # ensure that kappas are in the range [-.999, .999]
    kappas = np.array([min(x, .999) for x in kappas])
    kappas = np.array([max(x, -.999) for x in kappas])

    z = 0.5 * np.log((1 + kappas) / (1 - kappas)) * weights
    z = np.mean(z)
    return (np.exp(2 * z) - 1) / (np.exp(2 * z) + 1)
开发者ID:sdkramer10,项目名称:kaggle-insurance,代码行数:29,代码来源:quadratic_weighted_kappa.py


示例4: solveParams

    def solveParams(self):
        # Given the specified values for w, z1 and z2, determine the offsets
        # xc and zc required to match a catenary to our cable.  This is done
        # algerbraically.  The deriviation of the equation was performed with
        # the sympy package.

        w = self.w
        a = self.a
        zd = self.z2 - self.z1

        # calculate some repeated elements
        e2wa = np.exp(2 * w / a)
        ewa = np.exp(w / a)
        a2 = a ** 2

        # calculate the 3 components
        c1 = (a2 * e2wa - 2 * a2 * ewa + a2 + zd ** 2 * ewa) * ewa
        c2 = (-2 * a * e2wa + 2 * a * ewa)
        c3 = zd / (a * (ewa - 1))

        # Determine the x offset ...
        self.xc = a * np.log(2 * np.abs(np.sqrt(c1) / c2) + c3)

        # ... and from this the y offset
        self.zc = self.z1 - a * np.cosh(self.xc / a)
开发者ID:davehawthorne,项目名称:forest-monitor,代码行数:25,代码来源:cableStatics.py


示例5: __set_static_gaus_pmfs

 def __set_static_gaus_pmfs(self):
     if np.logical_not(self.off_buff.is_full()):
         print "The long term buffer is not yet full.  This may give undesirable results"
     
     # median RSS of off-state buffer
     cal_med = self.off_buff.get_no_nan_median()
     
     if (np.sum(cal_med == 127) > 0) | (np.sum(np.isnan(cal_med)) > 0):
         sys.stderr.write('At least one link has a median of 127 or is nan\n\n')
         quit()
          
     if (np.sum(np.isnan(self.off_buff.get_nanvar())) > 0):
         sys.stderr.write('the long term buffer has a nan')
         quit()
     
     cal_med_mat = np.tile(cal_med,(self.V_mat.shape[1],1)).T
     
     # variance of RSS during calibration
     cal_var = np.maximum(self.off_buff.get_nanvar(),self.omega) #3.0 
     cal_var_mat = np.tile(cal_var,(self.V_mat.shape[1],1)).T
     
     # Compute the off_link emission probabilities for each link
     x = np.exp(- (self.V_mat - cal_med_mat)**2/(2*cal_var_mat/1.0)) # 1.0
     self.off_links = self.__normalize_pmf(x)
     
     # Compute the on_link emission probabilities for each link
     x = np.exp(- (self.V_mat - (cal_med_mat-self.Delta))**2/(self.eta*2*cal_var_mat)) # 3
     self.on_links = self.__normalize_pmf(x) 
开发者ID:peterhillyard,项目名称:double_border,代码行数:28,代码来源:hmm_border_class_v1.py


示例6: testCustomGradient

  def testCustomGradient(self):
    dtype = dtypes.float32

    @function.Defun(dtype, dtype, dtype)
    def XentLossGrad(logits, labels, dloss):
      dlogits = array_ops.reshape(dloss, [-1, 1]) * (
          nn_ops.softmax(logits) - labels)
      dlabels = array_ops.zeros_like(labels)
      # Takes exp(dlogits) to differentiate it from the "correct" gradient.
      return math_ops.exp(dlogits), dlabels

    @function.Defun(dtype, dtype, grad_func=XentLossGrad)
    def XentLoss(logits, labels):
      return math_ops.reduce_sum(labels * math_ops.log(nn_ops.softmax(logits)),
                                 1)

    g = ops.Graph()
    with g.as_default():
      logits = array_ops.placeholder(dtype)
      labels = array_ops.placeholder(dtype)
      loss = XentLoss(logits, labels)
      dlogits = gradients_impl.gradients([loss], [logits])

    x = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32)
    prob = np.exp(x) / np.sum(np.exp(x), 1, keepdims=1)
    y = np.random.uniform(-10., 10., size=(4, 9)).astype(np.float32)
    for cfg in _OptimizerOptions():
      tf_logging.info("cfg = %s", cfg)
      with session.Session(graph=g, config=cfg) as sess:
        out, = sess.run(dlogits, {logits: x, labels: y})
      self.assertAllClose(out, np.exp(prob - y))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:31,代码来源:function_test.py


示例7: CRRbinomial

def CRRbinomial(S, K, T, rf, sigma, n):
    '''
    Option pricing using binomial tree, no dividend
    :param S: underlying current prince
    :param K: option strke price
    :param T: expire date
    :param rf: risk-free rate
    :param sigma: volatility
    :param n: number of periods to T
    :return:
    '''
    dt = float(T)/n
    u = np.exp(sigma * (dt**0.5))
    d= 1./u
    p = (np.exp(rf*dt)-d)/(u-d)

    euroCall, euroPut = 0, 0

    for idx in xrange(0, n+1):
        prob = spmisc.comb(n, idx)* (p**idx) * (1-p)**(n-idx)
        euroCall += prob*max(S*(u**idx)*(d**(n-idx))-K, 0)
        euroPut += prob*max(K-S*(u**idx)*(d**(n-idx)), 0)

    euroCall *= np.exp(-rf*T)
    euroPut *= np.exp(-rf*T)
    return euroCall, euroPut
开发者ID:chrinide,项目名称:PyFV,代码行数:26,代码来源:tree_based.py


示例8: update

 def update(self,proposal,logp,bad,i):
     logps = self.logps[i-1]
     thresh = self.thresh
     if logp>logps:
         self.logps[i] = logp
         self.trace[i] = proposal
         self.dets.append([d.value for d in self.deterministics])
         self.nbad = 0
         self.stuck = False
         self.temp = 1.
         return
     self.nbad += 1
     if self.nbad>self.thresh and self.stuck==False:
         self.stuck = True
         self.logpTmp = logps
     if self.stuck==True:
         r = log(rand())*self.temp
         print 'stuck',i,logps,self.logpTmp,logp,r,logp-self.logpTmp
         if logp-self.logpTmp>r:
             self.logpTmp = logp
             self.temp /= numpy.exp(1./thresh)
         else:
             self.temp *= numpy.exp(1./thresh)
     self.logps[i] = self.logps[i-1]
     self.trace[i] = self.trace[i-1].copy()
     self.dets.append(self.dets[-1])
开发者ID:XiaoleiMeng,项目名称:HIGHRESOLUTIONIMAGING,代码行数:26,代码来源:SampleOpt.py


示例9: logLikelihood

    def logLikelihood(self, obs_seq, num_cluster, error_rate_dict, switch_rate_dict):
        """

        :param obs_seq: state list of the same length as observation sequence
        :param num_cluster: int
        :param error_rate_dict: dict
        :param switch_rate_dict: dict
        :return: log likelihood
        """
        pi = [1/num_cluster] * num_cluster
        path_length = len(obs_seq)

        alpha_dict = dict()

        alpha_dict[0] = dict(zip(range(num_cluster), [np.log(pi[i]) + np.log(error_rate_dict[i][obs_seq[0]])
                                                      for i in range(num_cluster)]))

        for t in range(path_length-1):
            alpha_dict[t+1] = dict()
            for j in range(num_cluster):
                log_alpha_j = [(alpha_dict[t][i] + np.log(switch_rate_dict[i][j])) for i in range(num_cluster)]
                max_log_alpha_j = max(log_alpha_j)
                sum_residual = np.sum(np.exp(log_alpha_j - max_log_alpha_j))
                final = max_log_alpha_j + np.log(sum_residual)
                alpha_dict[t+1][j] = final + np.log(error_rate_dict[j][obs_seq[t + 1]])

        alpha_df = pd.DataFrame.from_dict(alpha_dict)
        max_final = max(alpha_df.ix[:, path_length-1])

        llk = max_final + np.log(np.sum(np.exp(alpha_df.ix[:, path_length-1] - max_final)))

        return llk
开发者ID:jesscyzhao,项目名称:moulton,代码行数:32,代码来源:Model.py


示例10: test_solve_poisson_becke_sa

def test_solve_poisson_becke_sa():
    sigma = 8.0
    rtf = ExpRTransform(1e-4, 1e2, 500)
    r = rtf.get_radii()
    rhoy = np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5
    rhod = np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5*(-r/sigma)/sigma
    rho = CubicSpline(rhoy, rhod, rtf)
    v = solve_poisson_becke([rho])[0]

    s2s = np.sqrt(2)*sigma
    soly = erf(r/s2s)/r
    sold = np.exp(-(r/s2s)**2)*2/np.sqrt(np.pi)/s2s/r - erf(r/s2s)/r**2

    if False:
        import matplotlib.pyplot as pt
        n = 10
        pt.clf()
        pt.plot(r[:n], soly[:n], label='exact')
        pt.plot(r[:n], v.y[:n], label='spline')
        pt.legend(loc=0)
        pt.savefig('denu.png')

    assert abs(v.y - soly).max()/abs(soly).max() < 1e-6
    assert abs(v.dx - sold).max()/abs(sold).max() < 1e-4
    # Test the boundary condition at zero and infinity
    assert v.extrapolation.l == 0
    np.testing.assert_allclose(v.extrapolation.amp_left, np.sqrt(2/np.pi)/sigma)
    np.testing.assert_allclose(v.extrapolation.amp_right, 1.0)
开发者ID:stevenvdb,项目名称:horton,代码行数:28,代码来源:test_poisson.py


示例11: __init__

    def __init__(self, ps=None, sigma_v=0.0, redshift=0.0, **kwargs):
        if ps == None:
            from os.path import join, dirname
            #psfile = join(dirname(__file__),"data/ps_z1.5.dat")
            #psfile = join(dirname(__file__),"data/wigglez_halofit_z1.5.dat")
            psfile = join(dirname(__file__),"data/wigglez_halofit_z0.8.dat")
            print "loading matter power file: " + psfile
            redshift = 0.8

            #pk_interp = cs.LogInterpolater.fromfile(psfile)
            pwrspec_data = np.genfromtxt(psfile)

            (log_k, log_pk) = (np.log(pwrspec_data[:,0]), \
                               np.log(pwrspec_data[:,1]))

            logpk_interp = interpolate.interp1d(log_k, log_pk,
                                                bounds_error=False,
                                                fill_value=np.min(log_pk))

            pk_interp = lambda k: np.exp(logpk_interp(np.log(k)))

            kstar = 7.0
            ps = lambda k: np.exp(-0.5 * k**2 / kstar**2) * pk_interp(k)

        self._sigma_v = sigma_v

        RedshiftCorrelation.__init__(self, ps_vv=ps, redshift=redshift)
开发者ID:OMGitsHongyu,项目名称:analysis_IM,代码行数:27,代码来源:corr21cm.py


示例12: _compute_influence_kernel

    def _compute_influence_kernel(self, iter, dqd):
        """Compute the neighborhood kernel for some iteration.

        Parameters
        ----------
        iter : int
          The iteration for which to compute the kernel.
        dqd : array (nrows x ncolumns)
          This is one quadrant of Euclidean distances between Kohonen unit
          locations.
        """
        # compute radius decay for this iteration
        curr_max_radius = self.radius * np.exp(-1.0 * iter / self.iter_scale)

        # same for learning rate
        curr_lrate = self.lrate * np.exp(-1.0 * iter / self.iter_scale)

        # compute Gaussian influence kernel
        infl = np.exp((-1.0 * dqd) / (2 * curr_max_radius * iter))
        infl *= curr_lrate

        # hard-limit kernel to max radius
        # XXX is this really necessary?
        infl[dqd > curr_max_radius] = 0.

        return infl
开发者ID:PepGardiola,项目名称:PyMVPA,代码行数:26,代码来源:som.py


示例13: firwin_complex_bandpass

def firwin_complex_bandpass(num_taps, cutoffs, window='hamming'):
    width, center = max(cutoffs) - min(cutoffs), (cutoffs[0] + cutoffs[1]) / 2
    b = scipy.signal.firwin(num_taps, width / 2, window='rectangular', scale=False)
    b = b * numpy.exp(1j * numpy.pi * center * numpy.arange(len(b)))
    b = b * scipy.signal.get_window(window, num_taps, False)
    b = b / numpy.sum(b * numpy.exp(-1j * numpy.pi * center * (numpy.arange(num_taps) - (num_taps - 1) / 2)))
    return b.astype(numpy.complex64)
开发者ID:EntropyWorks,项目名称:luaradio,代码行数:7,代码来源:complexbandpassfilter_spec.py


示例14: convolve_template

def convolve_template():
    from plot_Profile_evolution import all_obs
    import numpy as np

    date_list, observations = all_obs()
    x = np.arange(512 - 25 - 50, 512 + 45 + 51)

    delay = []
    for n in observations:
        best_mu = 0
        best_corr = 0

        for mu in np.linspace(512 - 25, 512 + 45, 701):
            template = np.exp(-(x - 512) ** 2 / (2.0 * 6.2 ** 2)) + 0.09 * np.exp(-(x - mu) ** 2 / (2.0 * 8.0 ** 2))
            template /= template.max()
            corr = np.correlate(n, template, mode="valid").max()

            if corr > best_corr:
                best_corr = corr
                best_mu = mu

        delay.append(best_mu - 512)

    plt.plot(date_list, delay, "ko")
    plt.show()
开发者ID:danielemichilli,项目名称:Profile_evolution,代码行数:25,代码来源:fitting_position.py


示例15: all_GL

 def all_GL(self, q, maxpiv=None):
     """return (piv, f_binodal_gas, f_binodal_liquid, f_spinodal_gas, f_spinodal_liquid) at insersion works piv sampled between the critical point and maxpiv (default to 2.2*critical pressure)"""
     fc, pivc = self.critical_point(q)
     Fc = np.log(fc)
     #start sensibly above the critical point
     startp = pivc*1.1
     fm = fminbound(self.mu, fc, self.maxf(), args=(startp, q))
     fM = fminbound(lambda f: -self.pv(f, startp, q), 0, fc)
     initial_guess = np.log([0.5*fM, 0.5*(fm+self.maxf())])
     #construct the top of the GL binodal
     if maxpiv is None:
         maxpiv = startp*2
     topp = 1./np.linspace(1./startp, 1./maxpiv)
     topGL = [initial_guess]
     for piv in topp:
         topGL.append(self.binodalGL(piv, q, topGL[-1]))
     #construct the GL binodal between the starting piv and the critical point
     botp = np.linspace(startp, pivc)[:-1]
     botGL = [initial_guess]
     for piv in botp:
         botGL.append(self.binodalGL(piv, q, botGL[-1]))
     #join the two results and convert back from log
     binodal = np.vstack((
         [[pivc, fc, fc]],
         np.column_stack((botp, np.exp(botGL[1:])))[::-1],
         np.column_stack((topp, np.exp(topGL[1:])))[1:]
         ))
     #spinodal at the same pivs
     spinodal = self.spinodalGL(q, binodal[:,0])
     #join everything
     return np.column_stack((binodal, spinodal[:,1:]))
开发者ID:yusrishaharin,项目名称:colloids,代码行数:31,代码来源:phase.py


示例16: mycavvaccaleib

def mycavvaccaleib(x,p, secondg=False):
     latebump=False
     if p==None:
          return (x)*99e9
     if p[8]>p[0]:
#          print "late bump"
          latebump=True
    #fit the magnitudes with a vacca leibundgut (1997) analytical model 
    #p is the parameter list
    #if secondg=1: secondgaussian added
    #if secondg=0: secondgaussian not    
    #parameters are: 
    #p[0]=first gaussian normalization (negative if fitting mag)
    #p[1]=first gaussian mean
    #p[2]=first gaussian sigma
    #p[3]=linear decay offset
    #p[4]=linear decay slope
    #p[5]=exponxential rise slope
    #p[6]=exponential zero point
    #p[7]=second gaussian normalization (negative if fitting mag)
    #p[8]=second gaussian mean
    #p[9]=second gaussian sigma
     g=p[4]*(x)+p[3]
     g+=p[0]*np.exp(-(x-p[1])**2/p[2]**2)
     g*=(np.exp(-p[5]*(x-p[6]))+1)
     if secondg:
          g+=p[7]*np.exp(-(x-p[8])**2/p[9]**2)    
     if latebump and p[8]-p[1]<15 :
          g+=(np.zeros(len(g),float)+1)
     if p[8]-p[1]>70:
          g+=(np.zeros(len(g),float)+1)
     return g
开发者ID:nyusngroup,项目名称:SESNCfAlib,代码行数:32,代码来源:templutils.py


示例17: estimate_from_weights

def estimate_from_weights(log_ais_w):
    """ Safely computes the log-average of the ais-weights.

    Inputs
    ------
    log_ais_w: T.vector
        Symbolic vector containing log_ais_w^{(m)}.

    Returns
    -------
    dlogz: scalar
        log(Z_B) - log(Z_A).
    var_dlogz: scalar
        Variance of our estimator.
    """
    # Utility function for safely computing log-mean of the ais weights.
    ais_w = T.vector()
    max_ais_w = T.max(ais_w)
    dlogz = T.log(T.mean(T.exp(ais_w - max_ais_w))) + max_ais_w
    log_mean = theano.function([ais_w], dlogz, allow_input_downcast=False)

    # estimate the log-mean of the AIS weights
    dlogz = log_mean(log_ais_w)

    # estimate log-variance of the AIS weights
    # VAR(log(X)) \approx VAR(X) / E(X)^2 = E(X^2)/E(X)^2 - 1
    m = numpy.max(log_ais_w)
    var_dlogz = (log_ais_w.shape[0] *
                 numpy.sum(numpy.exp(2 * (log_ais_w - m))) /
                 numpy.sum(numpy.exp(log_ais_w - m)) ** 2 - 1.)

    return dlogz, var_dlogz
开发者ID:gdesjardins,项目名称:DBM,代码行数:32,代码来源:ais.py


示例18: rbf_kernel

def rbf_kernel(X, Y=None, gamma=None):
    """
    Compute the rbf (gaussian) kernel between X and Y::

        K(x, y) = exp(-gamma ||x-y||^2)

    for each pair of rows x in X and y in Y.

    Parameters
    ----------
    X : array of shape (n_samples_X, n_features)

    Y : array of shape (n_samples_Y, n_features)

    gamma : float

    Returns
    -------
    kernel_matrix : array of shape (n_samples_X, n_samples_Y)
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = euclidean_distances(X, Y, squared=True)
    K *= -gamma
    np.exp(K, K)    # exponentiate K in-place
    return K
开发者ID:aswizzl,项目名称:luckybomb,代码行数:28,代码来源:pairwise.py


示例19: fwd_all

    def fwd_all(self,X,w=None):
        """ Propagate values forward through the net.
        Inputs:
                inputs      - vector of input values
                w           - packed array of weights
        Returns:
                array of outputs for all input patterns
        """
        if w is not None:
            self.wp = w
        self.unpack()
        # compute hidden unit values
        z = N.zeros((len(X),self.centers.shape[0]))
        for i in range(len(X)):
             z[i] = N.exp((-1.0/(2*self.variance))*(N.sum((X[i]-self.centers)**2,axis=1)))
        # compute net outputs
        o = N.dot(z,self.w) + N.dot(N.ones((len(z),1)),self.b)
        # compute final output activations
        if self.outfxn == 'linear':
            y = o
        elif self.outfxn == 'logistic':     # TODO: check for overflow here...
            y = 1/(1+N.exp(-o))
        elif self.outfxn == 'softmax':      # TODO: and here...
            tmp = N.exp(o)
            y = tmp/(N.sum(temp,1)*N.ones((1,self.no)))

        return N.array(y)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:27,代码来源:rbf.py


示例20: test_square_exponential_covariance_one_dim

    def test_square_exponential_covariance_one_dim(self):
        """Test the SquareExponential covariance function against correct values for different sets of hyperparameters in 1D."""
        for hyperparameters in self.one_dim_test_sets:
            signal_variance = hyperparameters[0]
            length = hyperparameters[1]
            covariance = self.CovarianceClass(hyperparameters)

            # One length away
            truth = signal_variance * numpy.exp(-0.5)
            self.assert_scalar_within_relative(
                covariance.covariance(numpy.array([0.0]), numpy.array(length)),
                truth,
                self.epsilon,
            )
            # Sym
            self.assert_scalar_within_relative(
                covariance.covariance(numpy.array(length), numpy.array([0.0])),
                truth,
                self.epsilon,
            )

            # One length * sqrt 2 away
            truth = signal_variance * numpy.exp(-1.0)
            self.assert_scalar_within_relative(
                covariance.covariance(numpy.array([0.0]), numpy.array([length * numpy.sqrt(2)])),
                truth,
                self.epsilon,
            )
开发者ID:Allensmile,项目名称:MOE,代码行数:28,代码来源:covariance_test.py



注:本文中的numpy.exp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.exp2函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.errstate函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap