• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.greater函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.greater函数的典型用法代码示例。如果您正苦于以下问题:Python greater函数的具体用法?Python greater怎么用?Python greater使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了greater函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: prune_outside_window

def prune_outside_window(boxlist, window):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also ClipToWindow which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a numpy array of size 4, representing [ymin, xmin, ymax, xmax]
            of the window.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in.
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """

  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  coordinate_violations = np.hstack([np.less(y_min, win_y_min),
                                     np.less(x_min, win_x_min),
                                     np.greater(y_max, win_y_max),
                                     np.greater(x_max, win_x_max)])
  valid_indices = np.reshape(
      np.where(np.logical_not(np.max(coordinate_violations, axis=1))), [-1])
  return gather(boxlist, valid_indices), valid_indices
开发者ID:ucsky,项目名称:ActivityNet,代码行数:31,代码来源:np_box_list_ops.py


示例2: get_rt_change_deriv

def get_rt_change_deriv(kin_sig, bins, d_vel_thres = 0., fs = 60):
    '''
    input:
        kin_sig: trials x time array corresponding to velocity of the cursor
        
        start_tm: time from beginning of 'bins' of which to ignore any motion (e.g. if hold 
            time is 200 ms, and your kin_sig starts at the beginning of the hold time, set 
            start_tm = 0.2 to prevent micromovements in the hold time from being captured)

    output: 
        kin_feat : a trl x 3 array:
            column1 = RT in units of "bins" indices
            column2 = RT in units of time (bins[column1])
            column3 = index of max of kin_sig

    '''
    ntrials= kin_sig.shape[0]
    kin_feat = np.zeros((ntrials, 2))
    
    #Iterate through trials
    for trl in range(ntrials):   
        spd = kin_sig[trl,:]

        dt = 1./fs
        d_spd = np.diff(spd,axis=0)/dt
        
        if len(np.ravel(np.nonzero(np.greater(d_spd,d_vel_thres))))==0:
            bin_rt = 0
        else:
            bin_rt = np.ravel(np.nonzero(np.greater(d_spd,d_vel_thres)))[0]
        
        kin_feat[trl, 0] = bin_rt + 1 #Index of 'RT'
        kin_feat[trl, 1] = bins[kin_feat[trl, 0]] #Actual time of 'RT'
    return kin_feat
开发者ID:srsummerson,项目名称:analysis,代码行数:34,代码来源:rt_calc.py


示例3: _read_particles

    def _read_particles(self):
        if not os.path.exists(self.particle_filename): return
        with open(self.particle_filename, 'r') as f:
            lines = f.readlines()
            self.num_stars = int(lines[0].strip().split(' ')[0])
            for num, line in enumerate(lines[1:]):
                particle_position_x = float(line.split(' ')[1])
                particle_position_y = float(line.split(' ')[2])
                particle_position_z = float(line.split(' ')[3])
                coord = [particle_position_x, particle_position_y, particle_position_z]
                # for each particle, determine which grids contain it
                # copied from object_finding_mixin.py
                mask = np.ones(self.num_grids)
                for i in range(len(coord)):
                    np.choose(np.greater(self.grid_left_edge.d[:,i],coord[i]), (mask,0), mask)
                    np.choose(np.greater(self.grid_right_edge.d[:,i],coord[i]), (0,mask), mask)
                ind = np.where(mask == 1)
                selected_grids = self.grids[ind]
                # in orion, particles always live on the finest level.
                # so, we want to assign the particle to the finest of
                # the grids we just found
                if len(selected_grids) != 0:
                    grid = sorted(selected_grids, key=lambda grid: grid.Level)[-1]
                    ind = np.where(self.grids == grid)[0][0]
                    self.grid_particle_count[ind] += 1
                    self.grids[ind].NumberOfParticles += 1

                    # store the position in the *.sink file for fast access.
                    try:
                        self.grids[ind]._particle_line_numbers.append(num + 1)
                    except AttributeError:
                        self.grids[ind]._particle_line_numbers = [num + 1]
开发者ID:danielgrassinger,项目名称:yt_new_frontend,代码行数:32,代码来源:data_structures.py


示例4: pickBreakpointV2

def pickBreakpointV2(response, x1, predictor):
    #print int(min(predictor))*10, int(max(predictor)+1)*10, int(max(predictor) - min(predictor) + 1)/2
    #bpChoices = geneBpChoices(min(predictor), max(predictor), 20)
    results = np.zeros((len(bpChoices)-1, 2))
    print bpChoices
    
    for i in range(len(bpChoices)-1):
        print i
        x2star = (predictor - bpChoices[i]) * np.greater(predictor, bpChoices[i])
        x1star = x1 * np.greater(predictor, bpChoices[i]) 
        tempPredictor = np.array(zip(x1, x1star, predictor, x2star))
        #fileLoc = filePath + 'temp.csv'
        #np.savetxt(fileLoc, tempPredictor, delimiter=',', fmt = '%s')
        #print tempPredictor
        tempmodel = ols.ols(response, tempPredictor,'y',['F1F2', 'F1F2star', 'dist', 'diststar'])
        results[i,0] = i
        #results[i,1] = tempmodel.sse
        results[i,1] = tempmodel.R2

    optBP = int(results[np.argmax(results, axis = 0)[1],0])
    print 'Optimal Index:', optBP
    print 'Optimal changepoint: ', bpChoices[optBP], ' exp value: ', np.exp(bpChoices[optBP]), ' with R2 = ', results[optBP, 1]

    #x2star = (predictor - bpChoices[optBP]) * np.greater(predictor, bpChoices[optBP])
    #optPredictor = np.array(zip(predictor, x2star))
    #optmodel = ols.ols(response, optPredictor,'y',['x1', 'x2'])
    x1star = x1 * np.greater(predictor, bpChoices[optBP])
    x2star = (predictor - bpChoices[optBP]) * np.greater(predictor, bpChoices[optBP])
    optPredictor = np.array(zip(x1, x1star, predictor, x2star))
    optmodel = ols.ols(response, optPredictor,'y',['F1F2', 'F1F2star', 'dist', 'diststar'])
    
    #return bpChoices[optBP], results, optmodel, optmodel.b[0]+optmodel.b[1]*predictor+optmodel.b[2]*x2star
    print results, optmodel.b
    print optmodel.summary()
    return results
开发者ID:huhugravity,项目名称:mypythoncode,代码行数:35,代码来源:dist_flow_regression_model2_aggregation.py


示例5: evaluate_MI

def evaluate_MI(fname, threshold = 0.95):
    CUT = slice(0,1000)
    # version = 3
    with open(fname, 'rb') as f:
        result = cPickle.load(f)

    phase_phase_coherence = result['phase x phase data']
    phase_phase_CMI = result['phase CMI data']
    surrCoherence = result['phase x phase surrs'][CUT, ...]
    surrCMI = result['phase CMI surrs'][CUT, ...]
    phase_amp_condMI = result['phase amp CMI data']
    surrPhaseAmpCMI = result['phase amp CMI surrs'][CUT, ...]

    res_phase_coh = np.zeros_like(phase_phase_coherence)
    res_phase_cmi = np.zeros_like(res_phase_coh)
    res_phase_amp_CMI = np.zeros_like(res_phase_coh)

    for i in range(res_phase_coh.shape[0]):
        for j in range(res_phase_coh.shape[1]):
            res_phase_coh[i, j] = np.sum(np.greater(phase_phase_coherence[i, j], surrCoherence[:, i, j])) / np.float(surrCoherence.shape[0])
            res_phase_cmi[i, j] = np.sum(np.greater(phase_phase_CMI[i, j], surrCMI[:, i, j])) / np.float(surrCMI.shape[0])
            res_phase_amp_CMI[i, j] = np.sum(np.greater(phase_amp_condMI[i, j], surrPhaseAmpCMI[:, i, j])) / np.float(surrPhaseAmpCMI.shape[0])

    f.close()

    res_phase_coh_thr = np.zeros_like(res_phase_coh, dtype = np.int)
    res_phase_coh_thr[np.where(res_phase_coh > threshold)] = 1
    res_phase_cmi_thr = np.zeros_like(res_phase_cmi, dtype = np.int)
    res_phase_cmi_thr[np.where(res_phase_cmi > threshold)] = 1
    res_phase_amp_CMI_thr = np.zeros_like(res_phase_amp_CMI, dtype = np.int)
    res_phase_amp_CMI_thr[np.where(res_phase_amp_CMI > threshold)] = 1

    return res_phase_coh_thr, res_phase_cmi_thr, res_phase_amp_CMI_thr
开发者ID:jajcayn,项目名称:enso_cmi,代码行数:33,代码来源:CMIPcomparison.py


示例6: analyzeFrame

def analyzeFrame(bgrFrame):
    mutex.acquire()
    if lowerBound and upperBound:

        hsvFrame = cv2.cvtColor(bgrFrame, cv2.COLOR_BGR2HSV)
        centeredBox = hsvFrame[topLeft[1]:bottomLeft[1], topLeft[0]:topRight[0], :]
        boxFlat = centeredBox.reshape([-1, 3])
        numBroken = 0
        # Doing it this ways removes worry of checkInBounds changing while analyzing an individual frame
        # i.e., it won't take effect until the next frame.
        if boundType == 'in':
            for i in xrange(0, (boxFlat.shape)[0]):
                isGreaterLower = numpy.all(numpy.greater(boxFlat[i], lowerBound))
                isLessUpper = numpy.all(numpy.less(boxFlat[i], upperBound))
                if isGreaterLower and isLessUpper:
                    numBroken = numBroken + 1
        else:
            for i in xrange(0, (boxFlat.shape)[0]):
                isLessLower = numpy.all(numpy.less(boxFlat[i], lowerBound))
                isGreaterUpper = numpy.all(numpy.greater(boxFlat[i], upperBound))
                if isLessLower and isGreaterUpper:
                    numBroken = numBroken + 1

        if (numBroken/area) >= threshold:
            sys.stderr.write('Exceeded\n')
            sys.stderr.flush()


    mutex.release()
开发者ID:mlw214,项目名称:senior-design-ember,代码行数:29,代码来源:webcam.py


示例7: computeSTA

def computeSTA(spike_file,tdt_signal,channel,t_start,t_stop):
	'''
	Compute the spike-triggered average (STA) for a specific channel overa  designated time window
	[t_start,t_stop].

	spike_file should be the results of plx = plexfile.openFile('filename.plx') and spike_file = plx.spikes[:].data
	tdt_signal should be the array of time-stamped values just for this channel
	'''
	channel_spikes = [entry for entry in spike_file if (t_start <= entry[0] <= t_stop)&(entry[1]==channel)]
	units = [spike[2] for spike in channel_spikes]
	unit_vals = set(units)  # number of units
	unit_vals.remove(0) 	# value 0 are units marked as noise events
	unit_sta = dict()

	tdt_times = np.ravel(tdt_signal.times)
	tdt_data = np.ravel(tdt_signal)

	for unit in unit_vals:
		
		spike_times = [spike[0] for spike in channel_spikes if (spike[2]==unit)]
		start_avg = [(time - 1) for time in spike_times] 	# look 1 s back in time until 1 s forward in time from spike
		stop_avg = [(time + 1) for time in spike_times]
		epoch = np.logical_and(np.greater(tdt_times,start_avg[0]),np.less(tdt_times,stop_avg[0]))
		epoch_inds = np.ravel(np.nonzero(epoch))
		len_epoch = len(epoch_inds)
		sta = np.zeros(len_epoch)
		num_spikes = len(spike_times)
		for i in range(0,num_spikes):
			epoch = np.logical_and(np.greater(tdt_times,start_avg[i]),np.less(tdt_times,stop_avg[i]))
			epoch_inds = np.ravel(np.nonzero(epoch))
			if (len(epoch_inds) == len_epoch):
				sta += tdt_data[epoch_inds]
		unit_sta[unit] = sta/float(num_spikes)

	return unit_sta
开发者ID:srsummerson,项目名称:analysis,代码行数:35,代码来源:basicAnalysis.py


示例8: count_lower_neighbors

def count_lower_neighbors(data):

  size_minus_2 = map(lambda s: s-2, data.shape)
  from numpy import zeros, int, greater, add, subtract, int8
  compare = zeros(size_minus_2, int)
  count = zeros(size_minus_2, int)

  offsets = ((-1,-1,-1), (-1,-1,0), (-1,-1,1),
             (-1,0,-1), (-1,0,0), (-1,0,1),
             (-1,1,-1), (-1,1,0), (-1,1,1),
             (0,-1,-1), (0,-1,0), (0,-1,1),
             (0,0,-1), (0,0,1),
             (0,1,-1), (0,1,0), (0,1,1),
             (1,-1,-1), (1,-1,0), (1,-1,1),
             (1,0,-1), (1,0,0), (1,0,1),
             (1,1,-1), (1,1,0), (1,1,1))
             
  xsize, ysize, zsize = data.shape
  for xo, yo, zo in offsets:
    greater(data[1:-1,1:-1,1:-1],
            data[xo+1:xsize-1+xo,yo+1:ysize-1+yo,zo+1:zsize-1+zo],
            compare)
    add(compare, count, count)

  subtract(count, 13, count)
  
  return count.astype(int8)
开发者ID:davem22101,项目名称:semanticscience,代码行数:27,代码来源:ridges.py


示例9: _get_plottable

    def _get_plottable(self):
        # If log scale is set, only pos data will be returned

        x, y = self._x, self._y

        try: logx = self.get_transform().get_funcx().get_type()==LOG10
        except RuntimeError: logx = False  # non-separable

        try: logy = self.get_transform().get_funcy().get_type()==LOG10
        except RuntimeError: logy = False  # non-separable

        if not logx and not logy:
            return x, y

        if self._logcache is not None:
            waslogx, waslogy, xcache, ycache = self._logcache
            if logx==waslogx and waslogy==logy:
                return xcache, ycache

        Nx = len(x)
        Ny = len(y)

        if logx: indx = npy.greater(x, 0)
        else:    indx = npy.ones(len(x))

        if logy: indy = npy.greater(y, 0)
        else:    indy = npy.ones(len(y))

        ind, = npy.nonzero(npy.logical_and(indx, indy))
        x = npy.take(x, ind)
        y = npy.take(y, ind)

        self._logcache = logx, logy, x, y
        return x, y
开发者ID:gkliska,项目名称:razvoj,代码行数:34,代码来源:lines.py


示例10: _getinvisible

 def _getinvisible(self):
     if self.invisible is not None:
         inv = self.invisible
     else:
         inv = np.zeros(len(self.atoms))
     if self.invisibilityfunction:
         inv = np.logical_or(inv, self.invisibilityfunction(self.atoms))
     r = self._getpositions()
     if len(r) > len(inv):
         # This will happen in parallel simulations due to ghost atoms.
         # They are invisible.  Hmm, this may cause trouble.
         i2 = np.ones(len(r))
         i2[:len(inv)] = inv
         inv = i2
         del i2
     if self.cut["xmin"] is not None:
         inv = np.logical_or(inv, np.less(r[:,0], self.cut["xmin"]))
     if self.cut["xmax"] is not None:
         inv = np.logical_or(inv, np.greater(r[:,0], self.cut["xmax"]))
     if self.cut["ymin"] is not None:
         inv = np.logical_or(inv, np.less(r[:,1], self.cut["ymin"]))
     if self.cut["ymax"] is not None:
         inv = np.logical_or(inv, np.greater(r[:,1], self.cut["ymax"]))
     if self.cut["zmin"] is not None:
         inv = np.logical_or(inv, np.less(r[:,2], self.cut["zmin"]))
     if self.cut["zmax"] is not None:
         inv = np.logical_or(inv, np.greater(r[:,2], self.cut["zmax"]))
     return inv
开发者ID:rchiechi,项目名称:QuantumParse,代码行数:28,代码来源:primiplotter.py


示例11: sample_3d_pdf

    def sample_3d_pdf(self, pdf, points, xlim, ylim, zlim):
        logger.info("Sampling FD distribution for {0} particles.".format(random_vec.shape[0]))
        # Create CDF in axis 0 direction by summing in axis 1, then cumsum:
        F = pdf.sum(2).sum(1).cumsum()
        F /= F.max()

        x = np.interp(points[:, 0], F, np.arange(F.shape[0]))
        xi = np.around(x).astype(np.int)        # For indexing

        F2 = pdf.sum(2).cumsum(axis=1)
        F2 /= F2.max(axis=1).reshape((-1, 1)).repeat(F2.shape[1], axis=1)

        yi = np.greater(F2[xi, :], points[:, 1].reshape((-1, 1))).argmax(axis=1)
        y = yi-(F2[xi, yi]-points[:, 1])/(F2[xi, yi]-F2[xi, yi-1])          # Interpolation

        F3 = pdf.cumsum(axis=2)
        F3 /= F3.max(axis=2).reshape((F3.shape[0], F3.shape[1], 1)).repeat(F3.shape[2], axis=2)

        zi = np.greater(F3[xi, yi, :], points[:, 2].reshape((-1, 1))).argmax(axis=1)
        z = zi-(F3[xi, yi, zi]-points[:, 2])/(F3[xi, yi, zi]-F3[xi, yi, zi-1])          # Interpolation

        px = xlim[0] + x * (xlim[1] - xlim[0]) / pdf.shape[0]
        py = ylim[0] + y * (ylim[1] - ylim[0]) / pdf.shape[1]
        pz = zlim[0] + z * (zlim[1] - zlim[0]) / pdf.shape[2]
        p = np.hstack((px.reshape((-1, 1)), py.reshape((-1, 1)), pz.reshape((-1, 1))))

        return p
开发者ID:filiplindau,项目名称:densitymap,代码行数:27,代码来源:Fermi-Dirac_gen.py


示例12: date_start_surcote

    def date_start_surcote(self, data, trimesters_tot, trim_maj_tot, age_min_retirement):
        ''' Détermine la date individuelle a partir de laquelle on atteint la surcote
        (a atteint l'âge légal de départ en retraite + côtisé le nombre de trimestres cible)
        Rq : pour l'instant on pourrait ne renvoyer que l'année'''
        agem = data.info_ind['agem']
        # TODO: do something better with datesim
        datesim = self.dateleg.liam
        P = reduce(getattr, self.param_name.split('.'), self.P)
        if P.surcote.exist == 0:
            # Si pas de dispositif de surcote
            return [2100*100 + 1]*len(trim_maj_tot)
        else:
            # 1. Construction de la matrice des booléens indiquant si l'année
            # est surcotée selon critère trimestres
            n_trim = array(P.plein.n_trim)
            cumul_trim = trimesters_tot.cumsum(axis=1)
            trim_limit = array((n_trim - nan_to_num(trim_maj_tot)))
            years_surcote_trim = greater(cumul_trim.T, trim_limit).T
            nb_years = years_surcote_trim.shape[1]

            # 2. Construction de la matrice des booléens indiquant si l'année
            # est surcotée selon critère âge
            age_by_year = array([array(agem) - 12*i for i in reversed(range(nb_years))])
            years_surcote_age = greater(age_by_year, array(age_min_retirement)).T

            # 3. Décompte du nombre d'années répondant aux deux critères
            years_surcote = years_surcote_trim*years_surcote_age
            nb_years_surcote = years_surcote.sum(axis=1)
            start_surcote = [datesim - nb_year*100
                             if nb_year > 0 else 2100*100 + 1
                             for nb_year in nb_years_surcote]
            return start_surcote
开发者ID:TaxIPP-Life,项目名称:Til-Pension,代码行数:32,代码来源:regime.py


示例13: chkoverlap

def chkoverlap(par0,par1,nphi=100):
    """
    Check for overlap between two ellipses
    """
    phiLIST=np.linspace(0.,2*np.pi,nphi)
    x0,y0=phi2xy_ellipse(phiLIST,**par0) ; r0=np.sqrt(x0**2+y0**2)
    x1,y1=phi2xy_ellipse(phiLIST,**par1) ; r1=np.sqrt(x1**2+y1**2)
    return not (np.all(np.greater(r0,r1)) or np.all(np.greater(r1,r0)))
开发者ID:cfh5058,项目名称:mmlpy,代码行数:8,代码来源:mmlellipse.py


示例14: __gt__

 def __gt__(a, b):
     try:
         return np.greater(a.v, b.v)
     except AttributeError:
         if isinstance(a, Measurement):
             return np.greater(a.v, b)
         else:
             return np.greater(a, b.v)
开发者ID:ZachWerginz,项目名称:PolarFlux,代码行数:8,代码来源:uncertainty.py


示例15: valid_na_data

def valid_na_data(ij):
    "pull out the k-values of an ijk array that are positive and have indices in the vicinity of north america"
    x = ij_to_ll(ij)
    imask = np.logical_and(np.greater(x[:,0], -150), np.greater(-50, x[:,0]))
    jmask = np.logical_and(np.greater(x[:,1], 20), np.greater(70, x[:,1]))
    kmask = np.greater(x[:,2], 0)
    xmask = np.logical_and(np.logical_and(imask, jmask), kmask)
    return x[:,2][xmask]
开发者ID:neganp,项目名称:grand_analysis,代码行数:8,代码来源:gc_helpers.py


示例16: _seg_by_structure_feature

def _seg_by_structure_feature(oracle, delta=0.05, width=9, hier=False, connectivity='rsfx'):
    self_sim = create_selfsim(oracle, method=connectivity)
    lag_sim = librosa.segment.recurrence_to_lag(self_sim, pad=False)
    sf = scipy.ndimage.filters.gaussian_filter(lag_sim, [0.5, width], 0, mode='reflect')
    novelty_curve = np.sqrt(np.mean(np.diff(sf, axis=1) ** 2, axis=0))
    novelty_curve -= np.min(novelty_curve)
    novelty_curve /= np.max(novelty_curve)
    novelty_curve = np.insert(novelty_curve,0,0)

    bound_width=9
    offset = int((bound_width - 1) / 2)
    tmp_novelty = np.pad(novelty_curve, [offset], mode='reflect')
    boundaries = [0]
    for i in range(len(novelty_curve)):
        if (np.greater(tmp_novelty[i + offset], tmp_novelty[i:i + offset]).all() and
                np.greater(tmp_novelty[i + offset], tmp_novelty[i + offset + 1:i + bound_width]).all() and
                    tmp_novelty[i + offset] > delta):
            boundaries.append(i)
    boundaries.append(oracle.n_states-2)

    seg_sim_mat = np.zeros((len(boundaries) - 1, len(boundaries) - 1))
    intervals = zip(boundaries[:-1], boundaries[1:])
    self_sim[self_sim > 1.0] = 1.0
    for i in range(len(boundaries) - 1):
        for j in range(len(boundaries) - 1):
            seg_sim_mat[i, j] = _segment_sim(self_sim[intervals[i][0]:intervals[i][1],
                                             intervals[j][0]:intervals[j][1]])

    seg_sim_mat = (seg_sim_mat + seg_sim_mat.T) / 2
    seg_sim_mat[seg_sim_mat < (np.mean(seg_sim_mat) + np.std(seg_sim_mat))] = 0.0

    new_seg_mat = seg_sim_mat
    while True:
        new_seg_mat = np.dot(new_seg_mat, new_seg_mat)
        thresh_seg_mat = new_seg_mat
        new_seg_mat[new_seg_mat < 1.0] = 0.0
        new_seg_mat[new_seg_mat >= 1.0] = 1.0
        if np.array_equal(new_seg_mat, thresh_seg_mat):
            break

    labels = np.zeros(len(boundaries) - 1)
    for i in range(thresh_seg_mat.shape[0]):
        ind = np.nonzero(thresh_seg_mat[i, :])
        label_ind = 0
        for idx in ind[0]:
            if labels[idx]:
                if label_ind:
                    labels[idx] = label_ind
                else:
                    label_ind = labels[idx]
            else:
                if label_ind:
                    labels[idx] = label_ind
                else:
                    labels[idx] = i + 1
                    label_ind = i + 1
    return np.array(boundaries), labels
开发者ID:wangsix,项目名称:vmo,代码行数:57,代码来源:segmentation.py


示例17: _subset

 def _subset(self, z):
     """
     Hampel's function is defined piecewise over the range of z
     """
     z = np.fabs(np.asarray(z))
     t1 = np.less_equal(z, self.a)
     t2 = np.less_equal(z, self.b) * np.greater(z, self.a)
     t3 = np.less_equal(z, self.c) * np.greater(z, self.b)
     return t1, t2, t3
开发者ID:Autodidact24,项目名称:statsmodels,代码行数:9,代码来源:norms.py


示例18: _getCliques

def _getCliques(seq_list, num_needed, min_hd=2, cutoff=1):
    '''Helper function for finding sequence groups w/ min inter-seq hd
    '''
    hg = hammingGraph(seq_list)
    f = np.vectorize(lambda x: x[0])
    hg = f(hg)
    hd_thresh = np.zeros_like(hg)
    np.greater(hg, np.full_like(hg, min_hd-1), hd_thresh)
    return find_cliques(hd_thresh.astype(np.uint8), num_needed, cutoff)
开发者ID:libnano,项目名称:libnano,代码行数:9,代码来源:barcode_tools.py


示例19: input_mask

def input_mask(ain, type,  mask, missing = None):

    """    #-------------------------------------------------------------------
    #                                      
    #     purpose: set up the input mask including missing from ain
    #
    #     usage:    
    #
    #     passed : 
    #
    #     returned:  
    #
    #
    #------------------------------------------------------------------------"""
    if type != 'h' and type != 'v':
        raise ValueError, 'Mask type must be h or v'
        return 

    if missing == None:
        try:
            omit = ain.missing_value
        except AttributeError:
            omit = 1.0e20
    else:
        omit = missing

    # ----- insert 0.0 in mask where array has missing data -------

    mask_size = len(mask.shape)
    data_size = len(ain.shape)

    if mask_size ==  2 and data_size > 2:             # make reduced array with first lat_lon section from a

        if data_size == 3:                            # caution: assuming standard order lat-lon varying the fastest
            if type == 'h':
                reduced = ain[0,:,:] 
            elif type == 'v':
                reduced = ain[:,:,0]                  # removes lats dummy latitude
        elif data_size == 4:                       
            if type == 'h':
                reduced = ain[0,0,:,:] 
            elif type == 'v':
                reduced = ain[0,:,:,0]                # removes lats dummy latitude
        else:
            raise IndexError, 'Data size is out of range'
            return 
         
        amskin = numpy.where( numpy.greater(reduced, 0.9*omit),  0.0, mask)
        amskin = amskin.astype(numpy.float32)

    else:                                                    # 0.0 -> missing in passed mask

        amskin = numpy.where( numpy.greater(ain, 0.9*omit),  0.0, mask)
        amskin = amskin.astype(numpy.float32)

    return omit, amskin  
开发者ID:NCPP,项目名称:uvcdat-devel,代码行数:56,代码来源:horizontal.py


示例20: __call__

    def __call__(self, variations):

        vars_for_stat = self._filter_samples_for_stats(variations)

        assert len(vars_for_stat.samples) == self.sample_dp_means.shape[0]

        dps = vars_for_stat[DP_FIELD]
        if is_dataset(dps):
            dps = dps[:]
        num_no_miss_calls = numpy.sum(dps > 0, axis=1)

        high_dp_calls = dps > self._too_high_dps

        num_high_dp_calls = numpy.sum(high_dp_calls, axis=1)

        with numpy.errstate(all='ignore'):
            # This is the stat
            freq_high_dp = num_high_dp_calls / num_no_miss_calls

        result = {}

        if self.do_histogram:
            counts, edges = histogram(freq_high_dp, n_bins=self.n_bins,
                                      range_=self.range)
            result[COUNTS] = counts
            result[EDGES] = edges

        if self.do_filtering or self.report_selection:
            het_call = call_is_het(vars_for_stat[GT_FIELD])
            with numpy.errstate(all='ignore'):
                obs_het = numpy.sum(het_call, axis=1) / num_no_miss_calls
            with numpy.errstate(all='ignore'):
                too_much_het = numpy.greater(obs_het, self.max_obs_het)

            with numpy.errstate(all='ignore'):
                snps_too_high = numpy.greater(freq_high_dp,
                                              self.max_high_dp_freq)
            to_remove = numpy.logical_and(too_much_het, snps_too_high)
            selected_snps = numpy.logical_not(to_remove)

        if self.report_selection:
            result[SELECTED_VARS] = selected_snps

        if self.do_filtering:
            flt_vars = variations.get_chunk(selected_snps)

            n_kept = numpy.count_nonzero(selected_snps)
            tot = selected_snps.shape[0]
            n_filtered_out = tot - n_kept

            result[FLT_VARS] = flt_vars
            result[FLT_STATS] = {N_KEPT: n_kept,
                                 N_FILTERED_OUT: n_filtered_out,
                                 TOT: tot}

        return result
开发者ID:JoseBlanca,项目名称:variation,代码行数:56,代码来源:filters.py



注:本文中的numpy.greater函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.greater_equal函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.gradient函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap