本文整理汇总了Python中numpy.iscomplex函数的典型用法代码示例。如果您正苦于以下问题:Python iscomplex函数的具体用法?Python iscomplex怎么用?Python iscomplex使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了iscomplex函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: lqmn
def lqmn(m,n,z):
"""Associated Legendre functions of the second kind, Qmn(z) and its
derivative, ``Qmn'(z)`` of order m and degree n. Returns two
arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and ``Qmn'(z)`` for
all orders from ``0..m`` and degrees from ``0..n``.
z can be complex.
"""
if not isscalar(m) or (m<0):
raise ValueError("m must be a non-negative integer.")
if not isscalar(n) or (n<0):
raise ValueError("n must be a non-negative integer.")
if not isscalar(z):
raise ValueError("z must be scalar.")
m = int(m)
n = int(n)
# Ensure neither m nor n == 0
mm = max(1,m)
nn = max(1,n)
if iscomplex(z):
q,qd = specfun.clqmn(mm,nn,z)
else:
q,qd = specfun.lqmn(mm,nn,z)
return q[:(m+1),:(n+1)],qd[:(m+1),:(n+1)]
开发者ID:alexleach,项目名称:scipy,代码行数:26,代码来源:basic.py
示例2: is_spd
def is_spd(M, decimal=15):
"""Assert that input matrix is real symmetric positive definite.
M must be symmetric down to specified decimal places and with no complex
entry.
The check is performed by checking that all eigenvalues are positive.
Parameters
==========
M: numpy.ndarray
matrix.
Returns
=======
answer: boolean
True if matrix is symmetric real positive definite, False otherwise.
"""
if not np.allclose(M, M.T, atol=0.1 ** decimal):
print ("matrix not symmetric to {0} decimals".format(decimal))
return False
if np.all(np.iscomplex(M)):
print ("matrix has a non real value {0}".format(M[np.iscomplex(M)][0]))
eigvalsh = np.linalg.eigvalsh(M)
ispd = eigvalsh.min() > 0
if not ispd:
print ("matrix has a negative eigenvalue: %.3f" % eigvalsh.min())
return ispd
开发者ID:rphlypo,项目名称:parietalretreat,代码行数:27,代码来源:manifold.py
示例3: average_structure
def average_structure(X):
"""
Calculate an average structure from an ensemble of structures
(i.e. X is a rank-3 tensor: X[i] is a (N,3) configuration matrix).
@param X: m x n x 3 input vector
@type X: numpy array
@return: average structure
@rtype: (n,3) numpy.array
"""
from numpy.linalg import eigh
B = csb.numeric.gower_matrix(X)
v, U = eigh(B)
if numpy.iscomplex(v).any():
v = v.real
if numpy.iscomplex(U).any():
U = U.real
indices = numpy.argsort(v)[-3:]
v = numpy.take(v, indices, 0)
U = numpy.take(U, indices, 1)
x = U * numpy.sqrt(v)
i = 0
while is_mirror_image(x, X[0]) and i < 2:
x[:, i] *= -1
i += 1
return x
开发者ID:khasinski,项目名称:csb,代码行数:30,代码来源:__init__.py
示例4: __init__
def __init__(self, qpoint, wpts, gsphere, wggmat, inord="C"):
""""
Args:
qpoint: Q-point object
wpts: Frequency points in Ha.
wggmat: numpy array of shape [nw, ng, ng]
inord: storage order of wggmat. If inord == "F", wggmat in
in Fortran column-major order. Default: "C" i.e. C row-major order
"""
self.qpoint = qpoint
self.wpts = wpts
self.gsphere = gsphere
self.wggmat = np.reshape(wggmat, (self.nw, self.ng, self.ng))
if inord == "F":
# Fortran to C.
for iw in range(len(wpts)):
self.wggmat[iw] = self.wggmat[iw].T
for i in (1, 2):
assert len(gsphere) == wggmat.shape[-i]
assert len(self.wpts) == len(self.wggmat)
# Find number of real/imaginary frequencies
self.nrew = self.nw; self.nimw = 0
for i, w in enumerate(self.wpts):
if np.iscomplex(w):
self.nrew = i
break
self.nimw = self.nw - self.nrew
if self.nimw and not np.all(np.iscomplex(self.wpts[self.nrew+1:])):
raise ValueError("wpts should contained real points packed in the first positions\n"
"followed by imaginary points but got: %s" % str(self.wpts))
开发者ID:davidwaroquiers,项目名称:abipy,代码行数:34,代码来源:scr.py
示例5: test_random_like
def test_random_like(self):
"""
Test that the random_like function produces sensible data
"""
# Try for floats and complex data
for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
# Test random array creation with same
# shape and type as existing array
shape = (np.random.randint(1, 50), np.random.randint(1, 50))
ary = np.empty(shape=shape, dtype=dtype)
random_ary = mbu.random_like(ary)
# Test that that the shape and type is correct
self.assertTrue(random_ary.shape == ary.shape)
self.assertTrue(random_ary.dtype == dtype)
# Test that we're getting complex data out
if np.issubdtype(dtype, np.complexfloating):
proportion_cplx = np.sum(np.iscomplex(random_ary)) / random_ary.size
self.assertTrue(proportion_cplx > 0.9)
# Test random array creation with supplied shape and type
shape = (np.random.randint(1, 50), np.random.randint(1, 50))
random_ary = mbu.random_like(shape=shape, dtype=dtype)
# Test that that the shape and type is correct
self.assertTrue(random_ary.shape == shape)
self.assertTrue(random_ary.dtype == dtype)
# Test that we're getting complex data out
if np.issubdtype(dtype, np.complexfloating):
proportion_cplx = np.sum(np.iscomplex(random_ary)) / random_ary.size
self.assertTrue(proportion_cplx > 0.9)
开发者ID:ska-sa,项目名称:montblanc,代码行数:34,代码来源:test_utils.py
示例6: min
def min(X,Y=[],axis=1):
axis -= 1
tX, tY = X, Y
if _N.iscomplex(X.flat[0]): tX = abs(X)
if len(tY) > 0:
if _N.iscomplex(Y.flat[0]): tY = abs(Y)
return _N.minimum(tX,tY)
else:
nargout = _get_nargout()
print nargout
if nargout == 1:
return _N.min(tX,axis)
elif nargout == 2:
# slow
i = _N.argmin(tX,axis)
return _N.min(tX,axis), i
# i = _N.argmin(tX,axis)
# sh = X.shape
# index = [ slice(0,x,1) for x in sh ]
# if axis == 0:
# index[1] = range(sh[1])
# else:
# index[0] = range(sh[0])
# index[axis] = i
# return _N.ndarray.__getslice__(index)
else:
raise Exception('too many output vals')
开发者ID:pombredanne,项目名称:ompc,代码行数:27,代码来源:matpy.py
示例7: trapz2d
def trapz2d(x_gpu, dx=1.0, dy=1.0, handle=None):
"""
2D trapezoidal integration.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input matrix to integrate.
dx : float
X-axis spacing.
dy : float
Y-axis spacing
handle : int
CUBLAS context. If no context is specified, the default handle from
`skcuda.misc._global_cublas_handle` is used.
Returns
-------
result : float
Definite double integral as approximated by the trapezoidal rule.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray
>>> import numpy as np
>>> import integrate
>>> integrate.init()
>>> x = np.asarray(np.random.rand(10, 10), np.float32)
>>> x_gpu = gpuarray.to_gpu(x)
>>> z = integrate.trapz2d(x_gpu)
>>> np.allclose(np.trapz(np.trapz(x)), z)
True
"""
if handle is None:
handle = misc._global_cublas_handle
if len(x_gpu.shape) != 2:
raise ValueError('input array must be 2D')
if np.iscomplex(dx) or np.iscomplex(dy):
raise ValueError('dx and dy must be real')
float_type = x_gpu.dtype.type
if float_type == np.complex64:
cublas_func = cublas.cublasCdotu
elif float_type == np.float32:
cublas_func = cublas.cublasSdot
elif float_type == np.complex128:
cublas_func = cublas.cublasZdotu
elif float_type == np.float64:
cublas_func = cublas.cublasDdot
else:
raise ValueError('unsupported input type')
trapz_mult_gpu = gen_trapz2d_mult(x_gpu.shape, float_type)
result = cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1,
trapz_mult_gpu.gpudata, 1)
return float_type(dx)*float_type(dy)*result
开发者ID:Brainiarc7,项目名称:scikit-cuda,代码行数:60,代码来源:integrate.py
示例8: __init__
def __init__(self, wpoints, gsphere, wggmat, inord="C"):
""""
Args:
gsphere: |GSphere| with G-vectors and k-point object.
wpoints: Complex frequency points in Hartree.
wggmat: [nw, ng, ng] complex array.
inord: storage order of ``wggmat``. If inord == "F", ``wggmat`` is in
in Fortran column-major order. Default: "C" i.e. C row-major order.
"""
self.wpoints = np.array(wpoints, dtype=np.complex)
self.gsphere = gsphere
self.wggmat = np.reshape(wggmat, (self.nw, self.ng, self.ng))
if inord.lower() == "f":
# Fortran to C.
for iw, _ in enumerate(wpoints):
self.wggmat[iw] = self.wggmat[iw].T.copy()
for i in (1, 2):
assert len(gsphere) == wggmat.shape[-i]
assert len(self.wpoints) == len(self.wggmat)
# Find number of real/imaginary frequencies.
self.nrew = self.nw
self.nimw = 0
for i, w in enumerate(self.wpoints):
if np.iscomplex(w):
self.nrew = i
break
self.nimw = self.nw - self.nrew
if self.nimw and not np.all(np.iscomplex(self.wpoints[self.nrew+1:])):
raise ValueError("wpoints should contained real points packed in the first positions\n"
"followed by imaginary points but got: %s" % str(self.wpoints))
开发者ID:gmatteo,项目名称:abipy,代码行数:34,代码来源:scr.py
示例9: fitToData
def fitToData(self, data):
'''
param data: numpy array where [:,0] is x and [:,1] is y
'''
x = data[:, 0][:, np.newaxis]
y = data[:, 1][:, np.newaxis]
D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x)))
S = np.dot(D.T, D)
C = np.zeros([6, 6])
C[0, 2] = C[2, 0] = 2; C[1, 1] = -1
E, V = eig(np.dot(inv(S), C))
n = np.argmax(np.abs(E))
self.parameters = V[:, n]
axes = self.ellipse_axis_length()
self.a = axes[0]
self.b = axes[1]
self.angle = self.ellipse_angle_of_rotation()
if not self.a or not self.b or self.parameters == None or np.iscomplexobj(self.parameters) or \
math.isnan(self.a) or math.isnan(self.b) or math.isnan(self.ellipse_center()[0]) or \
np.iscomplex(self.ellipse_center()[0]) or np.iscomplex(self.a) or np.iscomplex(self.b) or \
np.iscomplexobj(self.angle):
self.a = 0
self.b = 0
self.parameters = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
self.angle = 0
self.error = True
开发者ID:rmclaren,项目名称:Kaggle-GalaxyZoo,代码行数:28,代码来源:Ellipse.py
示例10: solution_not_acceptable
def solution_not_acceptable(P = -5e8, T = 293.15):
"""
This function raises a flag if the newly calculated values of P or T are
problematic (either complex, positive or not calculable)
"""
a = np.any(np.isnan(P)) or np.any(np.iscomplex(P)) or np.any(P>0)
b = np.any(np.isnan(T)) or np.any(np.iscomplex(T))
return a or b
开发者ID:nvdl,项目名称:hamopy,代码行数:8,代码来源:algorithm.py
示例11: _check
def _check(self, res, ref):
if hasattr(res, "get_x"):
x = res.get_x()
for k in list(res.keys()):
if np.all(res[k] == x):
continue
elif np.any(np.iscomplex(res[k])) or np.any(np.iscomplex(ref[k])):
# Interpolate Re and Im of the results to compare.
x = x.reshape((-1,))
refx = ref[ref.x].reshape((-1,))
d1 = InterpolatedUnivariateSpline(x, np.real(res[k]).reshape((-1,)))
d2 = InterpolatedUnivariateSpline(refx, np.real(ref[k]).reshape((-1,)))
ok(d1(x), d2(x), rtol=self.er, atol=self.ea, msg=("Test %s FAILED (Re)" % self.test_id))
d1 = InterpolatedUnivariateSpline(x, np.imag(res[k]).reshape((-1,)))
d2 = InterpolatedUnivariateSpline(refx, np.imag(ref[k]).reshape((-1,)))
ok(d1(x), d2(x), rtol=self.er, atol=self.ea, msg=("Test %s FAILED (Im)" % self.test_id))
else:
# Interpolate the results to compare.
x = x.reshape((-1,))
refx = ref[ref.x].reshape((-1,))
d1 = InterpolatedUnivariateSpline(x, np.real_if_close(res[k]).reshape((-1,)))
d2 = InterpolatedUnivariateSpline(refx, np.real_if_close(ref[k]).reshape((-1,)))
ok(d1(x), d2(x), rtol=self.er, atol=self.ea, msg=("Test %s FAILED" % self.test_id))
elif isinstance(res, results.op_solution):
for k in list(res.keys()):
assert k in ref
ok(res[k], ref[k], rtol=self.er, atol=self.ea, msg=("Test %s FAILED" % self.test_id))
elif isinstance(res, results.pz_solution):
# recover the reference signularities from Re/Im data
ref_sing_keys = list(ref.keys())[:]
ref_sing_keys.sort()
assert len(ref_sing_keys) % 2 == 0
ref_sing = [
ref[ref_sing_keys[int(len(ref_sing_keys) / 2) + k]] + ref[ref_sing_keys[k]] * 1j
for k in range(int(len(ref_sing_keys) / 2))
]
ref_poles_num = len([k for k in ref.keys() if k[:4] == "Re(p"])
poles_ref, zeros_ref = ref_sing[:ref_poles_num], ref_sing[ref_poles_num:]
assert len(poles_ref) == len(res.poles)
pz._check_singularities(res.poles, poles_ref)
assert len(zeros_ref) == len(res.zeros)
pz._check_singularities(res.zeros, zeros_ref)
else:
if isinstance(res, list) or isinstance(res, tuple):
for i, j in zip(res, ref):
self._check(i, j)
elif res is not None:
for k in list(res.keys()):
assert k in ref
if isinstance(res[k], dict): # hence ref[k] will be a dict too
self._check(res[k], ref[k])
elif isinstance(ref[k], sympy.Basic) and isinstance(res[k], sympy.Basic):
# get rid of assumptions. Evaluate only expression
rf = parse_expr(str(ref[k]))
rs = parse_expr(str(res[k]))
assert (rs == rf) or (sympy.simplify(rf / rs) == 1)
else:
assert res[k] == ref[k]
开发者ID:ReynaldoBelfortUPRM,项目名称:ahkab,代码行数:58,代码来源:testing.py
示例12: sph_yn
def sph_yn(n, z):
idx = np.isreal(z)
out = _sph_yn_bessel(n, z)
if np.any(idx):
# Ascending recurrence is more accurate for real z
out[idx] = _sph_yn_a_recur(n[idx], z[idx])
if np.any(np.iscomplex(out)):
out[np.logical_and(np.isnan(out), np.iscomplex(out))] = np.inf*(1+1j)
return out
开发者ID:tpudlik,项目名称:sbf,代码行数:9,代码来源:candidate.py
示例13: test_simple
def test_simple(self):
a = [[8,12,3],[2,9,3],[10,3,6]]
t,z = schur(a)
assert_array_almost_equal(dot(dot(z,t),transp(conj(z))),a)
tc,zc = schur(a,'complex')
assert_(any(ravel(iscomplex(zc))) and any(ravel(iscomplex(tc))))
assert_array_almost_equal(dot(dot(zc,tc),transp(conj(zc))),a)
tc2,zc2 = rsf2csf(tc,zc)
assert_array_almost_equal(dot(dot(zc2,tc2),transp(conj(zc2))),a)
开发者ID:dagss,项目名称:private-scipy-refactor,代码行数:9,代码来源:test_decomp.py
示例14: allsortedclose
def allsortedclose(a, b, atol=1e-3, rtol=1e-3):
if np.iscomplex(a).any():
a = np.sort_complex(a)
else:
a = np.sort(a)
if np.iscomplex(b).any():
b = np.sort_complex(b)
else:
b = np.sort(b)
return np.allclose(a, b, rtol=rtol, atol=atol)
开发者ID:ggventurini,项目名称:python-deltasigma,代码行数:10,代码来源:test_calculateQTF.py
示例15: _iter_initialize
def _iter_initialize(self):
"""
Perform any necessary pre-processing operations.
Returns
-------
float
Initial relative error in the user-specified residuals.
float
Initial absolute error in the user-specified residuals.
"""
system = self._system
if self.options['debug_print']:
self._err_cache['inputs'] = self._system._inputs._copy_views()
self._err_cache['outputs'] = self._system._outputs._copy_views()
# Convert local storage if we are under complex step.
if system.under_complex_step:
if np.iscomplex(self.xm[0]):
self.Gm = self.Gm.astype(np.complex)
self.xm = self.xm.astype(np.complex)
self.fxm = self.fxm.astype(np.complex)
elif np.iscomplex(self.xm[0]):
self.Gm = self.Gm.real
self.xm = self.xm.real
self.fxm = self.fxm.real
self._converge_failures = 0
self._computed_jacobians = 0
# Execute guess_nonlinear if specified.
system._guess_nonlinear()
# When under a complex step from higher in the hierarchy, sometimes the step is too small
# to trigger reconvergence, so nudge the outputs slightly so that we always get at least
# one iteration of Broyden.
if system.under_complex_step and self.options['cs_reconverge']:
system._outputs._data += np.linalg.norm(self._system._outputs._data) * 1e-10
# Start with initial states.
self.xm = self.get_states()
with Recording('Broyden', 0, self):
self._solver_info.append_solver()
# should call the subsystems solve before computing the first residual
self._gs_iter()
self._solver_info.pop()
self._run_apply()
norm = self._iter_get_norm()
norm0 = norm if norm != 0.0 else 1.0
return norm0, norm
开发者ID:OpenMDAO,项目名称:OpenMDAO,代码行数:55,代码来源:broyden.py
示例16: time_correlations_direct
def time_correlations_direct(P, pi, obs1, obs2=None, times=[1]):
r"""Compute time-correlations of obs1, or time-cross-correlation with obs2.
The time-correlation at time=k is computed by the matrix-vector expression:
cor(k) = obs1' diag(pi) P^k obs2
Parameters
----------
P : ndarray, shape=(n, n) or scipy.sparse matrix
Transition matrix
obs1 : ndarray, shape=(n)
Vector representing observable 1 on discrete states
obs2 : ndarray, shape=(n)
Vector representing observable 2 on discrete states. If not given,
the autocorrelation of obs1 will be computed
pi : ndarray, shape=(n)
stationary distribution vector. Will be computed if not given
times : array-like, shape(n_t)
Vector of time points at which the (auto)correlation will be evaluated
Returns
-------
"""
n_t = len(times)
times = np.sort(times) # sort it to use caching of previously computed correlations
f = np.zeros(n_t)
# maximum time > number of rows?
if times[-1] > P.shape[0]:
use_diagonalization = True
R, D, L = rdl_decomposition(P)
# discard imaginary part, if all elements i=0
if not np.any(np.iscomplex(R)):
R = np.real(R)
if not np.any(np.iscomplex(D)):
D = np.real(D)
if not np.any(np.iscomplex(L)):
L = np.real(L)
rdl = (R, D, L)
if use_diagonalization:
for i in xrange(n_t):
f[i] = time_correlation_by_diagonalization(P, pi, obs1, obs2, times[i], rdl)
else:
start_values = None
for i in xrange(n_t):
f[i], start_values = \
time_correlation_direct_by_mtx_vec_prod(P, pi, obs1, obs2,
times[i], start_values, True)
return f
开发者ID:ismaelresp,项目名称:PyEMMA,代码行数:52,代码来源:correlations.py
示例17: __dot__
def __dot__(self,other):
r1 = self.r
r2 = other.r
d = self.d
if ( np.iscomplex(self.core).any() or np.iscomplex(other.core).any()):
dt = np.zeros(r1[0]*r2[0]*r1[d]*r2[d],dtype=np.complex)
dt = tt_f90.tt_f90.ztt_dotprod(self.n,r1,r2,self.ps,other.ps,self.core+0j,other.core+0j,dt.size)
else:
dt = np.zeros(r1[0]*r2[0]*r1[d]*r2[d])
dt = tt_f90.tt_f90.dtt_dotprod(self.n,r1,r2,self.ps,other.ps,np.real(self.core),np.real(other.core),dt.size)
if dt.size is 1:
dt = dt[0]
return dt
开发者ID:chiwhalee,项目名称:ttpy,代码行数:13,代码来源:tt.py
示例18: testConnectLapEig
def testConnectLapEig(g):
begin = time.time()
print ''
print '-----'
print 'Computing eigenvalues of L..'
n = len(g.nodes())
L = np.zeros((n,n))
for x,i in g.edges():
L[x,i] = -1
L[i,x] = -1
for x in g.nodes():
if (x,x) in g.edges():
L[x,x] = g.degree(x)-2
else:
L[x,x] = g.degree(x)
w, v = LA.eig(L)
w = sorted(list(w))
print ''
print 'elapsed time:', time.time() - begin,' s'
print ''
print 'the eigenvalues of L are:'
c = 0
for x in w:
if np.iscomplex(x):
print 'Complex eigenvalue:',x
else:
print float(np.where(x < 1e-10, 0, x))
c = c + 1
if c == 4:
print 'and more..'
break
if np.iscomplex(w[1]):
print ''
print 'the second smallest eigenvalue is complex:', w[1]
print ''
seconSmallestEig = np.real(w[1])
else:
seconSmallestEig = float(np.where(w[1] < 1e-10, 0, w[1]))
print ''
print 'the second smallest eigenvalue is:', seconSmallestEig
print ''
if seconSmallestEig > 0 :
print 'which is positive: the graph is connected'
print '-----'
return True
else:
print 'which is negative: the graph is disconnected'
print '-----'
return False
开发者ID:CriMenghini,项目名称:cenda,代码行数:51,代码来源:library.py
示例19: get_projected_coordinates
def get_projected_coordinates(self):
self.compute_polynomials()
# returns projected x,y coordinates based on calculated parabolas
print(self.z_x_poly.r)
print(self.z_y_poly.r)
x_coord = self.z_x_poly.r[0]
y_coord = self.z_y_poly.r[0]
if np.iscomplex(x_coord) or np.iscomplex(y_coord):
return (None, None)
return (x_coord, y_coord)
开发者ID:mkim-hj,项目名称:autonomous_basketball_catcher,代码行数:14,代码来源:trajectory.py
示例20: time_relaxations_direct
def time_relaxations_direct(P, p0, obs, times = [1]):
r"""Compute time-relaxations of obs with respect of given initial distribution.
relaxation(k) = p0 P^k obs
Parameters
----------
P : ndarray, shape=(n, n) or scipy.sparse matrix
Transition matrix
p0 : ndarray, shape=(n)
initial distribution
obs : ndarray, shape=(n)
Vector representing observable on discrete states.
times : array-like, shape(n_t)
Vector of time points at which the (auto)correlation will be evaluated
Returns
-------
relaxations : ndarray, shape(n_t)
"""
n_t = len(times)
times = np.sort(times)
# maximum time > number of rows?
if times[-1] > P.shape[0]:
use_diagonalization = True
R, D, L = rdl_decomposition(P)
# discard imaginary part, if all elements i=0
if not np.any(np.iscomplex(R)):
R = np.real(R)
if not np.any(np.iscomplex(D)):
D = np.real(D)
if not np.any(np.iscomplex(L)):
L = np.real(L)
rdl = (R, D, L)
f = np.empty(n_t, dtype=D.dtype)
if use_diagonalization:
for i in xrange(n_t):
f[i] = time_relaxation_direct_by_diagonalization(
P, p0, obs, times[i], rdl)
else:
start_values = None
for i in xrange(n_t):
f[i], start_values = time_relaxation_direct_by_mtx_vec_prod(
P, p0, obs, times[i], start_values, True)
return f
开发者ID:greglever,项目名称:PyEMMA,代码行数:48,代码来源:correlations.py
注:本文中的numpy.iscomplex函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论