• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.insert函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.insert函数的典型用法代码示例。如果您正苦于以下问题:Python insert函数的具体用法?Python insert怎么用?Python insert使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了insert函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: correct_missing_doms

    def correct_missing_doms(self, scalerarray, no_channels):
        """ 
        Backup method in case geometry is not given. 
        Very back-of-the-envelope.
        Not used at the moment.
    
        Correcting an artifact of storing variable length arrays in a table.
    
        Changes to the SNDAQ geometry removed certain DOMs from the snall 
        data array, so putting them back into the array at the right location.
        Need to remove last 7 or 8 dummy entries produced when reading data from file
        and insert zeros at appropriate places in array.

        :param scalerarray: Scaler array missing DOMs shifted to end
        :param no_channels: Number of active channels assumed for the file
        :returns: Scaler array with the correct location mapping
        """
        if no_channels == 5153:
            return np.insert(scalerarray[:-7], 
                             [45, 403, 1308, 1925, 2278, 3594, 4061], 0)
        elif no_channels == 5152:
            return np.insert(scalerarray[:-8],
                             [45, 403, 1308, 1925, 2278, 3594, 4061, 5069], 0)
        else:
            raise RuntimeError("No. of channels (= %d) is not support" % no_channels)
开发者ID:briedel,项目名称:sandbox_icecube,代码行数:25,代码来源:sndaq_root_hdf5_converter_v2.py


示例2: execEnd

 def execEnd(self,eventIdx):
     # execute an end-breaking or depolymerization event.
     oligoEndBreak=self.ald['end'][eventIdx/2]
     leftRight=eventIdx%2*2-1
     lr=-(leftRight+1)/2
     unitMoving=oligoEndBreak.ends[lr]
     oligo_vanish,form_oligo,self.event_code=oligoEndBreak.end_break(leftRight,self.units)
     if form_oligo:
         # not empty
         mono=form_oligo['monomer']
         if mono:
             # monomer + monomer (mergeOligo)
             idx=np.where([x in [mono,unitMoving] for x in self.monomers])[0]
             self.monomers=np.delete(self.monomers,idx)
             self.oligos=np.insert(self.oligos,0,form_oligo['oligo'])
         else:
             # monomer + multimer (mergeOligo)
             idx=np.where([unitMoving is x for x in self.monomers])[0]
             self.monomers=np.delete(self.monomers,idx)
     else:
         #empty, add the end to monomers
         self.monomers=np.insert(self.monomers,0,unitMoving)
         unitMoving.energize()
     
     if oligo_vanish:
         idx=np.where([oligoEndBreak is x for x in self.oligos])[0]
         self.oligos=np.delete(self.oligos,idx)
         
         idx=np.where([unitMoving is not x for x in oligoEndBreak.subunits])[0]
         nonmoving_unit=oligoEndBreak.subunits[idx[0]]
         self.monomers=np.insert(self.monomers,0,nonmoving_unit)
         nonmoving_unit.energize()
开发者ID:chemaoxfz,项目名称:proteinInteractionSim,代码行数:32,代码来源:actinTreadmill_sim.py


示例3: cells

    def cells(self, cells, grid):
        from lxml import etree as ET

        if len(cells) == 1:
            meshio_type = list(cells.keys())[0]
            num_cells = len(cells[meshio_type])
            xdmf_type = meshio_to_xdmf_type[meshio_type][0]
            topo = ET.SubElement(
                grid,
                "Topology",
                TopologyType=xdmf_type,
                NumberOfElements=str(num_cells),
            )
            dt, prec = numpy_to_xdmf_dtype[cells[meshio_type].dtype.name]
            dim = "{} {}".format(*cells[meshio_type].shape)
            data_item = ET.SubElement(
                topo,
                "DataItem",
                DataType=dt,
                Dimensions=dim,
                Format=self.data_format,
                Precision=prec,
            )
            data_item.text = self.numpy_to_xml_string(cells[meshio_type])
        elif len(cells) > 1:
            total_num_cells = sum(c.shape[0] for c in cells.values())
            topo = ET.SubElement(
                grid,
                "Topology",
                TopologyType="Mixed",
                NumberOfElements=str(total_num_cells),
            )
            total_num_cell_items = sum(numpy.prod(c.shape) for c in cells.values())
            dim = total_num_cell_items + total_num_cells
            # Lines translate to Polylines, and one needs to specify the exact
            # number of nodes. Hence, prepend 2.
            if "line" in cells:
                cells["line"] = numpy.insert(cells["line"], 0, 2, axis=1)
                dim += len(cells["line"])
            dim = str(dim)
            cd = numpy.concatenate(
                [
                    # prepend column with xdmf type index
                    numpy.insert(
                        value, 0, meshio_type_to_xdmf_index[key], axis=1
                    ).flatten()
                    for key, value in cells.items()
                ]
            )
            dt, prec = numpy_to_xdmf_dtype[cd.dtype.name]
            data_item = ET.SubElement(
                topo,
                "DataItem",
                DataType=dt,
                Dimensions=dim,
                Format=self.data_format,
                Precision=prec,
            )
            data_item.text = self.numpy_to_xml_string(cd)
        return
开发者ID:gdmcbain,项目名称:meshio,代码行数:60,代码来源:time_series.py


示例4: calculate

	def calculate(self):
		ephem_location = ephem.Observer()
		ephem_location.lat = self.location.latitude.to(u.rad) / u.rad
		ephem_location.lon = self.location.longitude.to(u.rad) / u.rad
		ephem_location.elevation = self.location.height / u.meter
		ephem_location.date = ephem.Date(self.time.datetime)

		if self.data is None:
			self.alt = Latitude([], unit=u.deg)
			self.az = Longitude([], unit=u.deg)
			self.names = Column([], dtype=np.str)
			self.vmag = Column([])
		else:
			ra = Longitude(self.data["ra"], u.h)
			dec = Latitude(self.data["dec"], u.deg)
			c = SkyCoord(ra, dec, frame='icrs')
			altaz = c.transform_to(AltAz(obstime=self.time, location=self.location))
			self.alt = altaz.alt
			self.az = altaz.az

			self.names = self.data['name']
			self.vmag = self.data['mag']

		for ephemeris in self.ephemerides:
			ephemeris.compute(ephem_location)
			self.vmag = np.insert(self.vmag, [0], ephemeris.mag)
			self.alt = np.insert(self.alt, [0], (ephemeris.alt.znorm * u.rad).to(u.deg))
			self.az = np.insert(self.az, [0], (ephemeris.az * u.rad).to(u.deg))
			self.names = np.insert(self.names, [0], ephemeris.name)

		return self.names, self.vmag, self.alt, self.az
开发者ID:wschoenell,项目名称:pynephoscope,代码行数:31,代码来源:sky.py


示例5: value_counts

    def value_counts(self, dropna=True):
        """
        Returns a Series containing counts of unique values.

        Parameters
        ----------
        dropna : boolean, default True
            Don't include counts of NaN, even if NaN is in sp_values.

        Returns
        -------
        counts : Series
        """
        keys, counts = algos._value_counts_arraylike(self.sp_values,
                                                     dropna=dropna)
        fcounts = self.sp_index.ngaps
        if fcounts > 0:
            if self._null_fill_value and dropna:
                pass
            else:
                if self._null_fill_value:
                    mask = pd.isnull(keys)
                else:
                    mask = keys == self.fill_value

                if mask.any():
                    counts[mask] += fcounts
                else:
                    keys = np.insert(keys, 0, self.fill_value)
                    counts = np.insert(counts, 0, fcounts)

        if not isinstance(keys, pd.Index):
            keys = pd.Index(keys)
        result = pd.Series(counts, index=keys)
        return result
开发者ID:Casyfill,项目名称:Capstone_dashboard,代码行数:35,代码来源:array.py


示例6: forwardPropPredict

def forwardPropPredict(nn_params, input_layer_size, hidden_layer_size, num_labels, X):

    length1 = (input_layer_size+1)*(hidden_layer_size)

    nn1 = nn_params[:length1]
    T1 = nn1.reshape((hidden_layer_size, input_layer_size+1))
    nn2 = nn_params[length1:]
    T2 = nn2.reshape((num_labels, 1+ hidden_layer_size))
    m = X.shape[0] # number of training examples, useful for calculations

    max_pred = 0
    predictions = []
    # for each training example
    train_ex = -1 # training example number we're on (ie. which row of input matrix)
    for x in X:
        train_ex += 1

        # forward propagation
        a1 = x
        a1 = np.insert(a1, 0, 1, axis=0)
        z2 = np.dot(T1, a1)
        a2 = sigmoid(z2)
        a2 = np.insert(a2, 0 , 1, axis=0)
        z3 = np.dot(T2, a2)
        a3 = sigmoid(z3)

        predictions.append(int(np.argmax(a3)))

    return predictions
开发者ID:jkroening,项目名称:machine-learning,代码行数:29,代码来源:NeuralNet_.py


示例7: trainNN

 def trainNN(self, imagesTrainSet, labelsTrainSet, etha):
     self.reset_weights()
     trainingSetSize = labelsTrainSet.shape[0];
     j = 0
     while j < 30:
         i = 0
         # print("Round: " + str(j + 1))
         while i < trainingSetSize :
             x = imagesTrainSet[i].ravel()  # Convert 28x28 pixel image into a (784,) vector
             x = np.array([ 0 if val == 0 else 1 for val in x ])
             x_a = np.insert(x, 0, values=1, axis=0)  # Augmented Feature vector
             net_hidd = np.dot(self.w1, x_a)
             y = self.signum(net_hidd)
             y_a = np.insert(y, 0, values=1, axis=0)  # Augmented Feature vector
             
             net_out = np.dot(self.w2, y_a)
             z = self.signum(net_out)
             lab = np.array([ 1 if k == self.labels[i] else 0 for k in range(10) ])
             
             J = z - lab;
             J = np.sum(0.5 * J * J);
             if J < 1 and self.enableWeightDecay:
                 break;
             out_sensitivity = (lab - z) * self.signum_prime(net_out)
             net_hidd_prime = self.signum_prime(net_hidd) 
             hid_sensitivity = np.dot(self.w2.T, out_sensitivity) * np.insert(net_hidd_prime, 0, 1)
             
             grad_hidd_out = etha * np.outer(out_sensitivity, y_a.T)
             grad_in_hidd = etha * np.outer(hid_sensitivity[1:] , x_a.T) 
             
             self.update_weights_bias(grad_in_hidd, grad_hidd_out)
             i += 1
         j += 1
         
     return self.w1, self.w2
开发者ID:prabhakar9885,项目名称:Statistical-Methods-in-AI,代码行数:35,代码来源:AlphabetRecognization.py


示例8: eta2direct

    def eta2direct(self, x):
        """eta2direct(x)

        Args:
            - x (``array-like``): a chromosome encoding an MGA trajectory in the eta encoding

        Returns:
            ``numpy.array``: a chromosome encoding the MGA trajectory using the direct encoding

        Raises:
            - ValueError: when the tof_encoding is not 'eta'
        """
        if self.tof_encoding is not 'eta':
            raise ValueError(
                "cannot call this method if the tof_encoding is not 'eta'")
   
        # decision vector is  [t0, n1, n2, n3, ... ]
        n = len(x) - 1
        dt = self.tof
        T = [0] * n
        T[0] = dt * x[1]
        for i in range(1, len(T)):
            T[i] = (dt - sum(T[:i])) * x[i + 1]
        np.insert(T, 0, [0])
        return T
开发者ID:darioizzo,项目名称:pykep,代码行数:25,代码来源:_mga.py


示例9: get_affine_inliers_RANSAC

def get_affine_inliers_RANSAC(num_m, xy1_m, xy2_m,\
                              acd1_m, acd2_m, xy_thresh_sqrd, sigma_thresh_sqrd=None):
    '''Computes initial inliers by iteratively computing affine transformations
    between matched keypoints'''
    aff_inliers = []
    # Enumerate All Hypothesis (Match transformations)
    for mx in xrange(num_m): 
        xy1  = xy1_m[:,mx].reshape(2,1) #  XY Positions
        xy2  = xy2_m[:,mx].reshape(2,1) 
        A1   = matrix(insert(acd1_m[:,mx], [1.], 0.)).reshape(2,2)
        A2   = matrix(insert(acd2_m[:,mx], [1.], 0.)).reshape(2,2)
        # Compute Affine Tranform 
        # from img1 to img2 = (E2\E1) 
        Aff  = linalg.inv(A2).dot(A1)
        #
        # Transform XY-Positions
        xy1_mAt = xy2 + Aff.dot( (xy1_m - xy1) ) 
        xy_err_sqrd = sum( power(xy1_mAt - xy2_m, 2) , 0)
        _inliers = find(xy_err_sqrd < xy_thresh_sqrd)
        #
        # Transform Ellipse Geometry (solved on paper)
        if not sigma_thresh_sqrd is None:
            scale1_mAt = (acd1_m[0]*Aff[0,0]) *\
                         (acd1_m[1]*Aff[1,0]+acd1_m[2]*Aff[1,1])
            scale2_m   = acd2_m[0] * acd2_m[2]
            scale_err  = np.abs(scale1_mAt - scale2_m)
            _inliers_scale = find(scale_err < sigma_thresh_sqrd)
            _inliers = np.bitwise_and(_inliers, _inliers_scale)
        #If this hypothesis transformation is better than the ones we have
        #previously seen then set it as the best
        if len(_inliers) > len(aff_inliers):
            aff_inliers = _inliers
            #bst_xy_err  = xy_err_sqrd 
    return aff_inliers
开发者ID:Erotemic,项目名称:hotspotter,代码行数:34,代码来源:spatial_functions.py


示例10: hawkesfeat

def hawkesfeat(timeseries,args):
    '''
    Generate hawkes feature: positive rate/negtive rate
    args['params']: 1X8 ndarray containing the params of hawkes process
    '''

    #Assign parameters
    params = args['params'] if 'params' in args.keys() else np.array([0.2,0.2, 0.2, 0.7, 0.7, 0.2, 1.0, 1.0])

    #Utilize the rate calculation function in the hawkes simulator
    sim = simulator(theta = params)
    sim.sethistory(timeseries)


    rate = sim.historydata[:,2]/sim.historydata[:,3]
    rate = np.insert(rate,0,params[0]/params[1]).reshape(-1,1)
    time = np.insert(sim.historydata[:,0],0,0.0).reshape(-1,1)
    time = np.cumsum(time,axis=0)

    value = np.hstack((time,rate))
    value = value.astype(object,copy=False)
    value[:,0] = Vsecond2delta(value[:,0])

    anchor = timeseries.values[0]
    anchor[1] = 0.0
    value = value + anchor

    rateseries = pd.DataFrame(value,columns=['time','quantity'])
    rateseries.index = rateseries['time']
    rateseries = rateseries.reindex(timeseries.index,method = 'ffill')

    return rateseries
开发者ID:B-Rich,项目名称:VA_PYTHON,代码行数:32,代码来源:hawkes.py


示例11: balance_workload

def balance_workload(nproc, popsize, *index, **kwds):
    """divide popsize elements on 'nproc' chunks

nproc: int number of nodes
popsize: int number of jobs
index: int rank of node(s) to calculate for (using slice notation)
skip: int rank of node upon which to not calculate (i.e. the master)

returns (begin, end) index vectors"""
    _skip = False
    skip = kwds.get('skip', None)
    if skip is not None and skip < nproc:
        nproc = nproc - 1
        _skip = True
    count = np.round(popsize/nproc)
    counts = count * np.ones(nproc, dtype=np.int)
    diff = popsize - count*nproc
    counts[:diff] += 1
    begin = np.concatenate(([0], np.cumsum(counts)[:-1]))
   #return counts, index #XXX: (#jobs, begin index) for all elements
    if _skip:
        if skip == nproc: # remember: nproc has been reduced
            begin = np.append(begin, begin[-1]+counts[-1])
            counts = np.append(counts, 0)
        else:
            begin = np.insert(begin, skip, begin[skip])
            counts = np.insert(counts, skip, 0)
    if not index:
        return begin, begin+counts #XXX: (begin, end) index for all elements
   #if len(index) > 1:
   #    return lookup((begin, begin+counts), *index) # index a slice
    return lookup((begin, begin+counts), *index) # index a single element
开发者ID:hpparvi,项目名称:pyina,代码行数:32,代码来源:tools.py


示例12: data_concatenate

def data_concatenate(list_data_neuro):
    """
    Tool function for blk_align_to_evt, make sure they contains the same number of signals

    :param list_data_neuro:  a list of data_neuro
    :return:                 concatenated data_neuro
    """

    data_neuro_all = {}
    for i, data_neuro in enumerate(list_data_neuro):
        if i == 0:  # if the first block, copy it
            data_neuro_all = data_neuro
        else:  # for next incoming blocks
            if len(data_neuro['ts']) == len(data_neuro_all['ts']):  # check if ts length matches, otherwise raise error
                # check if signals match, if not match, fill the missing signal with all zeros
                if not np.array_equal(data_neuro['signal_info'], data_neuro_all['signal_info']):
                    for indx_signal_new, signal_new in enumerate(data_neuro['signal_info']):  # if emerging signal
                        if signal_new not in data_neuro_all['signal_info']:
                            data_neuro_all['signal_info'] = np.insert(data_neuro_all['signal_info'], indx_signal_new,
                                                                      signal_new)
                            data_neuro_all['data'] = np.insert(data_neuro_all['data'], indx_signal_new, 0.0, axis=2)
                    for indx_signal_old, signal_old in enumerate(data_neuro_all['signal_info']):  # if mising signal
                        if signal_old not in data_neuro['signal_info']:
                            data_neuro['signal_info'] = np.insert(data_neuro['signal_info'], indx_signal_old,
                                                                  signal_old)
                            data_neuro['data'] = np.insert(data_neuro['data'], indx_signal_old, 0.0, axis=2)
                # concatenate
                data_neuro_all['data'] = np.concatenate((data_neuro_all['data'], data_neuro['data']), axis=0)
            else:
                print('function data_concatenate can not work with data of different "ts" length')
                warnings.warn('function data_concatenate can not work with data of different "ts" length')

    return data_neuro_all
开发者ID:SummitKwan,项目名称:PyNeuroSG,代码行数:33,代码来源:PyNeuroData.py


示例13: chans

    def chans(self, invert=False):
        """ Method to convert the bit mask into a string of channel ranges in CASA format. e.g.
            [3,10],[25,50] => "3~10;25~50"

            Parameters
            ----------
            None

            Returns
            -------
            string containing the formatted channel ranges

        """
        output = ""
        if invert:
            basechan = np.append(1-self._chans, 0)
            shiftchan = np.insert(1-self._chans, 0, 0)
        else:
            basechan = np.append(self._chans, 0)
            shiftchan = np.insert(self._chans, 0, 0)
        diff = basechan - shiftchan
        st = np.where(diff == 1)[0]
        en = np.where(diff == -1)[0]
        first = True
        for seg in zip(st, en):
            if not first:
                output += ";"
            else:
                first = False
            output += str(seg[0] + self._startchan) + "~" + str(seg[1] - 1 + self._startchan)
        return output
开发者ID:teuben,项目名称:admit,代码行数:31,代码来源:Segments.py


示例14: set_params

    def set_params(self):
        r"""
        Internally, scipy.signal works with systems of the form

        .. math::

            ar_{poly}(L) X_t = ma_{poly}(L) \epsilon_t

        where L is the lag operator. To match this, we set

        .. math::

            ar_{poly} = (1, -\phi_1, -\phi_2,..., -\phi_p)

            ma_{poly} = (1, \theta_1, \theta_2,..., \theta_q)

        In addition, ar_poly must be at least as long as ma_poly.
        This can be achieved by padding it out with zeros when required.

        """
        # === set up ma_poly === #
        ma_poly = np.asarray(self._theta)
        self.ma_poly = np.insert(ma_poly, 0, 1)  # The array (1, theta)

        # === set up ar_poly === #
        if np.isscalar(self._phi):
            ar_poly = np.array(-self._phi)
        else:
            ar_poly = -np.asarray(self._phi)
        self.ar_poly = np.insert(ar_poly, 0, 1)  # The array (1, -phi)

        # === pad ar_poly with zeros if required === #
        if len(self.ar_poly) < len(self.ma_poly):
            temp = np.zeros(len(self.ma_poly) - len(self.ar_poly))
            self.ar_poly = np.hstack((self.ar_poly, temp))
开发者ID:GaussHuo,项目名称:quant-econ,代码行数:35,代码来源:linproc.py


示例15: next

    def next(self):
        totim,dt,kper,kstp,swrstp,success = self.read_header()        
        if success == False: 
#            print 'SWR_Stage.next() object reached end of file'
            return 0.0,0.0,0,0,0,False,self.null_record
        else:
            if self.type > 0:
                #r = numpy.zeros((self.items+1)) 
                r = numpy.zeros((self.items+2)) 
                for rec in range(0,self.nrecord):
                    #nlay = self.read_integer()
                    nlay = self.reachlayers[rec]
                    for lay in range(0,nlay):
                        this_lay = self.read_integer()
                        this_items = self.read_items()
                        this_r = numpy.insert(this_items,[0],this_lay)
                        this_r = numpy.insert(this_r,[0],rec+1)
                        #print totim,this_lay,numpy.shape(r),numpy.shape(this_r)
                        r = numpy.vstack((r,this_r))
                r = numpy.delete(r,0,axis=0)
                return totim,dt,kper,kstp,swrstp,True,r
            else:
                r = self.read_record()
#        print 'SWR data read for time step ',kstp,',stress period \
#                    ',kper,'and swr step ',swrstp
        return totim,dt,kper,kstp,swrstp,True,r
开发者ID:jdhughes,项目名称:MF2005-SWR1,代码行数:26,代码来源:MFBinaryClass.py


示例16: transform

    def transform(self, pos=(0,0), angle=0, scale=1):
        '''In-plane transformation function. Update the 3D transform based on the 2D changes'''
        center = self.shape * self.spacing / 2. + (self.shape + 1) % 2 * self.spacing / 2.
        inv = self.xfm.transform.homogeneous_inverse

        wpos = self.handle.center.representation.world_position
        wpos -= center
        if not isinstance(scale, (tuple, list, np.ndarray)):
            scale = [scale, scale]

        if self.axis == 1:
            trans = np.insert(pos[:2][::-1], self.axis, 0)
            wpos = np.insert(wpos[:2][::-1], self.axis, self.ipw_3d.ipw.slice_position)
            #angle = -angle
        else:
            trans = np.insert(pos[:2], self.axis, 0)
            wpos = np.insert(wpos[:2], self.axis, self.ipw_3d.ipw.slice_position)
        scale = np.insert(scale, self.axis, 1)

        self.parent._undolist.append(self.xfm.transform.matrix.to_array())

        self.xfm.transform.post_multiply()
        self.xfm.transform.translate(-wpos)
        self.xfm.transform.rotate_wxyz(np.degrees(angle), *self.ipw_3d.ipw.normal)
        self.xfm.transform.scale(scale)
        self.xfm.transform.translate(wpos)
        self.xfm.transform.translate(trans)
        self.xfm.transform.pre_multiply()

        self.xfm.widget.set_transform(self.xfm.filter.transform)
        self.xfm.update_pipeline()
        self.parent.update_slabs()

        np.save("/tmp/last_xfm.npy", self.parent.get_xfm())
开发者ID:QihongL,项目名称:pycortex,代码行数:34,代码来源:mayavi_aligner.py


示例17: fit

    def fit(self, X, sample_weight=None, **kwargs):
        # Checks
        X = check_array(X)

        if sample_weight is not None and len(sample_weight) != len(X):
            raise ValueError

        # Compute histogram and edges
        h, e = np.histogramdd(X, bins=self.bins, range=self.range,
                              weights=sample_weight, normed=True)

        # Add empty bins for out of bound samples
        for j in range(X.shape[1]):
            h = np.insert(h, 0, 0., axis=j)
            h = np.insert(h, h.shape[j], 0., axis=j)
            e[j] = np.insert(e[j], 0, -np.inf)
            e[j] = np.insert(e[j], len(e[j]), np.inf)

        if X.shape[1] == 1 and self.interpolation:
            inputs = e[0][2:-1] - (e[0][2] - e[0][1]) / 2.
            inputs[0] = e[0][1]
            inputs[-1] = e[0][-2]
            outputs = h[1:-1]
            self.interpolation_ = interp1d(inputs, outputs,
                                           kind=self.interpolation,
                                           bounds_error=False,
                                           fill_value=0.)

        self.histogram_ = h
        self.edges_ = e
        self.ndim_ = X.shape[1]

        return self
开发者ID:glouppe,项目名称:carl,代码行数:33,代码来源:histogram.py


示例18: polyadd

def polyadd(p1,p2):
    s1 = np.size(p1)
    s2 = np.size(p2)
    length = max(s1,s2)
    p1 = np.insert(p1,np.zeros( length-s1 >= 0 and length-s1 or 0),0)
    p2 = np.insert(p2,np.zeros( length-s2 >= 0 and length-s2 or 0),0)
    return p1+p2
开发者ID:pytutor,项目名称:python-tutor,代码行数:7,代码来源:polyadd.py


示例19: calcEarthParams

def calcEarthParams(layerThickness, layerResistivity):
    """"""
    nLayers = len(layerResistivity["min"])  # or 'max'
    thicknessParam = np.empty((nLayers,))
    resistivityParam = np.empty((nLayers,))

    # Iterate through the layers, applying the p formula to both
    #  thickness and resistivity
    for i in range(nLayers):
        # Generate a random number to control where in the range of
        #  possible values the true value of p could lie. This precedes the
        #  MC iteration, so take one p value with a grain of salt, but many
        #  with a salt shaker
        randomNumber = np.random.random_sample()
        if i < (nLayers - 1):  # Skip last depth (infinite)
            thicknessP = (layerThickness["max"][i] - layerThickness["min"][i]) * randomNumber + layerThickness["min"][i]
            thicknessParam = np.insert(thicknessParam, i, thicknessP)
            del thicknessP

        resistivityP = (layerResistivity["max"][i] - layerResistivity["min"][i]) * randomNumber + layerResistivity[
            "min"
        ][i]
        resistivityParam = np.insert(resistivityParam, i, resistivityP)
        del resistivityP

    return (thicknessParam[: nLayers - 1], resistivityParam[:nLayers])
开发者ID:vitale232,项目名称:ves,代码行数:26,代码来源:inversion_analysis.py


示例20: insert

def insert(array, obj, values):
    """Insert values along the given axis before the given indices.
    Parameters:	
    -----------
    arr : array_like
        Input array.
    
    obj : int, slice or sequence of ints
        Object that defines the index or indices before which values is inserted.
    
    values : array_like
        Values to insert into arr. If the type of values is different from that of arr, values is converted to the type of arr.
    
    axis : int, optional
        Axis along which to insert values. If axis is None then arr is flattened first.
    
    Returns:	
    --------
    out : ndarray
    
    A copy of arr with values inserted. Note that insert does not occur in-place: a new array is returned. If axis is None, out is a flattened array.

    """
    if isphysicalquantity(array):
        return np.insert(array.value, obj, values.value) * q[array.unit]
    else:
        return np.insert(array, obj, values)
开发者ID:juhasch,项目名称:PhysicalQuantities,代码行数:27,代码来源:numpywrapper.py



注:本文中的numpy.insert函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.int函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.inner函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap