本文整理汇总了Python中numpy.fliplr函数的典型用法代码示例。如果您正苦于以下问题:Python fliplr函数的具体用法?Python fliplr怎么用?Python fliplr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fliplr函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: paduavals2coefs
def paduavals2coefs(f):
useFFTwhenNisMoreThan = 100
m = len(f)
n = int(round(-1.5 + np.sqrt(.25 + 2 * m)))
x = padua_points(n)
idx = _find_m(n)
w = 0 * x[0] + 1. / (n * (n + 1))
idx1 = np.all(np.abs(x) == 1, axis=0)
w[idx1] = .5 * w[idx1]
idx2 = np.all(np.abs(x) != 1, axis=0)
w[idx2] = 2 * w[idx2]
G = np.zeros(idx.max() + 1)
G[idx] = 4 * w * f
if (n < useFFTwhenNisMoreThan):
t1 = np.r_[0:n + 1].reshape(-1, 1)
Tn1 = np.cos(t1 * t1.T * np.pi / n)
t2 = np.r_[0:n + 2].reshape(-1, 1)
Tn2 = np.cos(t2 * t2.T * np.pi / (n + 1))
C = np.dot(Tn2, np.dot(G, Tn1))
else:
# dct = @(c) chebtech2.coeffs2vals(c);
C = np.rot90(dct(dct(G.T).T)) #, axis=1)
C[0] = .5 * C[0]
C[:, 1] = .5 * C[:, 1]
C[0, -1] = .5 * C[0, -1]
del C[-1]
# Take upper-left triangular part:
return np.fliplr(np.triu(np.fliplr(C)))
开发者ID:eelcovv,项目名称:pywafo,代码行数:33,代码来源:padua.py
示例2: put_image_quadrants
def put_image_quadrants (Q,odd_size=True):
"""
Reassemble image from 4 quadrants Q = (Q0, Q1, Q2, Q3)
The reverse process to get_image_quadrants()
Qi defined in abel.hansenlaw.iabel_hansenlaw
Parameters:
- Q: tuple of numpy array quadrants
- even_size: boolean, whether final image is even or odd pixel size
odd size requires trimming 1 row from Q1, Q0, and
1 column from Q1, Q2
Returns:
- rows x cols numpy array - the reassembled image
"""
if not odd_size:
Top = np.concatenate((np.fliplr(Q[1]), Q[0]), axis=1)
Bottom = np.flipud(np.concatenate((np.fliplr(Q[2]), Q[3]), axis=1))
else:
# odd size image remove extra row/column added in get_image_quadrant()
Top = np.concatenate((np.fliplr(Q[1][:-1,:-1]), Q[0][:-1,:]), axis=1)
Bottom = np.flipud(np.concatenate((np.fliplr(Q[2][:,:-1]), Q[3]), axis=1))
IM = np.concatenate((Top,Bottom), axis=0)
return IM
开发者ID:stggh,项目名称:PyAbel,代码行数:28,代码来源:symmetry.py
示例3: rotate_data
def rotate_data(bg, overlay, slices_list, axis_name, shape):
# Rotate the data as required
# Return the rotated data, and an updated slice list if necessary
if axis_name == 'axial':
# Align so that right is right
overlay = np.rot90(overlay)
overlay = np.fliplr(overlay)
bg = np.rot90(bg)
bg = np.fliplr(bg)
elif axis_name == 'coronal':
overlay = np.rot90(overlay)
bg = np.rot90(bg)
overlay = np.flipud(np.swapaxes(overlay, 0, 2))
bg = np.flipud(np.swapaxes(bg, 0, 2))
slices_list[1] = [ shape - n - 3 for n in slices_list[1] ]
elif axis_name == 'sagittal':
overlay = np.flipud(np.swapaxes(overlay, 0, 2))
bg = np.flipud(np.swapaxes(bg, 0, 2))
else:
print '\n************************'
print 'ERROR: data could not be rotated\n'
parser.print_help()
sys.exit()
return bg, overlay, slices_list
开发者ID:KirstieJane,项目名称:DESCRIBING_DATA,代码行数:28,代码来源:MakePngs_DTI.py
示例4: load_images
def load_images(random_state=1234):
train_df = pd.read_csv("data/train.csv", index_col="id", usecols=[0])
depths_df = pd.read_csv("data/depths.csv", index_col="id")
train_df = train_df.join(depths_df)
test_df = depths_df[~depths_df.index.isin(train_df.index)]
print(">>> train_df:",train_df.shape)
print(train_df.head())
print(">>> test_df:", test_df.shape)
print(test_df.head())
train_df["images"] = [gradmag(np.array(imread(path_train_images+"{}.png".format(idx)))) for idx in tqdm(train_df.index)]
train_df["masks"] = [np.array(load_img(path_train_masks+"{}.png".format(idx),grayscale=True))/255 for idx in tqdm(train_df.index)]
train_df["coverage"] = train_df.masks.map(np.sum) / pow(img_size_ori, 2)
train_df["coverage_class"] = train_df.coverage.map(cov_to_class)
print("*** TRAIN ***")
print(train_df.head())
print("*** TEST ***")
print(test_df.head())
ids_train, ids_valid, x_train, x_valid, y_train, y_valid, cov_train, cov_test, depth_train, depth_test = train_test_split(
train_df.index.values,
np.array(train_df.images.tolist()).reshape(-1, img_size_target, img_size_target, 1),
np.array(train_df.masks.tolist()).reshape(-1, img_size_target, img_size_target, 1),
train_df.coverage.values,
train_df.z.values,
test_size=0.2,
stratify=train_df.coverage_class,
random_state=random_state)
#Data augmentation
x_train2 = np.append(x_train, [np.fliplr(x) for x in x_train], axis=0)
y_train2 = np.append(y_train, [np.fliplr(x) for x in y_train], axis=0)
print(x_train2.shape)
print(y_valid.shape)
x_test = np.array([gradmag(np.array(imread(path_test_images+"{}.png".format(idx)))) for idx in tqdm(test_df.index)]).reshape(-1, img_size_target, img_size_target, 1)
return x_train2, x_valid, y_train2, y_valid, x_test, test_df.index.values
开发者ID:gtesei,项目名称:fast-furious,代码行数:33,代码来源:unet_start_4_grad.py
示例5: wrapper
def wrapper(*args):
x = args[0]
w = args[1]
if x.ndim == 3:
w = np.flipud(w)
w = np.transpose(w, (1, 2, 0))
if args[3] == 'channels_last':
x = np.transpose(x, (0, 2, 1))
elif x.ndim == 4:
w = np.fliplr(np.flipud(w))
w = np.transpose(w, (2, 3, 0, 1))
if args[3] == 'channels_last':
x = np.transpose(x, (0, 3, 1, 2))
else:
w = np.flip(np.fliplr(np.flipud(w)), axis=2)
w = np.transpose(w, (3, 4, 0, 1, 2))
if args[3] == 'channels_last':
x = np.transpose(x, (0, 4, 1, 2, 3))
y = func(x, w, args[2], args[3])
if args[3] == 'channels_last':
if y.ndim == 3:
y = np.transpose(y, (0, 2, 1))
elif y.ndim == 4:
y = np.transpose(y, (0, 2, 3, 1))
else:
y = np.transpose(y, (0, 2, 3, 4, 1))
return y
开发者ID:joelthchao,项目名称:keras,代码行数:30,代码来源:reference_operations.py
示例6: array_transpose
def array_transpose(self, flip=False):
"""Transpose the arrays in strand coverage"""
self.transpose_cov1 = []
self.transpose_cov2 = []
# print(self.coverage)
for a in self.cov_sense_all:
if flip:
# print(a[:, 0])
# print(a[:, 1])
a1 = np.transpose(a[:, 0])
a1.shape = (a1.shape[0],1)
self.transpose_cov1.append(np.fliplr(a1))
a2 = np.transpose(a[:, 0])
a2.shape = (a2.shape[0], 1)
self.transpose_cov2.append(np.fliplr(a2))
else:
# print(a[:, 0])
# print(a[:, 1])
a1 = np.transpose(a[:, 0])
a1.shape = (a1.shape[0], 1)
self.transpose_cov1.append(a1)
a2 = np.transpose(a[:, 1])
a2.shape = (a2.shape[0], 1)
self.transpose_cov2.append(a2)
self.transpose_cov1 = np.array(self.transpose_cov1)
self.transpose_cov2 = np.array(self.transpose_cov2)
开发者ID:eggduzao,项目名称:reg-gen,代码行数:26,代码来源:CoverageSet.py
示例7: rforests
def rforests(trainx, trainy, test, n_estimators=100, k=5):
trainy = np.ravel(trainy)
forest = RandomForestClassifier(n_estimators)
forest.fit(trainx, trainy)
prob_train = forest.predict_proba(trainx)
prob_test = forest.predict_proba(test)
# Since the index is the number of the country that's been chosen
# we can use these with argsort to get the maximum 5., we will have to do this
# for the entire matrix though.
sort_train = np.argsort(prob_train)[:,-k:]
sort_test = np.argsort(prob_test)[:,-k:]
# Now we need to transform these back to countries, but to map I need to
# have a dataframe.
col_names = []
for i in range(k):
name = "country_destination_" + str(i+1)
col_names.append(name)
pred_train = pd.DataFrame(sort_train, columns=col_names)
pred_test = pd.DataFrame(sort_test, columns=col_names)
for name in col_names:
pred_train[name] = pred_train[name].map(dicts.country)
pred_test[name] = pred_test[name].map(dicts.country)
pred_train = np.fliplr(pred_train)
pred_test = np.fliplr(pred_test)
return forest, pred_train, pred_test
开发者ID:oew1v07,项目名称:kaggle_playaround,代码行数:35,代码来源:forests.py
示例8: save
def save(self, config, args):
"""
save LSDMap object in .lsdmap file and eigenvalues/eigenvectors in .eg/.ev files
"""
if isinstance(self.struct_filename, list):
struct_filename = self.struct_filename[0]
else:
struct_filename = self.struct_filename
path, ext = os.path.splitext(struct_filename)
np.savetxt(path + '.eg', np.fliplr(self.eigs[np.newaxis]), fmt='%9.6f')
np.savetxt(path + '.ev', np.fliplr(self.evs), fmt='%.18e')
#np.save(path + '_eg.npy', np.fliplr(self.eigs[np.newaxis]))
#np.save(path + '_ev.npy', np.fliplr(self.evs))
if args.output_file is None:
try:
lsdmap_filename = config.get('LSDMAP', 'lsdmfile')
except:
return
else:
lsdmap_filename = args.output_file
with open(lsdmap_filename, "w") as file:
pickle.dump(self, file)
开发者ID:jp43,项目名称:LSDMap,代码行数:25,代码来源:lsdm.py
示例9: phase_diagram
def phase_diagram(self,updown,leftright,xlab,ylab):
mdense = np.loadtxt("mdense.txt", delimiter=',')
m1d = np.loadtxt("m1d.txt", delimiter=',')
m2d = np.loadtxt("m2d.txt", delimiter=',')
mdis = np.loadtxt("mdis.txt", delimiter=',')
mtotal = np.loadtxt('mtotal.txt',delimiter=',')
mdense_p = mdense/mtotal
m1d_p = m1d/mtotal
m2d_p = m2d/mtotal
if updown:
mdense_p = np.flipud(mdense_p)
m1d_p = np.flipud(m1d_p)
m2d_p = np.flipud(m2d_p)
if leftright:
mdense_p = np.fliplr(mdense_p)
m1d_p = np.fliplr(m1d_p)
m2d_p = np.fliplr(m2d_p)
r = m1d_p
g = m2d_p
b = mdense_p
rgb = np.dstack((r,g,b))
im = Image.fromarray(np.uint8(rgb*255.999))
plt.imshow(im,extent=[0.125,1.125,self.nmet_init/self.num_mol,self.nmet_max/self.num_mol],aspect="auto")
plt.xlabel(xlab)
plt.ylabel(ylab)
开发者ID:jorghyq,项目名称:Monte-Carlo-Simulation,代码行数:25,代码来源:analyzer2.py
示例10: fetcher
def fetcher(self):
try:
for i in xrange(self.batch_size_):
sample, fname, label = self.jpeg_pack_.get(self.param_['segment'], self.index, self.param_['color'], self.mean_sub_)
if self.crop_:
if self.output2_:
cx = random.randint(0, (sample.shape[0] - self.crop_dim_[0])/self.ratio) * self.ratio
cy = random.randint(0, (sample.shape[1] - self.crop_dim_[1])/self.ratio) * self.ratio
else:
cx = random.randint(0, (sample.shape[0] - self.crop_dim_[0]))
cy = random.randint(0, (sample.shape[1] - self.crop_dim_[1]))
sample = sample[cx:cx+self.crop_dim_[0], cy:cy+self.crop_dim_[1], :]
if self.mirror_:
flag_mirror = random.random() < 0.5
if flag_mirror:
sample = numpy.fliplr(sample)
self.buffer[i,...] = sample.transpose((2,0,1)) * self.scale_
if self.output_label:
self.label_buffer[i,0,0,0] = label
if self.output2_:
sample2, fname, label = self.jpeg_pack2_.get(self.param_['segment2'], self.index, self.param_['color2'], self.mean_sub2_)
if self.crop_:
cx2 = cx / self.ratio
cy2 = cy / self.ratio
sample2 = sample2[cx2:cx2+self.crop_dim2_[0], cy2:cy2+self.crop_dim2_[1]]
if self.mirror_ and flag_mirror:
sample2 = numpy.fliplr(sample2)
self.buffer2[i,...] = sample2.transpose((2,0,1)) * self.scale2_
self.index += 1
except:
self.worker_succeed = False
raise
else:
self.worker_succeed = True
开发者ID:piiswrong,项目名称:caffe,代码行数:35,代码来源:jpeg_data_layer.py
示例11: recale
def recale(matrix):
l = len(matrix)
bigmat = np.zeros([2*l,2*l])
bigmat[l:2*l,l:2*l] = matrix
bigmat[l:2*l,0:l] = np.fliplr(matrix)
bigmat[0:l] = np.transpose(np.fliplr(np.transpose(bigmat[l:2*l])))
return bigmat
开发者ID:willdvaz,项目名称:nombres,代码行数:7,代码来源:nompy.py
示例12: center_normTrace_decomp
def center_normTrace_decomp(K):
print 'centering kernel'
#### Get transformed features for K_train that DONT snoop when centering, tracing, or eiging#####
Kcent=KernelCenterer()
Ktrain=Kcent.fit_transform(K[:in_samples,:in_samples])
#Ktrain=Ktrain/float(np.trace(Ktrain))
#[EigVals,EigVectors]=scipy.sparse.linalg.eigsh(Ktrain,k=reduced_dimen,which='LM')
[EigVals,EigVectors]=scipy.linalg.eigh(Ktrain,eigvals=(in_samples-reduced_dimen,in_samples-1))
for i in range(len(EigVals)):
if EigVals[i]<=0: EigVals[i]=0
EigVals=np.flipud(np.fliplr(np.diag(EigVals)))
EigVectors=np.fliplr(EigVectors)
Ktrain_decomp=np.dot(EigVectors,scipy.linalg.sqrtm(EigVals))
#### Get transformed features for K_test using K_train implied mapping ####
Kcent=KernelCenterer()
Kfull=Kcent.fit_transform(K)
#Kfull=Kfull/float(np.trace(Kfull))
K_train_test=Kfull[in_samples:,:in_samples]
Ktest_decomp=np.dot(K_train_test,np.linalg.pinv(Ktrain_decomp.T))
####combine mapped train and test vectors and normalize each vector####
Kdecomp=np.vstack((Ktrain_decomp,Ktest_decomp))
print 'doing normalization'
Kdecomp=normalize(Kdecomp,copy=False)
return Kdecomp
开发者ID:matthew-norton,项目名称:SVM-Kernel-Selection,代码行数:26,代码来源:Kernels.py
示例13: gridVisDVF
def gridVisDVF(dvfImFileName,sliceNum = -1,titleString = 'DVF',saveFigPath ='.',deformedImFileName = None, contourNum=40):
dvf = sitk.ReadImage(dvfImFileName)
dvfIm = sitk.GetArrayFromImage(dvf) # get numpy array
z_dim, y_dim, x_dim, channels = dvfIm.shape # get 3D volume shape
if not (channels == 3 ):
print "dvf image expected to have three scalor channels"
if sliceNum == -1:
sliceNum = z_dim/2
[gridX,gridY]=np.meshgrid(np.arange(1,x_dim+1),np.arange(1,y_dim+1))
fig = plt.figure()
if deformedImFileName :
bgGray = sitk.ReadImage(deformedImFileName)
bgGrayIm = sitk.GetArrayFromImage(bgGray) # get numpy array
plt.imshow(np.fliplr(np.flipud(bgGrayIm[sliceNum,:,:])),cmap=plt.cm.gray)
idMap = np.zeros(dvfIm.shape)
for i in range(z_dim):
for j in range(y_dim):
for k in range(x_dim):
idMap[i,j,k,0] = i
idMap[i,j,k,1] = j
idMap[i,j,k,2] = k
mapIm = dvfIm + idMap
CS = plt.contour(gridX,gridY,np.fliplr(np.flipud(mapIm[sliceNum,:,:,1])), contourNum, hold='on', colors='red')
CS = plt.contour(gridX,gridY,np.fliplr(np.flipud(mapIm[sliceNum,:,:,2])), contourNum, hold='on', colors='red')
plt.title(titleString)
plt.savefig(saveFigPath + '/' + titleString)
fig.clf()
plt.close(fig)
return
开发者ID:rameshvs,项目名称:pyLAR,代码行数:33,代码来源:low_rank_atlas_iter.py
示例14: ps_batch
def ps_batch (self):
x_batch = np.zeros([CONST.lenPATCH, CONST.lenPATCH, CONST.COLOR_IN]).astype('float32')
y_batch = np.zeros([CONST.lenPATCH, CONST.lenPATCH, CONST.COLOR_IN]).astype('float32')
rand_index = self.index_list[0]
self.index_list = self.index_list[1:]
x_batch = self.dset_train[1][:,:,rand_index]
y_batch = self.dset_train[2][:,:,rand_index]
x_batch = np.reshape(x_batch, (CONST.lenPATCH, CONST.lenPATCH, 1 ) )
y_batch = np.reshape(y_batch, (CONST.lenPATCH, CONST.lenPATCH, 1 ) )
## Data Augmentation
if random.randint(0,1) :
x_batch = np.fliplr(x_batch)
y_batch = np.fliplr(y_batch)
if random.randint(0,1) :
x_batch = np.flipud(x_batch)
y_batch = np.flipud(y_batch)
rand_rot = random.randint(0,3)
x_batch = np.rot90(x_batch, rand_rot)
y_batch = np.rot90(y_batch, rand_rot)
return np.array([x_batch, y_batch])
开发者ID:ByungKeon-Ko,项目名称:SRCNN,代码行数:25,代码来源:batch_manager.py
示例15: reflectEdges
def reflectEdges(self, width=None):
"""Extend the edges of the image by reflection.
The corners aren't dealt with properly, but this might give some help when applying a hanningFilter after."""
# Extend the size of the image and do some bookkeeping.
if width == None:
width = min(self.nx, self.ny) / 4.0
self.zeroPad(width)
# And then put reflected copy of data into the boundaries.
# Reflect/flip left edge.
xmin = self.padx
xmax = self.padx * 2
ymin = self.pady
ymax = self.ny - self.pady
self.image[ymin:ymax, 0:xmin] = numpy.fliplr(self.image[ymin:ymax, xmin:xmax])
# Reflect/flip right edge
xmin = self.nx - self.padx*2
xmax = self.nx - self.padx
self.image[ymin:ymax, (self.nx-self.padx):self.nx] = numpy.fliplr(self.image[ymin:ymax, xmin:xmax])
# Reflect/flip bottom edge
xmin = self.padx
xmax = self.nx - self.padx
ymin = self.padx
ymax = self.padx * 2
self.image[0:self.pady, xmin:xmax] = numpy.flipud(self.image[ymin:ymax, xmin:xmax])
# Reflect/flip top edge
ymin = self.ny - self.pady*2
ymax = self.ny - self.pady
self.image[(self.ny - self.pady):self.ny, xmin:xmax] = numpy.flipud(self.image[ymin:ymax, xmin:xmax])
# I should interpolate over the corners, but .. todo.
return
开发者ID:lsst,项目名称:sims_selfcal,代码行数:30,代码来源:pImage.py
示例16: fliplr
def fliplr(x):
if x.ndim == 3:
x = np.transpose(np.fliplr(np.transpose(x, (0, 2, 1))), (0, 2, 1))
elif x.ndim == 4:
for i in range(x.shape[0]):
x[i] = np.transpose(np.fliplr(np.transpose(x[i], (0, 2, 1))), (0, 2, 1))
return x.astype(float)
开发者ID:jiaxiangshang,项目名称:pyhowfar,代码行数:7,代码来源:transforms.py
示例17: process_image
def process_image(self, scanparams, pointparams, edf):
delta, omega, alfa, beta, chi, phi, mon, transm = pointparams
wavelength, UB = scanparams
image = edf.GetData(0)
header = edf.GetHeader(0)
weights = numpy.ones_like(image)
if not self.config.centralpixel:
self.config.centralpixel = (int(header['y_beam']), int(header['x_beam']))
if not self.config.sdd:
self.config.sdd = float(header['det_sample_dist'])
if self.config.background:
data = image / mon
else:
data = image / mon / transm
if mon == 0:
raise errors.BackendError('Monitor is zero, this results in empty output. Scannumber = {0}, pointnumber = {1}. Did you forget to open the shutter?'.format(self.dbg_scanno, self.dbg_pointno))
util.status('{4}| beta: {0:.3f}, delta: {1:.3f}, omega: {2:.3f}, alfa: {3:.3f}'.format(beta, delta, omega, alfa, time.ctime(time.time())))
# pixels to angles
pixelsize = numpy.array(self.config.pixelsize)
sdd = self.config.sdd
app = numpy.arctan(pixelsize / sdd) * 180 / numpy.pi
centralpixel = self.config.centralpixel # (column, row) = (delta, gamma)
beta_range= -app[1] * (numpy.arange(data.shape[1]) - centralpixel[1]) + beta
delta_range= app[0] * (numpy.arange(data.shape[0]) - centralpixel[0]) + delta
# masking
if self.config.maskmatrix is not None:
if self.config.maskmatrix.shape != data.shape:
raise errors.BackendError('The mask matrix does not have the same shape as the images')
weights *= self.config.maskmatrix
delta_range = delta_range[self.config.ymask]
beta_range = beta_range[self.config.xmask]
weights = self.apply_mask(weights, self.config.xmask, self.config.ymask)
intensity = self.apply_mask(data, self.config.xmask, self.config.ymask)
intensity = numpy.rot90(intensity)
intensity = numpy.fliplr(intensity)
intensity = numpy.flipud(intensity)
weights = numpy.rot90(weights)
weights = numpy.fliplr(weights)
weights = numpy.flipud(weights)
#polarisation correction
delta_grid, beta_grid = numpy.meshgrid(delta_range, beta_range)
Pver = 1 - numpy.sin(delta_grid * numpy.pi / 180.)**2 * numpy.cos(beta_grid * numpy.pi / 180.)**2
#intensity /= Pver
return intensity, weights, (wavelength, UB, beta_range, delta_range, omega, alfa, chi, phi)
开发者ID:dkriegner,项目名称:binoculars,代码行数:60,代码来源:bm32.py
示例18: load_batch
def load_batch(self, batch_size=1, is_testing=False):
data_type = "train" if not is_testing else "val"
path_A = glob('./datasets/%s/%sA/*' % (self.dataset_name, data_type))
path_B = glob('./datasets/%s/%sB/*' % (self.dataset_name, data_type))
self.n_batches = int(min(len(path_A), len(path_B)) / batch_size)
total_samples = self.n_batches * batch_size
# Sample n_batches * batch_size from each path list so that model sees all
# samples from both domains
path_A = np.random.choice(path_A, total_samples, replace=False)
path_B = np.random.choice(path_B, total_samples, replace=False)
for i in range(self.n_batches-1):
batch_A = path_A[i*batch_size:(i+1)*batch_size]
batch_B = path_B[i*batch_size:(i+1)*batch_size]
imgs_A, imgs_B = [], []
for img_A, img_B in zip(batch_A, batch_B):
img_A = self.imread(img_A)
img_B = self.imread(img_B)
img_A = scipy.misc.imresize(img_A, self.img_res)
img_B = scipy.misc.imresize(img_B, self.img_res)
if not is_testing and np.random.random() > 0.5:
img_A = np.fliplr(img_A)
img_B = np.fliplr(img_B)
imgs_A.append(img_A)
imgs_B.append(img_B)
imgs_A = np.array(imgs_A)/127.5 - 1.
imgs_B = np.array(imgs_B)/127.5 - 1.
yield imgs_A, imgs_B
开发者ID:crvogt,项目名称:CodeDebauchery,代码行数:35,代码来源:data_loader.py
示例19: extract
def extract(self, img, output_shape, corners=None, hints=None):
"""Extract a frame from `img`.
This function always corrects for perspective distortion and may
correct for radial distortion."""
if img.dtype != np.uint8:
raise ValueError('Can only operate on uint8.')
if corners is None:
corners = self.locate(img, hints=hints)
if self.calibration_profile is not None and \
undistort.should_undistort(img, corners, self.calibration_profile):
img, corners = undistort.undistort(img, corners,
self.calibration_profile)
corners = self.locate(img, hints=hints)
# Crop image to corners (speeds up the perspective transform)
img, corners = crop_to_corners(img, corners)
# Compute perspective transform
corners = np.fliplr(corners).astype(np.float32)
dst_corners = np.array(output_shape) * ((0, 0), (1, 0), (1, 1), (0, 1))
dst_corners = np.fliplr(dst_corners).astype(np.float32)
m = cv2.getPerspectiveTransform(corners, dst_corners)
return cv2.warpPerspective(img, m, output_shape,
flags=cv2.INTER_NEAREST)
开发者ID:frederikhermans,项目名称:imageframer,代码行数:27,代码来源:main.py
示例20: updateDisplayRGB
def updateDisplayRGB(self, auto = False):
"""
Make an RGB image (N, M, 3) (pyqt will interprate this as RGB automatically)
with masked pixels shown in blue at the maximum value of the cspad.
This ensures that the masked pixels are shown at full brightness.
"""
if self.geom_fnam is not None :
self.cspad_geom[self.pixel_maps[0], self.pixel_maps[1]] = self.cspad.ravel()
self.mask_geom[self.pixel_maps[0], self.pixel_maps[1]] = self.mask.ravel()
trans = np.fliplr(self.cspad_geom.T)
trans_mask = np.fliplr(self.mask_geom.T)
#
# I need to make the mask True between the asics...
trans_mask[self.background] = True
else :
trans = np.fliplr(self.cspad.T)
trans_mask = np.fliplr(self.mask.T)
self.cspad_max = self.cspad.max()
# convert to RGB
# Set masked pixels to B
display_data = np.zeros((trans.shape[0], trans.shape[1], 3), dtype = self.cspad.dtype)
display_data[:, :, 0] = trans * trans_mask
display_data[:, :, 1] = trans * trans_mask
display_data[:, :, 2] = trans + (self.cspad_max - trans) * ~trans_mask
self.display_RGB = display_data
if auto :
self.plot.setImage(self.display_RGB)
else :
self.plot.setImage(self.display_RGB, autoRange = False, autoLevels = False, autoHistogramRange = False)
开发者ID:antonbarty,项目名称:cheetah,代码行数:31,代码来源:maskMakerGUI.py
注:本文中的numpy.fliplr函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论